
A Proofs

To show theorem 3.2, we first consider the most general case in which dr is defined (Theorem
A.1). Then we discuss the mild assumptions under which we can reduce to the original limit
(Proposition A.1.1). Additionally, we introduce some notations that will be used throughout the proof.
If v = (t, p) ∈ Gun is a node in the unfolded graph, it has a corresponding node in the folded graph,
which is denoted by v̄ = (t̄, p).
Theorem A.1. Given an RNN cyclic graph and its unfolded representation (Gc,Gun), we denote
C(Gc) the set of directed cycles in Gc. For ϑ ∈ C(Gc), denote l(ϑ) the length of ϑ and σs(ϑ) the sum
of σ along ϑ. Write di = lim supk→∞

Di(n)
n .10 we have :

• The quantity di is periodic, in the sense that di+m = di,∀i ∈ N.

• Let dr = maxi di, then

dr = max
ϑ∈C(Gc)

l(ϑ)

σs(ϑ)
(3)

Proof. The first statement is easy to prove. Because of the periodicity of the graph, any path from
time step i to i+ n corresponds to an isomorphic path from time step i+m to i+m+ n. Passing
to limit, and we can deduce the first statement.

Now we prove the second statement. Write ϑ0 = argmaxϑ
l(ϑ)
σs(ϑ) . First we prove that d ≥ l(ϑ0)

σs(ϑ0) .
Let c1 = (t1, p1) ∈ Gun be a node such that if we denote c1 = (t1, p1) the image of c1 on the cyclic

graph, we have c1 ∈ ϑ0. Consider the subsequence S0 =
{

Dt1
(kσs(ϑ0))

kσs(ϑ0)

}∞
k=1

of
{

Dt1
(n)

n

}∞
n=1

.

From the definition of D and the fact that ϑ0 is a directed circle, we have Dt1
(kσs(ϑ0)) ≥ kl(ϑ0),

by considering the path on Gun corresponding to following ϑ0 k -times. So we have

dr ≥ lim sup
k→+∞

Di(n)

n
≥ lim sup

k→+∞

Dt1
(kσs(ϑ0))

kσs(ϑ0)
≥ kl(ϑ0)

kσs(ϑ0)
=

l(ϑ0)

σs(ϑ0)

Next we prove dr ≤ l(ϑ0)
σs(ϑ0) . It suffices to prove that, for any ε ≥ 0, there exists N > 0, such that for

any path γ : {(t0, p0), (t1, p1), · · · , (tnγ , pnγ )} with tnγ − t1 > N , we have nγ
tnγ−t1

≤ l(ϑ0)
σs(ϑ0) + ε.

We denote γ̄ as the image of γ on the cyclic graph. γ̄ is a walk with repeated nodes and edges. Also,
we assume there are in total Γ nodes in cyclic graph Gc.
We first decompose γ̄ into a path and a set of directed cycles. More precisely, there is a path γ0 and a
sequence of directed cycles C = C1(γ), C2(γ), · · · , Cw(γ) on Gc such that:

• The starting and end nodes of γ0 is the same as γ. (If γ starts and ends at the same node,
take γ0 as empty.)

• The catenation of the sequences of directed edges
E(γ0), E(C1(γ)), E(C2(γ)), · · · , E(Cw(γ)) is a permutation of the sequence of
edges of E(γ).

The existence of such a decomposition can be proved iteratively by removing directed cycles from γ.
Namely, if γ is not a paths, there must be some directed cycles C ′ on γ. Removing C ′ from γ, we
can get a new walk γ′. Inductively apply this removal, we will finally get a (possibly empty) path and
a sequence of directed cycles. For a directed path or loop γ, we write D(γ) the distance between the
ending node and starting node when travel through γ once. We have

D(γ0) := tnγ − t0 +

|γ0|∑
i=1

σ(ei)

where ei, i ∈ {1, 2, · · · , |γ0|} is all the edges of γ0. t̄ denotes the module of t: t ≡ t̄(modm).
10Di(n) is not defined when there does not exist a path from time i to time i+ n. We simply omit undefined

cases when we consider the limsup. In a more rigorous sense, it is the limsup of a subsequence of {Di(n)}∞n=1,
where Di(n) is defined.
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So we have:
|D(γ0)| ≤ m+ Γ ·max

e∈Gc
σ(e) = M

For convenience, we denote l0, l1, · · · , lw to be the length of path γ0 and directed cycles
C1(γ), C2(γ), · · · , Cw(γ). Obviously we have:

nγ =

w∑
i=0

li

And also, we have

tnγ − t1 =

w∑
i=1

σs(Ci) +D(γ0)

