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A.1 Proof of Theorem 1 (affine classifiers)

Lemma 1 ([1]). Let Y be a point chosen uniformly at random from the surface of the d-dimensional
sphere Sd−1. Let the vector Z be the projection of Y onto its first m coordinates, with m < d. Then,

1. If β < 1, then

P
(
‖Z‖22 ≤

βm

d

)
≤ βm/2

(
1 +

(1− β)m

(d−m)

)(d−m)/2

≤ exp
(m

2
(1− β + lnβ)

)
.

(A.1)

2. If β > 1, then

P
(
‖Z‖22 ≥

βm

d

)
≤ βm/2

(
1 +

(1− β)m

(d−m)

)(d−m)/2

≤ exp
(m

2
(1− β + lnβ)

)
.

(A.2)

Lemma 2. Let v be a random vector uniformly drawn from the unit sphere Sd−1, and Pm be the
projection matrix onto the first m coordinates. Then,

P
(
β1(δ,m)

m

d
≤ ‖Pmv‖22 ≤ β2(δ,m)

m

d

)
≥ 1− 2δ, (A.3)

with β1(δ,m) = max((1/e)δ2/m, 1−
√

2(1− δ2/m), and β2(δ,m) = 1 + 2
√

ln(1/δ)
m + 2 ln(1/δ)

m .

Proof. Note first that the upper bound of Lemma 1 can be bounded as follows:

βm/2
(

1 +
(1− β)m

d−m

)(d−m)/2

≤ βm/2 exp

(
(1− β)m

2

)
, (A.4)

using 1 + x ≤ exp(x). We find β such that βm/2 exp
(

(1−β)m
2

)
≤ δ, or equivalently,

β exp (1− β) ≤ δ2/m. It is easy to see that when β = 1
eδ

2/m, the inequality holds. Note however
that 1

eδ
2/m does not converge to 1 as m → ∞. We therefore need to derive a tighter bound for

this regime. Using the inequality β exp(1 − β) ≤ 1 − 1
2 (1 − β)2 for 0 ≤ β ≤ 1, it follows that

the inequality β exp(1 − β) ≤ δ2/m holds for β = 1 −
√

2(1− δ2/m). In this case, we have
1−

√
2(1− δ2/m)→ 1, as m→∞. We take our lower bound to be the max of both derived bounds

(the latter is more appropriate for large m, whereas the former is tighter for small m).
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For β2, note that the requirement β exp(1 − β) ≤ δ2/m is equivalent to − ln(β) + (β − 1) ≥
2
m ln(1/δ). By setting β = β2(δ,m), this condition is equivalent to 2

√
ln(1/δ)
m −ln(β2(δ,m)) ≥ 0, or

equivalently, 2z−ln(1+2z+2z2) ≥ 0, with z =
√

ln(1/δ)
m . The function z 7→ 2z−ln(1+2z+2z2) ≥

0 is positive on R+. Hence, β2(δ,m) satisfies β exp(1− β) ≤ δ2/m, which concludes the proof.

We now prove our main theorem that we recall as follows:
Theorem 1. Let S be a random m-dimensional subspace of Rd. The following inequalities hold
between the norms of semi-random perturbation r∗S and the worst-case perturbation r∗. Let
ζ1(m, δ) = 1

β2(m,δ)
, and ζ2(m, δ) = 1

β1(m,δ)
.

ζ1(m, δ)
d

m
‖r∗‖22 ≤ ‖r∗S‖22 ≤ ζ2(m, δ)

d

m
‖r∗‖22, (A.5)

with probability exceeding 1− 2(L+ 1)δ.

