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Abstract

We address the problem of recovering a high-dimensional but structured vector
from linear observations in a general setting where the vector can come from an
arbitrary union of subspaces. This setup includes well-studied problems such as
compressive sensing and low-rank matrix recovery. We show how to design more
efficient algorithms for the union-of-subspace recovery problem by using approx-
imate projections. Instantiating our general framework for the low-rank matrix
recovery problem gives the fastest provable running time for an algorithm with
optimal sample complexity. Moreover, we give fast approximate projections for 2D
histograms, another well-studied low-dimensional model of data. We complement
our theoretical results with experiments demonstrating that our framework also
leads to improved time and sample complexity empirically.

1 Introduction

Over the past decade, exploiting low-dimensional structure in high-dimensional problems has become
a highly active area of research in machine learning, signal processing, and statistics. In a nutshell,
the general approach is to utilize a low-dimensional model of relevant data in order to achieve
better prediction, compression, or estimation compared to a “black box” treatment of the ambient
high-dimensional space. For instance, the seminal work on compressive sensing and sparse linear
regression has shown how to estimate a sparse, high-dimensional vector from a small number of
linear observations that essentially depends only on the small sparsity of the vector, as opposed to its
large ambient dimension. Further examples of low-dimensional models are low-rank matrices, group-
structured sparsity, and general union-of-subspaces models, all of which have found applications in
problems such as matrix completion, principal component analysis, compression, and clustering.

These low-dimensional models have a common reason for their success: they capture important
structure present in real world data with a formal concept that is suitable for a rigorous mathematical
analysis. This combination has led to statistical performance improvements in several applications
where the ambient high-dimensional space is too large for accurate estimation from a limited number
of samples. However, exploiting the low-dimensional structure also comes at a cost: incorporating
the structural constraints into the statistical estimation procedure often results in a more challenging
algorithmic problems. Given the growing size of modern data sets, even problems that are solvable
in polynomial time can quickly become infeasible. This leads to the following important question:
Can we design efficient algorithms that combine (near)-optimal statistical efficiency with good
computational complexity?

In this paper, we make progress on this question in the context of recovering a low-dimensional
vector from noisy linear observations, which is the fundamental problem underlying both low-rank
matrix recovery and compressive sensing / sparse linear regression. While there is a wide range of
algorithms for these problems, two approaches for incorporating structure tend to be most common:
(i) convex relaxations of the low-dimensional constraint such as the `

1

- or the nuclear norm [19], and
(ii) iterative methods based on projected gradient descent, e.g., the IHT (Iterative Hard Thresholding)
or SVP (Singular Value Projection) algorithms [5, 15]. Since the convex relaxations are often also
solved with first order methods (e.g., FISTA or SVT [6]), the low-dimensional constraint enters both
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approaches through a structure-specific projection or proximal operator. However, this projection
/ proximal operator is often computationally expensive and dominates the overall time complexity
(e.g., it requires a singular value decomposition for the low-rank matrix recovery problem).

In this work, we show how to reduce the computational bottleneck of the projection step by using
approximate projections. Instead of solving the structure-specific projection exactly, our framework
allows us to employ techniques from approximation algorithms without increasing the sample
complexity of the recovery algorithm. While approximate projections have been used in prior work,
our framework is the first to yield provable algorithms for general union-of-subspaces models (such
as low-rank matrices) that combine better running time with no loss in sample complexity compared
to their counterparts utilizing exact projections. Overall, we make three contributions:

1. We introduce an algorithmic framework for recovering vectors from linear observations
given an arbitrary union-of-subspaces model. Our framework only requires approximate
projections, which leads to recovery algorithms with significantly better time complexity.

2. We instantiate our framework for the well-studied low-rank matrix recovery problem, which
yields a provable algorithm combining the optimal sample complexity with the best known
time complexity for this problem.