So we have:
nγ

tnγ − t1
=

l0
tnγ − t1

+

w∑
i=1

li
tnγ − t1

≤ Γ

N
+

w∑
i=1

li
tnγ − t1

In which we have for all i ∈ {1, 2, · · · , w} :

li
tnγ − t1

=
li

σs(Ci)
· σs(Ci)
tnγ − t1

≤ l(ϑ0)

σs(ϑ0)

σs(Ci)

tnγ − t1
So we have:

w∑
i=1

li
tnγ − t1

≤ l(ϑ0)

σs(ϑ0)

[
1− D(γ0)

tnγ − t1

]
≤ l(ϑ0)

σs(ϑ0)
+
M ′

N

in which M ′ and Γ are constants depending only on the RNN Gc.
Finally we have:

nγ
tnγ − t1

≤ l(ϑ0)

σs(ϑ0)
+
M ′ + Γ

N

take N > M ′+Γ
ε , we can prove the fact that dr ≤ l(ϑ0)

σs(ϑ0) .

Proposition A.1.1. Given an RNN and its two graph representations Gun and Gc, if ∃ϑ ∈ C(Gc)
such that (1) ϑ achieves the maximum in Eq.(3) and (2) the corresponding path of ϑ in Gun visits
nodes at every time step, then we have

dr = max
i∈Z

(
lim sup
n→+∞

Di(n)

n

)
= lim
n→+∞

Di(n)

n

Proof. We only need to prove, in such a graph, for all i ∈ Z we have

lim inf
n→+∞

Di(n)

n
≥ max

i∈Z

(
lim sup
n→+∞

Di(n)

n

)
= dr

Because it is obvious that

liminfn→+∞
Di(n)

n
≤ dr

Namely, it suffice to prove, for all i ∈ Z, for all ε > 0, there is anNε > 0, such that when n > Nε, we
have Di(n)

n ≥ dr−ε. On the other hand, for k ∈ N, if we assume (k+1)σs(ϑ)+i > n ≥ i+k ·σs(ϑ),
then according to condition (2) we have

Di(n)

n
≥ k · l(ϑ)

(k + 1)σs(ϑ)
=

l(ϑ)

σs(ϑ)
− l(ϑ)

σs(ϑ)

1

k + 1

We can see that if we set k > σs(ϑ)
l(ϑ)ε , the inequality we wanted to prove.

We now prove Proposition 3.3.1 and Theorem 3.4 as follows.
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Proposition A.1.2. Given an RNN with recurrent depth dr, we denote

df = sup
i,n∈Z

D∗i (n)− n · dr.

The supremum df exists and we have the following least upper bound:

D∗i (n) ≤ n · dr + df .

Proof. We first prove that df < +∞. Write df (i) = supn∈Z D
∗
i (n) − n · dr. It is easy to verify

df (·) is m−periodic, so it suffices to prove for each i ∈ N, df (i) < +∞. Hence it suffices to prove

lim sup
n→∞

(D∗i (n)− n · dr) < +∞.

From the definition, we have Di(n) ≥ D∗i (n). So we have

D∗i (n)− n · dr ≤ Di(n)− n · dr.
From the proof of Theorem A.1, there exists two constants M ′ and Γ depending only on the RNN
Gc, such that

Di(n)

n
≤ dr +

M ′ + Γ

n
.

So we have
lim sup
n→∞

(D∗i (n)− n · dr) ≤ lim sup
n→∞

(Di(n)− n · dr) ≤M ′ + Γ.

Also, we have df = supi,n∈Z D
∗
i (n)− n · dr, so for any i, n ∈ Z,

df ≥ D∗i (n)− n · dr.

Theorem A.2. Given an RNN and its two graph representations Gun and Gc, we denote ξ(Gc) the set
of directed path that starts at an input node and ends at an output node in Gc. For γ ∈ ξ(Gc), denote
l(γ) the length and σs(γ) the sum of σ along γ. Then we have:

df = sup
i,n∈Z

D∗i (n)− n · dr = max
γ∈ξ(Gc)

l(γ)− σs(γ) · dr.

Proof. Let γ : {(t0, 0), (t1, p1), · · · , (tnγ , p)} be a path in Gun from an input node (t0, 0) to an
output node (tnγ , p), where t0 = i and tnγ = i + n. We denote γ̄ as the image of γ on the cyclic
graph. From the proof of Theorem A.1, for each γ̄ in Gc, we can decompose it into a path γ0

and a sequence of directed cycles C = C1(γ), C2(γ), · · · , Cw(γ) on Gc satisfying those properties
listed in Theorem A.1. We denote l0, l1, · · · , lw to be the length of path γ0 and directed cycles
C1(γ), C2(γ), · · · , Cw(γ). We know lk

σs(Ck) ≤ dr for all k = 1, 2, . . . , w by definition. Thus,

lk ≤ dr · σs(Ck)
w∑
k=1

lk ≤ dr ·
w∑
k=1

σs(Ck)

