
SM-A Showing that there are more first time visits than revisits in the first
epoch

Let the probability that a sample is not visited in an epoch be p, where recall that an epoch consists
of drawing N/b mini-batches, where we assume N mod b = 0. Denote by q the probability that
the visit of a sample is a revisit. We argue that q = p : the number of samples not visited exactly
corresponds to the number of revisits, as the number of visits is the number of samples, by definition
of an epoch. Clearly, p = (1 − b/N)N/b, from which it can be shown that 1/4 ≤ p < 1/e. Thus
q ≤ 1/e as we want. In other words, there are at least 1.718 first time visits for 1 revisit.

SM-B Showing that the expectations ‖ct+1(j|2bt)− ct+1(j|bt)‖2 and 1
2
σ̂2
C are

approximately the same

Recall thatMt(j) are the samples used to obtain cj(t), that is

ct(j) =
1

|Mt(j)|
∑

i∈Mt(j)

x(i).

The mean squared distance of samples inMt(j) to cj(t) we denote by σ̂2
S(j),

σ̂2
S(j) =

1

|Mt(j)|
∑

i∈Mt(j)

‖x(i)− ct(t)‖2.

We compute the expectation of ‖ct+1(j|2bt) − ct+1(j|bt)‖2, where the expectation is over all pos-
sible shufflings of the data. Recall that ct+1(j|2bt) is centroid j at iteration t + 1 if the mini-batch
at size t + 1 is 2bt, where bt is the mini-batch size at iteration t. Recall that we use Mt(j) to
denote samples assigned to ct(j). We will now denote byM2bt

t+1(j) the sample indices assigned to
ct+1(j|2bt) andMbt

t+1(j) the sample indices assigned to ct+1(j|bt). Thus,

E (‖ct+1(j|2bt)− ct+1(j|bt)‖2
)
=

= E

∥∥∥ 1

|M2bt
t+1(j)|

∑
i∈M2bt

t+1(j)

x(i)− 1

|Mbt
t+1(j)|

∑
i∈Mbt

t+1(j)

x(i)
∥∥∥2


= E

∥∥∥ 1

|M2bt
t+1(j)|

∑
i∈M2bt

t+1(j)\M
bt
t+1(j)

x(i) −

(
1

|Mbt
t+1(j)|

− 1

|M2bt
t+1(j)|

) ∑
i∈Mbt

t+1(j)

x(i)
∥∥∥2


10

We now assume that the number of samples per centroid does not change significantly between
iterations t and t+1 for a fixed batch size, so that |Mbt

t+1(j)| ≈ |Mt(j)| and |M2bt
t+1(j)| ≈ 2|Mt(j)|.

Continuing we have,

≈ 1

4|Mt(j)|2
E

∥∥∥ ∑
i∈M2bt

t+1(j)\M
bt
t+1(j)

x(i)−
∑

i∈Mbt
t+1(j)

x(i)
∥∥∥2


≈ 1

4|Mt(j)|2
E

∥∥∥ ∑
i∈M2bt

t+1(j)\M
bt
t+1(j)

(x(i)− ct(j)) −

∑
i∈Mbt

t+1(j)

(x(i)− ct(j))
∥∥∥2


The two summation terms are independant and the second has expectation approximately zero as-
suming the centroids do not move too much between rounds, so

≈ 1

4|Mt(j)|

E

 1

|Mt(j)|

∥∥∥ ∑
i∈M2bt

t+1(j)\M
bt
t+1(j)

(x(i)− ct(j))
∥∥∥2
+

E

 1

|Mt(j)|

∥∥∥ ∑
i∈Mbt

t+1(j)

(x(i)− ct(j))
∥∥∥2



Finally, each of the two expectation terms can be approximated by σ̂2
S(j). Approximating the first

term by σ̂2
S(j), may be an underestimation as the summation is over data which was not used to

obtain ct(j), whereas σ̂2
S(j) is obtained using data used by ct(j). Using this estimation we get,

≈ 1

2|Mt(j)|
σ̂2
S(j),

=
1

2|Mt(j)|2
∑

i∈Mt(j)

‖x(i)− ct(t)‖2,

=
1

2
σ̂2
C(j).

The final equality following from the definition of σ̂2
C(j).

SM-C Time-energy curves with various doubling thresholds

Figures 4 and 5 show the full time-energy curves for various values of the doubling threshold ρ, for
the cases where bounds are used and deactivated respectively.