3. We also instantiate our framework for the problem of recovering 2D-histograms (i.e.,
piecewise constant matrices) from linear observations, which leads to a better empirical
sample complexity than the standard approach based on Haar wavelets.

Our algorithmic framework generalizes recent results for structured sparse recovery [12, 13] and
shows that approximate projections can be employed in a wider context. We believe that these
notions of approximate projections are useful in further constrained estimation settings and have
already obtained preliminary results for structured sparse PCA. For conciseness, we focus on the
union-of-subspaces recovery problem in this paper.

Outline of the paper. In Section 2, we formally introduce the union-of-subspaces recovery problem
and state our main results. Section 3 then explains our algorithmic framework in more detail
and Section 4 instantiates the framework for low-rank matrix recovery. Section 5 concludes with
experimental results. Due to space constraints, we address our results for 2D histograms mainly in
Appendix C of the supplementary material.

2 Our contributions

We begin by defining our problem of interest. Our goal is to recover an unknown, structured vector
✓⇤ 2 Rd from linear observations of the form

y = X✓⇤ + e , (1)

where the vector y 2 Rn contains the linear observations / measurements, the matrix X 2 Rn⇥d is
the design / measurement matrix, and the vector e 2 Rn is an arbitrary noise vector. The formal goal
is to find an estimate ˆ✓ 2 Rd such that kˆ✓ � ✓⇤k

2

 C · kek
2

, where C is a fixed, universal constant
and k·k

2

is the standard `
2

-norm (for notational simplicity, we omit the subscript on the `
2

-norm in
the rest of the paper). The structure we assume is that the vector ✓⇤ belongs to a subspace model:
Definition 1 (Subspace model). A subspace model U is a set of linear subspaces. The set of vectors
associated with the subspace model U is M(U) = {✓ | ✓ 2 U for some U 2 U}.

A subspace model is a natural framework generalizing many of the low-dimensional data models
mentioned above. For example, the set of sparse vectors with s nonzeros can be represented with�d
s

�
subspaces corresponding to the

�d
s

�
possible sparse support sets. The resulting problem of

recovering ✓⇤ from observations of the form (1) then is the standard compressive sensing / sparse
linear regression problem. Structured sparsity is a direct extension of this formulation in which we
only include a smaller set of allowed supports, e.g., supports corresponding to group structures.

Our framework also includes the case where the union of subspaces is taken over an infinite set: we
can encode the low-rank matrix recovery problem by letting U be the set of rank-r matrix subspaces,
i.e., each subspace is given by a set of r orthogonal rank-one matrices. By considering the singular
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value decomposition, it is easy to see that every rank-r matrix can be written as the linear combination
of r orthogonal rank-one matrices.

Next, we introduce related notation. For a linear subspace U of Rd, let PU 2 Rd⇥d be the orthogonal
projection onto U . We denote the orthogonal complement of the subspace U with U? so that ✓ =
PU✓+PU?✓. We extend the notion of adding subspaces (i.e., U+V = {u+v |u 2 U and v 2 V }) to
subspace models: the sum of two subspace models U and V is U�V = {U+V |U 2 U and V 2 V}.
We denote the k-wise sum of a subspace model with �k U = U� U� . . .� U.

Finally, we introduce a variant of the well-known restricted isometry property (RIP) for subspace
models. The RIP is a common regularity assumption for the design matrix X that is often used in
compressive sensing and low-rank matrix recovery in order to decouple the analysis of algorithms
from concrete sampling bounds.1 Formally, we have:
Definition 2 (Subspace RIP). Let X 2 Rn⇥d, let U be a subspace model, and let � � 0. Then X
satisfies the (U, �)-subspace RIP if for all ✓ 2M(U) we have (1� �)k✓k2  kX✓k2  (1+ �)k✓k2.