Proof. For the linear case, r∗ and r∗S can be computed in closed form. We recall that, for any
subspace S, we have

rkS =

∣∣∣fk(x0)− fk̂(x0)
(x0)

∣∣∣
‖PSwk −PSwk̂(x0)

‖22
(PSwk −PSwk̂(x0)

), (A.6)

where rkS was defined in Eq. (7) in the main paper. In particular, when S = Rd, we have

rk =

∣∣∣fk(x0)− fk̂(x0)
(x0)

∣∣∣
‖wk −wk̂(x0)

‖22
(wk −wk̂(x0)

). (A.7)

Let k 6= k̂(x0). Define, for the sake of readability

fk =
∣∣∣fk(x0)− fk̂(x0)

(x0)
∣∣∣ ,

zk = wk −wk̂(x0)
.

Note that
‖rk‖22
‖rkS‖22

=
‖PSzk‖22
‖zk‖22

. (A.8)

The projection of a fixed vector in Sd−1 onto a random m dimensional subspace is equivalent (up to
a unitary transformation U) to the projection of a random vector uniformly sampled from Sd−1 into a
fixed subspace. Let Pm be the projection onto the first m coordinates. We have

‖PSzk‖22 = ‖UTPmUzk‖22 = ‖PmUzk‖2, (A.9)

Hence, we have

‖PSzk‖22
‖zk‖22

= ‖Pmy‖22, (A.10)

where y is a random vector distributed uniformly in the unit sphere Sd−1. We apply Lemma 2, and
obtain

P
(
β1(m, δ)

m

d
≤ ‖Pmy‖22 ≤ β2(m, δ)

m

d

)
≥ 1− 2δ. (A.11)

Hence,

P
{

1

β2(m, δ)

d

m
≤ ‖r

k
S‖22

‖rk‖22
≤ 1

β1(m, δ)

d

m

}
≥ 1− 2δ. (A.12)

Using the multi-class extension in Lemma 3, we conclude that

P
{
ζ1(m, δ)

d

m
≤ ‖r

∗
S‖22
‖r∗‖22

≤ ζ2(m, δ)
d

m

}
≥ 1− 2(L+ 1)δ. (A.13)
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Lemma 3 (Binary case to multiclass). Assume that, for all k ∈ {1, . . . , L]}\{k̂(x0)}

P
(
l ≤ ‖r

k
S‖2

‖rk‖2
≤ u

)
≥ 1− δ. (A.14)

Then, we have

P
(
l ≤ ‖r

∗
S‖2
‖r∗‖2

≤ u
)
≥ 1− (L+ 1)δ. (A.15)

Proof. Let p := arg mini ‖ri‖2. Note that we have P
(
‖r∗S‖2
‖r∗‖2 ≥ u

)
≤ P

(
‖rp
S‖2

‖rp‖2 ≥ u
)
≤ δ. More-

over, we use a union bound to bound the the other bad event probability:

P
(‖r∗S‖2
‖r∗‖2

≤ l
)
≤ P

(⋃
k

{‖rkS‖2
‖rk‖2

≤ l
})
≤ Lδ, (A.16)

(A.17)

We conclude by using the fact that

P
(
l ≤ ‖r

∗
S‖2
‖r∗‖2

≤ u
)

= 1− P
(‖r∗S‖2
‖r∗‖2

≤ l
)
− P

(‖r∗S‖2
‖r∗‖2

≥ u
)
. (A.18)

A.2 Proof of Theorem 2 and Corollary 1 (nonlinear classifiers)

First, we present an important geometric lemma and then use it to bound ‖r∗S‖2. For the sake of the
general readability of the section, some auxiliary results are given in Section A.3.

In the following result, we show that, when the curvature of a planar curve is constant and sufficiently
small, the distance between a point x and the curve at a specific direction θ is well approximated by
the distance between x and a straight line (see Fig. 1 for an illustration).

Lemma 4. Let γ be a planar curve of constant curvature κ. We denote by r the distance between a
point x and the curve γ. Denote moreover by T the tangent to γ at the closest point to x (see Fig. 1).
Let θ be the angle between u and v as depicted in Fig. 1. We assume that rκ < 1. We have

−C1rκ tan2(θ) ≤ ‖xγ − x‖2
‖u‖2

− 1 (A.19)

Moreover, if

tan2(θ) ≤ 0.2

rκ
,

then, the following upper bound holds

‖xγ − x‖2
‖u‖2

− 1 ≤ C2rκ tan2(θ). (A.20)

We can set C1 = 0.625 and C2 = 2.25.