SM-D On algorithms intermediate to mbatch and nmbatch

The primary argument presented in this paper for removing old assignments is to prevent a biased
use of samples in nmbatch. However, a second reason for removing old assignments is that they can
contaminate centroids if left unremoved. This second reason in favour of removing old assignments
is also applicable to mbatch, and so it is interesting to see if mbatch can be improved by removing
old assignments, without the inclusion of triangle inequality based bounds. We call this algorithm
mbatch.remove. In addition, it is interesting to consider the performance of nmbatch without
bound testing. We here call nmbatch without bound testing nmbatch.deact.

In Figure 6 we see that mbatch is indeed improved by removing old assignments: mbatch.remove
outperforms mbatch, especially at later iterations. The algorithm nmbatch.deact does not perform

11

100 101
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(E
V
−
E
∗)
/E
∗

KDDC98

ρ = 10−1

ρ = 100

ρ = 101

ρ = 102

ρ = 103

100 101 102
0.00

0.01

0.02

0.03

0.04

0.05

0.06
INFMNIST

100 101 102

time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(E
V
−
E
∗)
/E
∗

RCV1

100 101 102 103

time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
STL10P

Figure 4: Time-energy curves for nmbatch with various ρ. The dotted vertical lines correspond
to the time slices presented in Figure 2. We see that large ρ works best, with very little difference
between ρ = 102 and ρ = 103.

as well as nmbatch, as expected, however it is comparable to mbatch.remove, if not slightly bet-
ter. There is no algorithmic reason why nmbatch.deact should be better than mbatch.remove, as
nesting was proposed purely as way to better harness bounds. One possible explanation for the good
performance of nmbatch.deact is better memory usage: when samples are reused there are fewer
cache memory misses.

SM-E Premature fine-tuning, one more time please

The loss function being minimised changes when the mini-batch grows. With bt samples, it is

E(C) = 1

bt

bt∑
i=1

argmin
j∈{1,...,k}

‖x(i)− c(j)‖2,

and then with 2bt it is

E(C) 1

2bt

2bt∑
i=1

argmin
j∈{1,...,k}

‖x(i)− c(j)‖2.

Minima of these two loss functions are different, although as bt gets large they approach each each.
Premature fine-tuning refers to putting a large amount of effort into getting very close to a minimum
with bt samples, when we know that as soon as we switch to 2bt samples the minimum will move,
undoing our effort to get very close to a mimumum.

Coffee break definition: It’s like a glazed cherry without a cake, that finishing touch which is useless
until the main project is complete. Donald Knuth once wrote that premature optimization is the

12

100 101 102
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(E
V
−
E
∗)
/E
∗

KDDC98

ρ = 10−1

ρ = 100

ρ = 101

ρ = 102

ρ = 103

100 101 102 103
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045
INFMNIST

100 101 102 103

time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(E
V
−
E
∗)
/E
∗

RCV1

100 101 102 103

time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
STL10P

Figure 5: Time-energy curves for nmbatch with bounds disabled. The dotted vertical lines cor-
respond to the time slices presented in Figure 2, that is t = 2s and t = 10s. We see that with
bounds disabled, ρ = 101 in general outperforms ρ ∈ {102, 103}, providing empirical support for
the proposed doubling scheme.

root of all evil, where optimisations to code performed too early on in a project become useless as
software evolves. This is roughly what we’re talking about.

13

10−1 100 101 102 103 104
0.00

0.02

0.04

0.06

0.08

0.10

(E
V
−
E
∗)
/E
∗

KDDC98

lloyd
yinyang
minibatch
nmbatch
nmbatch.deact
mbatch.remove

10−1 100 101 102 103 104
0.00

0.01

0.02

0.03

0.04

0.05

0.06
INFMNIST

10−1 100 101 102 103 104

time [s]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(E
V
−
E
∗)
/E
∗

RCV1

10−1 100 101 102 103 104

time [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
STL10P

Figure 6: Performace of algorithms intermediate to nmbatch and mbatch. The interme-
diate algorithms are : nmbatch.deact, which is nmbatch with the bound test deactivated,
and mbatch.remove, which is mbatch with the removal of old assignments. nmbatch and
nmbatch.deact are with ρ = 100 as usual. We observe that, as expected, deactivation of the
bound test results in a significant slow-down of nmbatch. We also observe that the removal of old
assignments significantly improves mbatch, especially at later iterations.

14