2.1 A framework for recovery algorithms with approximate projections

Considering the problem (1) and the goal of estimating under the `
2

-norm, a natural algorithm is
projected gradient descent with the constraint set M(U). This corresponds to iterations of the form

ˆ✓i+1  PU(ˆ✓
i � ⌘ ·XT

(X ˆ✓i � y)) (2)

where ⌘ 2 R is the step size and we have extended our notation so that PU denotes a projection onto
the set M(U). Hence we require an oracle that projects an arbitrary vector b 2 Rd into a subspace
model U, which corresponds to finding a subspace U 2 U so that kb� PUbk is minimized. Recovery
algorithms of the form (2) have been proposed for various instances of the union-of-subspaces
recovery problem and are known as Iterative Hard Thresholding (IHT) [5], model-IHT [1], and
Singular Value Projection (SVP) [15]. Under regularity conditions on the design matrix X such as the
RIP, these algorithms find accurate estimates ˆ✓ from an asymptotically optimal number of samples.
However, for structures more complicated than plain sparsity (e.g., group sparsity or a low-rank
constraint), the projection oracle is often the computational bottleneck.

To overcome this barrier, we propose two complementary notions of approximate subspace projections.
Note that for an exact projection, we have that kbk2 = kb� PUbk2 + kPUbk2. Hence minimizing the
“tail” error kb� PUbk is equivalent to maximizing the “head” quantity kPUbk. Instead of minimizing /
maximizing these quantities exactly, the following definitions allow a constant factor approximation:
Definition 3 (Approximate tail projection). Let U and UT be subspace models and let cT � 0. Then
T : Rd ! UT is a (cT ,U,UT )-approximate tail projection if the following guarantee holds for all
b 2 Rd: The returned subspace U = T (b) satisfies kb� PUbk  cT kb� PUbk.
Definition 4 (Approximate head projection). Let U and UH be subspace models and let cH > 0.
Then H : Rd ! UH is a (cH,U,UH)-approximate head projection if the following guarantee holds
for all b 2 Rd: The returned subspace U = H(b) satisfies kPUbk � cHkPUbk.
It is important to note that the two definitions are distinct in the sense that a constant-factor head
approximation does not imply a constant-factor tail approximation, or vice versa (to see this, consider
a vector with a very large or very small tail error, respectively). Another feature of these definitions is
that the approximate projections are allowed to choose subspaces from a potentially larger subspace
model, i.e., we can have U ( UH (or UT ). This is a useful property when designing approximate
head and tail projection algorithms as it allows for bicriterion approximation guarantees.

We now state the main result for our new recovery algorithm. In a nutshell, we show that using both
notions of approximate projections achieves the same statistical efficiency as using exact projections.
As we will see in later sections, the weaker approximate projection guarantees allow us to design
algorithms with a significantly better time complexity than their exact counterparts. To simplify the
following statement, we defer the precise trade-off between the approximation ratios to Section 3.

1Note that exact recovery from arbitrary linear observations is already an NP-hard problem in the noiseless
case, and hence regularity conditions on the design matrix X are necessary for efficient algorithms. While there
are more general regularity conditions such as the restricted eigenvalue property, we state our results here under
the RIP assumption in order to simplify the presentation of our algorithmic framework.
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Theorem 5 (informal). Let H and T be approximate head and tail projections with constant
approximation ratios, and let the matrix X satisfy the (�c U, �)-subspace RIP for a sufficiently large
constant c and a sufficiently small constant �. Then there is an algorithm AS-IHT that returns an
estimate ˆ✓ such that kˆ✓ � ✓⇤k  Ckek. The algorithm requires O(logk✓k/kek) multiplications with
X and XT , and O(logk✓k/kek) invocations of H and T .

Up to constant factors, the requirements on the RIP of X in Theorem 5 are the same as for exact
projections. As a result, our sample complexity is only affected by a constant factor through the use
of approximate projections, and our experiments in Section 5 show that the empirical loss in sample
complexity is negligible. Similarly, the number of iterations O(logk✓k/kek) is also only affected by
a constant factor compared to the use of exact projections [5, 15]. Finally, it is worth mentioning that
using two notions of approximate projections is crucial: prior work in the special case of structured
sparsity has already shown that only one type of approximate projection is not sufficient for strong
recovery guarantees [13].