Proof of upper bound. We consider two distinct cases for the curve γ. In the case where γ is concave-
shaped (Fig. 1, right figure), we have

‖xγ − x‖2
‖u‖2

≤ 1,

and the upper bound in Eq. (A.20) directly holds. We therefore focus on the case where γ is
convex-shaped as illustrated in the left figure of Fig. 1. Define R := 1/κ, one can write using simple
geometric inspection

R2 = sin(θ)r′2 + (R+ r − r′ cos(θ))2, (A.21)
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Figure 1: Bounding ‖xγ − x‖2 in terms of κ.

where r′ = ‖xγ − x‖2. The discriminant of the second order equation (with variable r′) is equal to

∆ = 4
(
(R+ r)2 cos2(θ)− (2rR+ r2)

)
.

We have ∆ ≥ 0 as θ satisfies the two assumptions tan2(θ) ≤ 0.2R/r and r/R < 1. The smallest
solution of this second order equation is given as follows

r′ = (R+ r) cos(θ)−
√

(R+ r)2 cos2(θ)− 2Rr − r2. (A.22)

Using some simple algebraic manipulations, we obtain

r′ =
r

cos(θ)

((
R

r
+ 1

)
cos2(θ)− R

r
cos2(θ)

√
1− tan2(θ)

2Rr + r2

R2

)
. (A.23)

Using the inequality in Lemma 7 together with the two assumptions, we get

r′ ≤ r

cos(θ)

(
cos2(θ) +

R

r
cos2(θ) tan2(θ)

(
2Rr + r2

2R2

)

+
R

r
cos2(θ) tan4(θ)

(
2Rr + r2

2R2

)2
)
.

(A.24)

With simple trigonometric identities, the above expression can be simplified to

r′ ≤ r

cos(θ)

(
1 +

r

R

(
sin2(θ)

2
+

sin4(θ)

cos2(θ)

(
1 +

r

2R

)2))
. (A.25)

We expand this quantity, and obtain

r′ ≤ r

cos(θ)

(
1 +

(
sin2(θ)

2
+

sin4(θ)

cos2(θ)

)
r

R
+

sin4(θ)

cos2(θ)

r2

R2
+

sin4(θ)

4 cos2(θ)

r3

R3

)
. (A.26)

Since sin2(θ) tan2(θ) = tan2(θ)− sin2(θ), we have

r′ ≤ r

cos(θ)

(
1 + tan2(θ)

(
r

R
+
r2

R2
+

r3

4R3

))
. (A.27)

According to the assumptions r/R < 1, therefore

r′ ≤ r

cos(θ)

(
1 + 2.25 tan2(θ)

r

R

)
. (A.28)

Since r/ cos(θ) = ‖u‖2, one can finally conclude on the upper bound

‖xγ − x‖2
‖u‖2

− 1 ≤ 2.25rκ tan2(θ). (A.29)

Proof of lower bound. When the curve is convex shaped (Fig. 1 left), we have ‖xγ − x‖2 ≥ ‖u‖2,
and the desired lower bound holds. We focus therefore on the case where γ has a concave shape,
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and coincides with with γ2 (see Fig. 1 right). The following equation holds using simple geometric
arguments

R2 = sin(θ)r′2 + (R− r + r′ cos(θ))2. (A.30)

where r′ = ‖xγ − x‖2. Solving this second order equation gives

r′ = −(R− r) cos(θ) +
√

(R− r)2 cos2(θ)− r2 + 2Rr. (A.31)

After some algebraic manipulations, we get

r′ =
r

cos(θ)

(
−
(
R

r
− 1

)
cos2(θ) +

R

r
cos2(θ)

√
1 + tan2(θ)

2Rr − r2
R2

)
. (A.32)

Using the inequality in Lemma 8, together with the fact that rκ < 1, we obtain

r′ ≥ r

cos(θ)

(
cos2(θ) +

R

r
cos2(θ) tan2(θ)

(
2Rr − r2

2R2

)

− R

r

cos2(θ) tan4(θ)

2

(
2Rr − r2

2R2

)2
)
.