Note that n = σs(γ0) +
∑w
k=1 σs(Ck). Therefore,

l(γ)− n · dr = l0 +

w∑
k=1

lk − n · dr

≤ l0 + dr · (
w∑
k=1

σs(Ck)− n)

= l0 − dr · σs(γ0)

for all time step i and all integer n. The above inequality suggests that in order to take the supremum
over all paths in Gun, it suffices to take the maximum over a directed path in Gc. On the other hand,
the equality can be achieved simply by choosing the corresponding path of γ0 in Gun. The desired
conclusion then follows immediately.
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Lastly, we show Theorem 3.6.
Theorem A.3. Given an RNN cyclic graph and its unfolded representation (Gc,Gun), we denote
C(Gc) the set of directed cycles in Gc. For ϑ ∈ C(Gc), denote l(ϑ) the length of ϑ and σs(ϑ) the sum
of σ along ϑ. Write si = lim infk→∞

di(n)
n . We have :

• The quantity si is periodic, in the sense that si+m = si,∀i ∈ N.

• Let s = mini si, then

dr = min
ϑ∈C(Gc)

l(ϑ)

σs(ϑ)
. (4)

Proof. The proof is essentially the same as the proof of the first theorem. So we omit it here.

Proposition A.3.1. Given an RNN and its two graph representations Gun and Gc, if ∃ϑ ∈ C(Gc)
such that (1) ϑ achieves the minimum in Eq.(4) and (2) the corresponding path of ϑ in Gun visits
nodes at every time step, then we have

s = min
i∈Z

(
lim inf
n→+∞

di(n)

n

)
= lim
n→+∞

di(n)

n
.

Proof. The proof is essentially the same as the proof of the Proposition A.1.1. So we omit it here.
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B Experiment Details

B.1 RNNs with tanh

In this section we explain the functional dependency among nodes in RNNs with tanh in detail.

The transition function for each node is the tanh function. The output of a node v is a vector hv . To
compute the output for a node, we simply take all incoming nodes as input, and sum over their affine
transformations and then apply the tanh function (we omit the bias term for simplicity).

hv = tanh

 ∑
u∈In(v)

W(u)hu

 ,

where W(·) represents a real matrix.

u v

p q

Figure 3: “Bottom-up” architecture (bu).

As a more concrete example, consider the “bottom-up” architecture in Figure 3, with which we did
the experiment described in Section 4.2. To compute the output of node v,

hv = tanh(W(u)hu + W(p)hp + W(q)hq). (5)

B.2 LSTMs

In this section we explain the Multidimensional LSTM (introduced by [1]) which we use for experi-
ments with LSTMs.

The output of a node v of the LSTM is a 2-tuple (cv,hv), consisting of a cell memory state cv and a
hidden state hv . The transition function F is applied to each node indistinguishably. We describe the
computation of F below in a sequential manner (we omit the bias term for simplicity).

z = g

 ∑
u∈In(v)

Wz(u)hu

 block input

i = σ

 ∑
u∈In(v)

Wi(u)hu

 input gate

o = σ

 ∑
u∈In(v)

Wo(u)hu

 output gate

{fu} =

σ
 ∑
u′∈In(v)

Wfu(u′)hu

 |u ∈ In(v)

 A set of forget gates

cv = i� z +
∑

u∈In(v)

fu � cu cell state

hv = o� cv hidden state

Note that the Multidimensional LSTM includes the usual definition of LSTM as a special case, where
the extra forget gates are 0 (i.e., bias term set to -∞) and extra weight matrices are 0. We again
consider the architecture bu in Fig. 3. We first compute the block input, the input gate and the output
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gate by summing over all affine transformed outputs of u, p, q, and then apply the activation function.
For example, to compute the input gate, we have

i = σ (Wi(u)hu + Wi(p)hp + Wi(q)hq) .

Next, we compute one forget gate for each pair of (v, u), (v, p), (v, q). The way of computing a
forget gate is the same as computing the other gates. For example, the forget gate in charge of the
connection of u→ v is computed as,

fu = σ (Wfu(u)hu + Wfu(p)hu + Wfu(q)hu) .

Then, the cell state is simply the sum of all element-wise products of the input gate with the block
output and forget gates with the incoming nodes’ cell memory states,

cv = i� z + fu � cu + fp � cp + fq � cq.

Lastly, the hidden state is computed as usual,

hv = o� cv.

B.3 Recurrent Depth is Non-trivial

The validation curves of the 4 different connecting architectures sh, st, bu and td on text8 dataset for
both tanhRNN-small and LSTM-small are shown below:
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Figure 4: Validation curves for sh, st, bu and td on test8 dataset. Left: results for tanhRNN-small.
Right: results for LSTM-small.