2.2 Low-rank matrix recovery

We now instantiate our new algorithmic framework for the low-rank matrix recovery problem.
Variants of this problem are widely studied in machine learning, signal processing, and statistics, and
are known under different names such as matrix completion, matrix sensing, and matrix regression.
As mentioned above, we can incorporate the low-rank matrix structure into our general union-of-
subspaces model by considering the union of all low-rank matrix subspaces. For simplicity, we state
the following bounds for the case of square matrices, but all our results also apply to rectangular
matrices. Formally, we assume that ✓⇤ 2 Rd is the vectorized form of a rank-r matrix ⇥

⇤ 2 Rd
1

⇥d
1

where d = d2
1

and typically r ⌧ d
1

. Seminal results have shown that it is possible to achieve the
subspace-RIP for low-rank matrices with only n = O(r · d

1

) linear observations, which can be much
smaller than the total dimensionality of the matrix d2

1

. However, the bottleneck in recovery algorithms
is often the singular value decomposition (SVD), which is necessary for both exact projections and
soft thresholding operators and has a time complexity of O(d3

1

).

Our new algorithmic framework for approximate projections allows us to leverage recent results
on approximate SVDs. We show that it is possible to compute both head and tail projections for
low-rank matrices in eO(r · d2

1

) time, which is significantly faster than the O(d3
1

) time for an exact
SVD in the relevant regime where r ⌧ d

1

. Overall, we get the following result.
Theorem 6. Let X 2 Rn⇥d be a matrix with subspace-RIP for low-rank matrices, and let TX denote
the time to multiply a d-dimensional vector with X or XT . Then there is an algorithm that recovers
an estimate ˆ✓ such that kˆ✓ � ✓⇤k  Ckek. Moreover, the algorithm runs in time eO(TX + r · d2

1

).

In the regime where multiplication with the matrix X is fast, the time complexity of the projection
dominates the time complexity of the recovery algorithms. For instance, structured observations
such as a subsampled Fourier matrix achieve TX =

eO(d2
1

); see Appendix D for details. Here,
our algorithm runs in time eO(r · d2

1

), which is the first provable running time faster than the O(d3
1

)

bottleneck given by a single exact SVD. While prior work has suggested the use of approximate SVDs
in low-rank matrix recovery [9], our results are the first that give a provably better time complexity
for this combination of projected gradient descent and approximate SVDs. Hence Theorem 6 can be
seen as a theoretical justification for the heuristic use of approximate SVDs.

Finally, we remark that Theorem 6 does not directly cover the low-rank matrix completion case
because the subsampling operator does not satisfy the low-rank RIP [9]. To clarify our use of
approximate SVDs, we focus on the RIP setting in our proofs, similar to recent work on low-rank
matrix recovery [7, 22]. We believe that similar results as for SVP [15] also hold for our algorithm,
and our experiments in Section 5 show that our algorithm works well for low-rank matrix completion.

2.3 2D-histogram recovery

Next, we instantiate our new framework for 2D-histograms, another natural low-dimensional model.
As before, we think of the vector ✓⇤ 2 Rd as a matrix ⇥ 2 Rd

1

⇥d
1 and assume the square case for

simplicity (again, our results also apply to rectangular matrices). We say that ⇥ is a k-histogram if the
coefficients of ⇥ can be described as k axis-aligned rectangles on which ⇥ is constant. This definition
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is a generalization of 1D-histograms to the two-dimensional setting and has found applications in
several areas such as databases and density estimation. Moreover, the theoretical computer science
community has studied sketching and streaming algorithms for histograms, which is essentially the
problem of recovering a histogram from linear observations. While the wavelet tree model with Haar
wavelets give the correct sample complexity of n = O(k log d) for 1D-histograms, the wavelet tree
approach incurs a suboptimal sample complexity of O(k log2 d) for 2D-histograms. It is possible
to achieve the optimal sample complexity O(k log d) also for 2D-histograms, but the corresponding
exact projection requires a complicated dynamic program (DP) with time complexity O(d5

1

k2), which
is impractical for all but very small problem dimensions [18].