(A.33)

Using simple trigonometric identities, the above expression is simplified to

r′ ≥ r

cos(θ)

(
1 +

r

R

(
− sin2(θ)

2
− sin4(θ)

2 cos2(θ)

(
1− r

2R

)2))
. (A.34)

When expanding it, we obtain

r′ ≥ r

cos(θ)

(
1−

(
sin2(θ)

2
+

sin4(θ)

2 cos2(θ)

)
r

R
+

sin4(θ)

2 cos2(θ)

r2

R2
− sin4(θ)

8 cos2(θ)

r3

R3

)
. (A.35)

Since sin2(θ) tan2(θ) = tan2(θ)− sin2(θ), we have

r′ ≥ r

cos(θ)

(
1− tan2(θ)

(
r

2R
+

r3

8R3

))
. (A.36)

Using again the assumption r/R < 1, we obtain

r′ ≥ r

cos(θ)

(
1− 0.625 tan2(θ)

r

R

)
. (A.37)

Since r/ cos(θ) = ‖u‖2, one can rewrite it as

‖xγ − x‖2
‖u‖2

− 1 ≥ −0.625rκ tan2(θ), (A.38)

which completes the proof.

We now use the previous lemma to bound the semi-random robustness of the classifier, i.e. ‖rkS‖2, to
the worst-case robustness ‖rk‖2 in the case where the curvature is sufficiently small.

Theorem 2. Let S be a random m-dimensional subspace of Rd. Define α :=
√
m/d, and let

κ := κ(Bk). Assuming that κ ≤ Cα2

ζ2(m,δ)‖rk‖2 , the following inequalities hold between ‖rkS‖2 and
the worst-case perturbation ‖rk‖2

ζ1(m, δ)

α2

(
1− C1‖rk‖2κζ2(m, δ)

α2

)2

≤ ‖r
k
S‖22

‖rk‖22
≤ ζ2(m, δ)

α2

(
1 +

C2‖rk‖2κζ2(m, δ)

α2

)2

(A.39)
with probability larger than 1− 4δ. The constants can be taken C = 0.2, C1 = 0.625, C2 = 2.25.
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Figure 2: Left: To prove the upper bound, we consider a ball B included inRk that intersects with
the boundary at x∗. Upper bounds on ‖rkS‖2 derived when the boundary is ∂B are also valid upper
bounds for the real boundary Bk. Right: Normal section to the decision boundary Bk = ∂B along
the normal plane U = span

(
rTS , r

k
)
. We denote by γ the normal section of boundary Bk, along the

plane U , and by Tx∗Bk the tangent space to the sphere ∂B at x∗.

Proof of upper bound. Denote by x∗ the point belonging to the boundary Bk that is closest to the
original data point x0. By definition of the curvature κ, there exists a point z∗ such that the ball B
centered at z∗ and of radius 1/κ = ‖z∗ − x∗‖2 is inscribed in the regionRk = {x ∈ Rd : fk(x) >
fk̂(x0)

(x)} (see Fig. 2 (a)).2

Observe that the worst-case perturbation along any subspace S that reaches the ball B is larger
than the perturbation along S that reaches the regionRk, as B ⊆ Rk. Therefore, any upper bound
derived when the boundary is the sphere of radius 1/κ; i.e., Bk = ∂B is also a valid upper bound for
boundary Bk (see Fig. 2 (a)). It is therefore sufficient to derive an upper bound in the worst case
scenario where the boundary Bk = ∂B, and we consider this case for the remainder of the proof of
the upper bound.