B.4 Full Comparisons on Depths

Figure 5 shows all the validation curves for the 9 architectures on text8 dataset, with their dr = 1, 2, 3
and df = 2, 3, 4 respectively. We initialize hidden-to-hidden matrices from uniform distribution.

Also, to see if increasing feedforward depth/ recurrent depth helps for long term dependency problems,
we evaluate these 9 architectures on sequential MNIST task, with roughly the same number of
parameters( 8K, where the first architecture with dr = 1 and df = 2 has hidden size of 90.).
Hidden-to-hidden matrices are initialized from uniform distribution.

Figure 6 clearly show that, as the feedforward depth increases, the model performance stays roughly
the same. In addition, note that increasing recurrent depth might even result in performance decrease.
This is possibly because that larger recurrent depth amplifies the gradient vanishing/exploding
problems, which is detrimental on long term dependency tasks.

15



1×105 2×105 3×104 4×105 5×105

number of iterations

1.75

1.83

1.90

1.97

v
a
lid

a
ti

o
n
 B

P
C

df =2,dr =1,2,3, tanh, uniform, text8

dr =1

dr =2

dr =3

1×105 2×105 3×104 4×105 5×105

number of iterations

1.75

1.83

1.90

1.97

v
a
lid

a
ti

o
n
 B

P
C

df =3,dr =1,2,3, tanh, uniform, text8

dr =1

dr =2

dr =3

1×105 2×105 3×104 4×105 5×105

number of iterations

1.75

1.83

1.90

1.97

v
a
lid

a
ti

o
n
 B

P
C

df =4,dr =1,2,3, tanh, uniform, text8

dr =1

dr =2

dr =3

1×105 2×105 3×104 4×105 5×105

number of iterations

1.75

1.83

1.90

1.97

v
a
lid

a
ti

o
n
 B

P
C

dr =1,df =2,3,4, tanh, uniform, text8

df =2

df =3

df =4

1×105 2×105 3×104 4×105 5×105

number of iterations

1.75

1.83

1.90

1.97

v
a
lid

a
ti

o
n
 B

P
C

dr =2,df =2,3,4, tanh, uniform, text8

df =2

df =3

df =4

1×105 2×105 3×104 4×105 5×105

number of iterations

1.75

1.83

1.90

1.97

v
a
lid

a
ti

o
n
 B

P
C

dr =3,df =2,3,4, tanh, uniform, text8

df =2

df =3

df =4

Figure 5: Validation curves of 9 architectures with feedforward depth df = 2, 3, 4 and recurrent
depth dr = 1, 2, 3 on test8 dataset. For each figure in the first row, we fix df and draw 3 curves with
different dr = 1, 2, 3. For each figure in the second row, we fix dr and draw 3 curves with different
df = 2, 3, 4.
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Figure 6: Test accuracies of 9 architectures with feedforward depth df = 2, 3, 4 and recurrent depth
dr = 1, 2, 3 on sequential MNIST. For each figure, we fix dr and draw 3 curves with different df .

B.5 Recurrent Skip Coefficients

The test curves for all the experiments are shown in Figure 7. In Figure 7, we observed that obtaining
good performance on MNIST requires larger s than for pMNIST. We hypothesize that this is because,
for the sequential MNIST dataset, each training example contains many consecutive zero-valued
subsequences, each of length 10 to 20. Thus within those subsequences, the input-output gradient
flow could tend to vanish. However, when the recurrent skip coefficient is large enough to cover
those zero-valued subsequences, the model starts to perform better. With pMNIST, even though the
random permuted order seems harder to learn, the permutation on the other hand blends zeros and
ones to form more uniform sequences, and this may explain why training is easier, less hampered by
by the long sequences of zeros.

B.6 Recurrent Skip Coefficients vs. Skip Connections

Test curves for all the experiments are shown in Figure 8. Observe that in most cases, the test
accuracy of (3) is worse than (2) in the beginning while beating (2) in the middle of the training.
This is possibly because in the first several time steps, it is easier for (2) to pass information to the
output thanks to the skip connections, while only after multiples of k time steps, (3) starts to show
its advantage with recurrent skip connections11. The shorter paths in (2) make its gradient flow

11It will be more clear if one checks the length of the shortest path from an node at time t to to a node at time
t+ k in both architectures.
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more easily in the beginning, but in the long run, (3) seems to be more superior, because of its more
prominent skipping effect over time.
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Figure 7: Test curves on MNIST/pMNIST, with tanh and LSTM . The numbers in the legend denote
the recurrent skip coefficient s of each architecture.
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Figure 8: Test curves on MNIST/pMNIST for architecture (1), (2), (3) and (4), with tanh. The
recurrent skip coefficient s of each architecture is shown in the legend.
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