We design significantly faster approximate projection algorithms for 2D histograms. Our approach is
based on an approximate DP [18] that we combine with a Lagrangian relaxation of the k-rectangle
constraint. Both algorithms have parameters for controlling the trade-off between the size of the
output histogram, the approximation ratio, and the running time. As mentioned above, the bicriterion
nature of our approximate head and tail guarantees becomes useful here. In the following two
theorems, we let Uk be the subspace model of 2D histograms consisting of k-rectangles.
Theorem 7. Let ⇣ > 0 and " > 0 be arbitrary. Then there is an (1 + ",Uk,Uc·k)-approximate tail
projection for 2D histograms where c = O(1/⇣2"). Moreover, the algorithm runs in time eO(d1+⇣).

Theorem 8. Let ⇣ > 0 and " > 0 be arbitrary. Then there is an (1� ",Uk,Uc·k)-approximate head
projection for 2D histograms where c = O(1/⇣2"). Moreover, the algorithm runs in time eO(d1+⇣).

Note that both algorithms offer a running time that is almost linear, and the small polynomial gap to
a linear running time can be controlled as a trade-off between computational and statistical efficiency
(a larger output histogram requires more samples to recover). While we provide rigorous proofs for
the approximation algorithms as stated above, we remark that we do not establish an overall recovery
result similar to Theorem 6. The reason is that the approximate head projection is competitive
with respect to k-histograms, but not with the space Uk � Uk, i.e., the sum of two k-histogram
subspaces. The details are somewhat technical and we give a more detailed discussion in Appendix
C.3. However, under a natural structural conjecture about sums of k-histogram subspaces, we obtain
a similar result as Theorem 6. Moreover, we experimentally demonstrate that the sample complexity
of our algorithms already improves over wavelets for k-histograms of size 32⇥ 32.

Finally, we note that our DP approach also generalizes to �-dimensional histograms for any constant
� � 2. As the dimension of the histogram structure increases, the gap in sample complexity
between our algorithm and the prior wavelet-based approach becomes increasingly wide and scales
as O(k� log d) vs O(k log� d). For simplicity, we limit our attention to the 2D case described above.

2.4 Related work

Recently, there have been several results on approximate projections in the context of recovering
low-dimensional structured vectors. (see [12, 13] for an overview). While these approaches also work
with approximate projections, they only apply to less general models such as dictionary sparsity [12]
or structured sparsity [13] and do not extend to the low-rank matrix recovery problem we address.
Among recovery frameworks for general union-of-subspaces models, the work closest to ours is [4],
which also gives a generalization of the IHT algorithm. It is important to note that [4] addresses
approximate projections, but requires additive error approximation guarantees instead of the weaker
relative error approximation guarantees required by our framework. Similar to the structured sparsity
case in [13], we are not aware of any algorithms for low-rank or histogram projections that offer
additive error guarantees faster than an exact projection. Overall, our recovery framework can be
seen as a generalization of the approaches in [13] and [4].