We now consider the linear classifier whose boundary is tangent to Bk at x∗. For the random
subspace S , we denote by rTS the worst-case subspace perturbation for this linear classifier. We then
focus on the intersection between the boundary Bk and the two-dimensional plane U spanned by
the vectors rk and rTS . This normal section of the boundary cuts the ball B through its center as the
tangent spaces of the decision boundary and the ball coincide. See Fig. 2 for a clarifying figure of this
two-dimensional cross-section. We define the angle θ̂ as denoted in Fig. 2, such that cos(θ̂) = ‖rk‖2

‖rTS ‖2
.

We apply our result on linear classifiers in Theorem 1 for the tangent classifier. We have

1

cos(θ̂)2
=
‖rTS ‖22
‖rk‖22

≤ 1

α2
ζ2(m, δ), (A.40)

with probability exceeding 1− 2δ. Hence, using tan2(θ̂) ≤ (cos2(θ̂))−1 and the assumption of the
theorem, we deduce that

tan2(θ̂) ≤ 1

α2
ζ2(m, δ) ≤ 0.2

κ‖rk‖2
,

with probability exceeding 1− 2δ. Note moreover that

‖rk‖2κ ≤
0.2α2

ζ2(m, δ)
< 1.

Hence, the assumptions of Lemma 4 hold with probability larger than 1− 2δ. Using the notations of
Fig. 2, we therefore obtain from Lemma 4

‖xγ − x0‖2
‖rTS ‖2

− 1 ≤ C2κ‖rk‖2 tan2(θ̂) (A.41)

2For a fixed point x∗ on the boundary, the maximal radius 1/κ might not be achieved. To prove the result in
the general case where the supremum is not achieved, one can consider instead a sequence (κn)n converging to
κ, such that the balls of radius 1/κn and intersecting the boundary at x∗ are included in Rk. The same proof
and results follow by taking the limit on the bounds derived with ball of radius 1/κn.
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with probability larger than 1− 2δ.

Observe that ‖xγ − x0‖2 ≥ ‖rkS‖2, and that tan2(θ̂) ≤ ‖r
T
S‖22

‖rk‖22
. Hence, we obtain by re-writing Eq.

(A.41)

P

(
‖rkS‖22
‖rk‖22

≤
{

1 + C2κ‖rk‖2
‖rTS ‖22
‖rk‖22

}2 ‖rTS ‖22
‖rk‖22

)
≥ 1− 2δ. (A.42)

Using the inequality in Eq. (A.40), we obtain

P

(
‖rkS‖22
‖rk‖22

≤
{

1 + C2κ‖rk‖2
ζ2(m, δ)

α2

}2
ζ2(m, δ)

α2

)
≥ 1− 2δ,

which concludes the proof of the upper bound.

Proof of the lower bound. We now consider the ball B′ of center z∗ and radius 1/κ = ‖z∗ − x∗‖2
that is included in the regionRk̂(x0)

. Since the ball B′ is, by definition, included in the regionRk̂(x0)
,

the worst-case scenario for the lower bound on ‖rkS‖2 occurs whenever the decision boundary Bk

coincides with the ball B′ (see Fig. 3 (a)). We consider this case in the remainder of the proof.

To derive the lower bound, we consider the cross-section U ′ spanned by the vectors rkS and rk (Fig. 3
(b)). We have ‖rk‖2κ < 1; using the lower bound of Lemma 4, we obtain

−C1κ‖rk‖2 tan2(θ̃) ≤ ‖rkS‖2
‖xT − x0‖2

− 1 (A.43)

for any S. Observe moreover that

tan2(θ̃) ≤ 1

cos(θ̃)2
=
‖xT − x0‖22
‖rk‖22

.

Hence, the following bound holds:

‖xT − x0‖22
‖rk‖22

(
1− C1κ‖rk‖2

‖xT − x0‖22
‖rk‖22

)2

≤ ‖r
k
S‖22

‖rk‖22
.