Low-rank recovery has received a tremendous amount of attention over the past few years, so we
refer the reader to the recent survey [9] for an overview. When referring to prior work on low-rank
recovery, it is important to note that the fastest known running time for an exact low-rank SVD (even
for rank 1) of a d

1

⇥ d
2

matrix is O(d
1

d
2

min(d
1

, d
2

)). Several papers provide rigorous proofs for
low-rank recovery using exact SVDs and then refer to Lanczos methods such as PROPACK [16]
while accounting a time complexity of O(d

1

d
2

r) for a rank-r SVD. While Lanczos methods can be
faster than exact SVDs in the presence of singular value gaps, it is important to note that all rigorous
results for Lanczos SVDs either have a polynomial dependence on the approximation ratio or singular
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value gaps [17, 20]. No prior work on low-rank recovery establishes such singular value gaps for
the inputs to the SVD subroutines (and such gaps would be necessary for all iterates in the recovery
algorithm). In contrast, we utilize recent work on gap-independent approximate SVDs [17], which
enables us to give rigorous guarantees for the entire recovery algorithm. Our results can be seen as
justification for the heuristic use of Lanczos methods in prior work.

The paper [2] contains an analysis of an approximate SVD in combination with an iterative recovery
algorithm. However, [2] only uses an approximate tail projection, and as a result the approximation
ratio cT must be very close to 1 in order to achieve a good sample complexity. Overall, this leads to a
time complexity that does not provide an asymptotic improvement over using exact SVDs.

Recently, several papers have analyzed a non-convex approach to low-rank matrix recovery via
factorized gradient descent [3, 7, 22–24]. While these algorithms avoid SVDs in the iterations of
the gradient method, the overall recovery proofs still require an exact SVD in the initialization step.
In order to match the sample complexity of our algorithm or SVP, the factorized gradient methods
require multiple SVDs for this initialization [7, 22]. As a result, our algorithm offers a better provable
time complexity. We remark that [7, 22] use SVP for their initialization, so combining our faster
version of SVP with factorized gradient descent might give the best overall performance.

As mentioned earlier, 1D and 2D histograms have been studied extensively in several areas such
as databases [8, 14] and density estimation. They are typically used to summarize “count vectors”,
with each coordinate of the vector ✓ corresponding the number of items with a given value in some
data set. Computing linear sketches of such vectors, as well as efficient methods for recovering
histogram approximations from those sketches, became key tools for designing space efficient
dynamic streaming algorithms [10, 11, 21]. For 1D histograms it is known how to achieve the
optimal sketch length bound of n = O(k log d): it can be obtained by representing k-histograms
using a tree of O(k log d) wavelet coefficients as in [10] and then using the structured sparse recovery
algorithm of [1]. However, applying this approach to 2D histograms leads to a sub-optimal bound of
O(k log2 d).

3 An algorithm for recovery with approximate projections

We now introduce our algorithm for recovery from general subspace models using only approximate
projections. The pseudo code is formally stated in Algorithm 1 and can be seen as a generalization
of IHT [5]. Similar to IHT, we give a version without step size parameter here in order to simplify
the presentation (it is easy to introduce a step size parameter in order to fine-tune constant factors).
To clarify the connection with projected gradient descent as stated in Equation (2), we use H(b) (or
T (b)) as a function from Rd to Rd here. This function is then understood to be b 7! PH(b)b, i.e., the
orthogonal projection of b onto the subspace identified by H(b).

Algorithm 1 Approximate Subspace-IHT
1: function AS-IHT(y,X, t)
2: ˆ✓0  0

3: for i 0, . . . , t do
4: bi  XT

(y �X ˆ✓i)
5: ˆ✓i+1  T (

ˆ✓i +H(bi))

6: return ˆ✓  ˆ✓t+1

The main difference to “standard” projected gradient descent is that we apply a projection to both the
gradient step and the new iterate. Intuitively, the head projection ensures two points: (i) The result of
the head projection on bi still contains a constant fraction of the residual ✓⇤ � ˆ✓i (see Lemma 13 in
Appendix A). (ii) The input to the tail approximation is close enough to the constraint set U so that
the tail approximation does not prevent the overall convergence. In a nutshell, the head projection
“denoises” the gradient so that we can then safely apply an approximate tail projection (as pointed
out in [13], only applying an approximate tail projection fails precisely because of “noisy” updates).
Formally, we obtain the following theorem for each iteration of AS-IHT (see Appendix A.1 for the
corresponding proof):
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Theorem 9. Let ˆ✓i be the estimate computed by AS-IHT in iteration i and let ri+1