Let rTS denote the worst-case perturbation belonging to subspace S for the linear classifier Tx∗Bk. It
is not hard to see that rTS is collinear to rkS (see Lemma 6 for a proof). Hence, we have rTS = xT −x0.
By applying our result on linear classifiers in Theorem 1 for the tangent classifier Tx∗Bk, we have:

P
(
ζ1(m, δ)

α2
≤ ‖r

T
S ‖22
‖rk‖22

≤ ζ2(m, δ)

α2

)
≥ 1− 2δ.

We therefore conclude that

P

(
ζ1(m, δ)

α2

{
1− C1κ‖rk‖2

ζ2(m, δ)

α2

}2

≤ ‖r
k
S‖22

‖rk‖22

)
≥ 1− 2δ,

which concludes the proof of the lower bound.

The goal is now to extend the previous result, derived for binary classifiers, to the multiclass
classification case. To do so, we show the following lemma.
Lemma 5 (Binary case to multiclass). Let p = arg mini ‖ri‖2. Define the deterministic set

A =

{
k : ‖rk‖2 ≥ 1.45

√
ζ2(m, δ)

√
d

m
‖r∗‖2

}
. (A.44)

Assume that, for all k ∈ Ac, we have

P
(
l ≤ ‖r

k
S‖2

‖rk‖2
≤ u

)
≥ 1− δ. (A.45)
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rk
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Figure 3: Left: To prove the lower bound, we consider a ball B′ included inRk̂(x0)
that intersects

with the boundary at x∗. Lower bounds on ‖rkS‖2 derived when the boundary is the sphere ∂B′ are
also valid lower bounds for the real boundary Bk. Right: Cross section of the problem along the
plane U ′ = span

(
rkS , r

k
)
. γ denotes the normal section of Bk = B′ along the plane U ′.

and that

P

(
‖rpS‖2 ≥ 1.45

√
ζ2(m, δ)

√
d

m
‖r∗‖2

)
≤ t. (A.46)

Then, we have

P
(
l ≤ ‖r

∗
S‖2
‖r∗‖2

≤ u
)
≥ 1− (L+ 1)δ − t. (A.47)

Proof. Note first that

P
(‖r∗S‖2
‖r∗‖2

≥ u
)
≤ P

({‖rpS‖2
‖rp‖2

≥ u
})
≤ δ. (A.48)

We now focus on bounding the other bad event probability P
(
‖r∗S‖2
‖r∗‖2 ≤ l

)
. We have

P
(‖r∗S‖2
‖r∗‖2

≤ l
)

= P
(

min
k/∈A
‖rkS‖2 = ‖r∗S‖2,

‖r∗S‖2
‖r∗‖2

≤ l
)

+ P
(

min
k∈A
‖rkS‖2 = ‖r∗S‖2,

‖r∗S‖2
‖r∗‖2

≤ l
)

(A.49)

The first probability can be bounded as follows:

P
(

min
k/∈A
‖rkS‖2 = ‖r∗S‖2,

‖r∗S‖2
‖r∗‖2

≤ l
)
≤ P

(⋃
k/∈A

‖r∗S‖2
‖r∗‖2

≤ l
)
≤ Lδ. (A.50)

The second probability can also be bounded in the following way

P
(

min
k∈A
‖rkS‖2 = ‖r∗S‖2,

‖r∗S‖2
‖r∗‖2

≤ l
)
≤ P

(
min
k∈A
‖rkS‖2 = ‖r∗S‖2

)
= P

(
∃k ∈ A, ‖rkS‖2 ≤ ‖r∗S‖2

)
.