= ✓⇤ � ˆ✓i+1 be
the corresponding residual. Moreover, let U be an arbitrary subspace model. We also assume:

• y = X✓⇤ + e as in Equation (1) with ✓⇤ 2M(U).
• T is a (cT ,U,UT )-approximate tail projection.
• H is a (cH,U� UT ,UH)-approximate head projection.
• The matrix X satisfies the (U� UT � UH, �)-subspace RIP.

Then the residual error of the next iterate, i.e., ri+1

= ✓⇤ � ˆ✓i+1 satisfies��ri+1

��  ⌘
��ri
��
+ ⇢kek ,

where ⌘ = (1 + cT )
✓
� +

q
1� ⌘2

0

◆
, ⇢ = (1 + cT )

 
⌘
0

⇢
0p

1� ⌘2
0

+

p
1 + �

!
,

⌘
0

= cH(1� �)� � , and ⇢
0

= (1 + cH)

p
1 + � .

The important conclusion of Theorem 9 is that AS-IHT still achieves linear convergence when the
approximation ratios cT , cH are sufficiently close to 1 and the RIP-constant � is sufficiently small.
For instance, our approximation algorithms for both low-rank matrices offer such approximation
guarantees. We can also achieve a sufficiently small value of � by using a larger number of linear
observations in order to strengthen the RIP guarantee (see Appendix D). Hence the use of approximate
projections only affects the theoretical sample complexity bounds by constant factors. Moreover,
our experiments show that approximate projections achieve essentially the same empirical sample
complexity as exact projections (see Section 5).

Given sufficiently small / large constants cT , cH, and �, it is easy to see that the linear convergence
implied by Theorem 9 directly gives the recovery guarantee and bound on the number of iterations
stated in Theorem 5 (see Appendix A.1). However, in some cases it might not be possible to design
approximation algorithms with constants cT and cH sufficiently close to 1 (in constrast, increasing
the sample complexity by a constant factor in order to improve � is usually a direct consequence of
the RIP guarantee or similar statistical regularity assumptions). In order to address this issue, we
show how to “boost” an approximate head projection so that the new approximation ratio is arbitrarily
close to 1. While this also increases the size of the resulting subspace model, this increase usually
affects the sample complexity only by constant factors as before. Note that for any fixed cT , setting
cH sufficiently close to 1 and � sufficiently small leads to a convergence rate ⌘ < 1 (c.f. Theorem 9).
Hence head boosting enables a linear convergence result for any initial combinations of cT and cH
while only increasing the sample complexity by a constant factor (see Appendix A.3). Formally, we
have the following theorem for head boosting, the proof of which we defer to Appendix A.2.
Theorem 10. Let H be a (cH,U,UH)-approximate head projection running in time O(T ), and let
" > 0. Then there is a constant c = c",cH that depends only on " and cH such that we can construct
a (1� ",U,�c UH)-approximate head projection running in time O(c(T + T 0

1

+ T 0
2

)) where T 0
1

is
the time needed to apply a projection onto a subspace in �c UH, and T 0

2

is the time needed to find an
orthogonal projector for the sum of two subspaces in �c UH.

We note that the idea of head boosting has already appeared in the context of structured sparse
recovery [13]. However, the proof of Theorem 10 is more involved because the subspace in a general
subspace model can have arbitrary angles (for structured sparsity, the subspaces are either parallel or
orthogonal in each coordinate).