(A.51)

Observe that, for k ∈ A, we have ‖rkS‖2 ≥ ‖rk‖2 ≥ 1.45
√
ζ2(m, δ)

√
d
m‖r∗‖2. Hence, we

conclude that

P
(

min
k∈A
‖rkS‖2 = ‖r∗S‖2,

‖r∗S‖2
‖r∗‖2

≤ l
)
≤ P

(
1.45

√
ζ2(m, δ)

√
d

m
‖r∗‖2 ≤ ‖r∗S‖2

)
(A.52)

≤ P

(
1.45

√
ζ2(m, δ)

√
d

m
‖r∗‖2 ≤ ‖rpS‖2

)
≤ t. (A.53)
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Corollary 1. Let S be a random m-dimensional subspace of Rd. Assume that, for all k /∈ A, we
have

κ(Bk)‖rk‖2 ≤
0.2

ζ2(m, δ)

m

d
(A.54)

Then, we have

0.875
√
ζ1(m, δ)

√
d

m
≤ ‖r

∗
S‖2
‖r∗‖2

≤ 1.45
√
ζ2(m, δ)

√
d

m
(A.55)

with probability larger than 1− 4(L+ 2)δ.

Proof. Using Theorem 2, we have that for all k /∈ A, the result in Eq. (A.39) holds. We simplify the
result with the assumption κ(Bk)‖r‖2 ≤ 0.2

ζ2(m,δ)
m
d . Hence, the bounds of Theorem 2 are given as

follows

ζ1(m, δ)

α2
(1− 0.2C1)

2 ≤ ‖r
k
S‖22

‖rk‖22
≤ ζ2(m, δ)

α2
(1 + 0.2C2)

2
, (A.56)

which leads to the following bounds:

ζ1(m, δ)
d

m
0.8752 ≤ ‖r

k
S‖22

‖rk‖22
≤ ζ2(m, δ)

d

m
1.452, (A.57)

with probability exceeding 1− 4δ.

By using Lemma 5, together with the fact that t = δ, we obtain

P

(
0.875

√
ζ1(m, δ)

√
d

m
≤ ‖r

∗
S‖2
‖r∗‖2

≤ 1.45
√
ζ2(m, δ)

√
d

m

)
≥ 1− 4(L+ 2)δ, (A.58)

which concludes the proof.

A.3 Useful results

B

x∗

x0

S

Tx∗(∂B)
rTS

rBS

Figure 4: The worst-case perturbation in the subspace S when the decision boundary is ∂B and
Tx∗(∂B) (denoted respectively by rBS and rTS ) are collinear.

Lemma 6. Let x0 ∈ Rd, and x∗ denote the closest point to x0 on the sphere ∂B (see Fig. 4). Let
Tx∗(∂B) be the tangent space to ∂B at x∗. For an arbitrary subspace S, let rTS and rBS denote the
worst-case perturbations of x0 on the subspace S, when the decision boundaries are respectively
Tx∗(∂B) and ∂B. Then, the two perturbations rTS and rBS are collinear.

Proof. Assuming the center of the ball B is the origin, the points on the sphere ∂B satisfy equation:
‖x‖2 = R, where R denotes the radius. Hence, the perturbation rBS is given by

rBS = argmin
r∈Rd

‖r‖22 such that ‖x0 + PSr‖22 = R2. (A.59)

By equating the gradient of Lagrangian of the above constrained optimization problem to zero, we
obtain the following necessary optimality condition

r + λPS(x0 + PSr) = 0.
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It should further be noted that PSrBS = rBS . Indeed, if rBS had a component orthogonal to S, the
projection of rBS onto S would have strictly lower `2 norm, while still satisfying the condition in
Eq.(A.59). Hence, the necessary condition of optimality becomes

(1 + λ)r + λPSx0 = 0,

from which we conclude that rBS is collinear to PSx0.

It should further be noted that rTS can be computed in closed form, and is collinear to PS(x∗ − x0),
which is itself collinear to x0, as the the center of the ball was assumed to be the origin. This
concludes the proof.

Lemma 7. If x ∈ [0, 2(
√

2− 1)],

√
1− x ≥ 1− x

2
− x2

4
. (A.60)

Lemma 8. If x ≥ 0,
√

1 + x ≥ 1 +
x

2
− x2

8
. (A.61)
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