4 Low-rank matrix recovery

We now instantiate our framework for recovery from a subspace model to the low-rank matrix
recovery problem. Since we already have proposed the top-level recovery algorithm in the previous
section, we only have to provide the problem-specific head and tail approximation algorithms here.
We use the following result from prior work on approximate SVDs.
Fact 11 ([17]). There is an algorithm APPROXSVD with the following guarantee. Let A 2 Rd

1

⇥d
2

be an arbitrary matrix, let r 2 N be the target rank, and let " > 0 be the desired accuracy. Then with
probability 1 �  , APPROXSVD(A, r, ") returns an orthonormal set of vectors z

1

, . . . , zr 2 Rd
1

such that for all i 2 [r], we have
��zTi AAT zi � �2

i

��  "�2

r+1

, (3)
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Figure 1: Left: Results for a low-rank matrix recovery experiment using subsampled Fourier measure-
ments. SVP / IHT with one iteration of a block Krylov SVD achieves the same phase transition as
SVP with an exact SVD. Right: Results for a low-rank matrix completion problem. SVP / IHT with a
block Krylov SVD achieves the best running time and is about 4 – 8 times faster than PROPACK.

where �i is the i-th largest singular value of A. Furthermore, let Z 2 Rd
1

⇥r be the matrix with
columns zi. Then we also have��A� ZZTA

��
F
 (1 + ")kA�ArkF , (4)

where Ar is the best rank-r Frobenius-norm approximation of A. Finally, the algorithm runs in time
O
⇣

d
1

d
2

r log(d
2

/ )p
"

+

d
1

r2 log

2

(d
2

/ )
" +

r3 log

3

(d
2

/ )
"3/2

⌘
.

It is important to note that the above results hold for any input matrix and do not require singular value
gaps. The guarantee (4) directly gives a tail approximation guarantee for the subspace corresponding
to the matrix ZZTA. Moreover, we can convert the guarantee (3) to a head approximation guarantee
(see Theorem 18 in Appendix B for details). Since the approximation " only enters the running time
in the approximate SVD, we can directly combine these approximate projections with Theorem 9,
which then yields Theorem 6 (see Appendix B.1 for details).2 Empirically, we show in the next
section that a very small number of iterations in APPROXSVD already suffices for accurate recovery.

5 Experiments

We now investigate the empirical performance of our proposed algorithms. We refer the reader to
Appendix E for more details about the experiments and results for 2D histograms.

Considering our theoretical results on approximate projections for low-rank recovery, one important
empirical question is how the use of approximate SVDs such as [17] affects the sample complexity
of low-rank matrix recovery. For this, we perform a standard experiment and use several algorithms
to recover an image of the MIT logo from subsampled Fourier measurements (c.f. Appendix D). The
MIT logo has also been used in prior work [15, 19]; we use an image with dimensions 200⇥ 133

and rank 6 (see Appendix E). We limit our attention here to variants of SVP because the algorithm
has good empirical performance and has been used as baseline in other works on low-rank recovery.
Figure 1 shows that SVP / IHT combined with a single iteration of a block Krylov SVD [17] achieves
the same phase transition as SVP with exact SVDs. This indicates that the use of approximate
projections for low-rank recovery is not only theoretically sound but can also lead to practical
algorithms. In Appendix E we also show corresponding running time results demonstrating that the
block Krylov SVD also leads to the fastest recovery algorithm.

We also study the performance of approximate SVDs for the matrix completion problem. We generate
a symmetric matrix of size 2048⇥ 2048 with rank r = 50 and observe a varying number of entries
of the matrix. The approximation errors of the various algorithms are again comparable and reported
in Appendix E. Figure 1 shows the resulting running times for several sampling ratios. Again,
SVP combined with a block Krylov SVD [17] achieves the best running time. Depending on the
oversampling ratio, the block Krylov approach (now with two iterations) is 4 to 8 times faster than
SVP with PROPACK.

2We remark that our definitions require head and tail projections to be deterministic, while the approximate
SVD is randomized. However, the running time of APPROXSVD depends only logarithmically on the failure
probability, and it is straightforward to apply a union bound over all iterations of AS-IHT. Hence we ignore
these details here to simplify the presentation.
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