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A.1 Proof of Theorem 1 (affine classifiers)

Lemma 1 ([1]]). Let Y be a point chosen uniformly at random from the surface of the d-dimensional
sphere ST=1. Let the vector Z be the projection of Y onto its first m coordinates, with m < d. Then,

1. If B < 1, then

1 (d=m)/2
IP(HZH%S@”) < g/ (”M) <exp (T(1-f+Inp)).
(A1)

2. If B > 1, then

. (d—m)/2
P(”Z”%Z@l>§5m/2 (1+((1d—67231) Sexp(%(lfﬂJrlnﬂ)).
(A2)

Lemma 2. Let v be a random vector uniformly drawn from the unit sphere S*=1, and P,,, be the
projection matrix onto the first m coordinates. Then,

P (81(0.m) %7 < 1P} < Bo(0,m) ) 21— 23, (A3)

with B1(6,m) = max((1/€)62/™,1 — \/2(1 — 62/™), and B2 (6, m) = 1 + 21/ 2L 4 2(1/0)

m m

Proof. Note first that the upper bound of Lemma|I|can be bounded as follows:

_ (d—m)/2 _
Bm/2 (1 + mn) < BM/Q exp ((126)m) , (A4)

using 1 + =z < exp(x). We find 3 such that 5™/ exp (%) < 9, or equivalently,

Bexp(l—p) < §2/™ Tt is easy to see that when § = 562/”’, the inequality holds. Note however
that %62/ ™ does not converge to 1 as m — oco. We therefore need to derive a tighter bound for
this regime. Using the inequality Sexp(l1 — ) < 1 —1(1 — )% for 0 < 3 < 1, it follows that
the inequality Bexp(1 — 8) < 6%/ holds for 8 = 1 — /2(1 — §2/m). In this case, we have

1—+/2(1 — 62/™) — 1, as m — oo. We take our lower bound to be the max of both derived bounds
(the latter is more appropriate for large m, whereas the former is tighter for small m).

*The first two authors contributed equally to this work.
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For /33, note that the requirement Sexp(1 — 3) < §%/™ is equivalent to —In(3) + (8 — 1) >
2 1n(1/6). By setting 8 = $32(8, m), this condition is equivalent to 24/ % —In(B2(d,m)) > 0, or

equivalently, 2z—In(1+22+22%) > 0, with z = y/ %. The function z +— 2z—In(14+22+222) >
0 is positive on R*. Hence, (5 (6, m) satisfies 3 exp(1 — 3) < §2/™, which concludes the proof. [J

We now prove our main theorem that we recall as follows:

Theorem |1, Let S be a random m-dimensional subspace of R%. The following inequalities hold
between the norms of semi-random perturbation v’ and the worst-case perturbation r*. Let

G(m, ) = 752(71,1,5)’ and G3(m, 6) = 51(;@’5)-
d d. .
G(m, 0)—||r*|[3 < [[r5113 < Ca(m, 0)—[Ir |3, (A5)
with probability exceeding 1 — 2(L + 1)0.

Proof. For the linear case, 7* and 7 can be computed in closed form. We recall that, for any
subspace S, we have

g - 1120~ i o) P P ) (A6)
re = wir — w3i, 5 .
5 [Pswy — Pswy, 13 R C

where rf% was defined in Eq. (7) in the main paper. In particular, when S = R?, we have

o [ F(@0) = i) (o)

[wi = w13

(wk _wl%(mo))' (A7)

Let k # k(). Define, for the sake of readability
15 = | Fe@0) = figa) (0]

kE _ —w-
z Wh = Wiy

Note that

I3 _ IPsz*13 s
753 = =13

The projection of a fixed vector in S¥~1 onto a random m dimensional subspace is equivalent (up to
a unitary transformation U) to the projection of a random vector uniformly sampled from S?~! into a
fixed subspace. Let P, be the projection onto the first m coordinates. We have

[Psz"|3 = [[UTP,UZ"|3 = [P, Uz" |, (A.9)
Hence, we have
[Psz*|3
2

where v is a random vector distributed uniformly in the unit sphere S*~'. We apply Lemma and
obtain

P (ﬁl(m, 5)

= <Pyl < Ba(m,0) %) > 1-26. (A1D)
Hence,
k(12
IP’{ 1 i < ||7"2||§ < 1 i
Ba(m,6) m — [|r¥|[z = Bi(m,d) m
Using the multi-class extension in Lemma 3] we conclude that

}2 1—26. (A.12)

PG 5t < Irsls I S A13
1\m, )m—”,r*”%—@(mv )m = (L +1)é. (A.13)



Lemma 3 (Binary case to multiclass). Assume that, for all k € {1,..., L]}\{k(zo)}

k
P (l < ||||:;j||||j < u) >1-4. (A.14)
Then, we have
P (z < ||||:f||||2 < u) >1— (L +1)0. (A.15)
2

Proof. Let p := arg min, ||7?||o. Note that we have P (Hr;\lz > u) <P (“TEH2 > u) < §. More-

=l lr?llz =
over, we use a union bound to bound the the other bad event probability:

P(”T‘*S”Q < l> <P U{HT%Q < l} < Lé, (A.16)
[l %12

k
(A.17)
We conclude by using the fact that
P<“iWéb<u>:1_P<W§M<J>_P<WEh>U). (A.18)
L [z~ [z
O

A.2  Proof of Theorem 2]and Corollary 1] (nonlinear classifiers)

First, we present an important geometric lemma and then use it to bound ||7%]|2. For the sake of the
general readability of the section, some auxiliary results are given in Section[A.3]

In the following result, we show that, when the curvature of a planar curve is constant and sufficiently
small, the distance between a point  and the curve at a specific direction 6 is well approximated by
the distance between x and a straight line (see Fig.|I|for an illustration).

Lemma 4. Let vy be a planar curve of constant curvature k. We denote by r the distance between a
point  and the curve ~y. Denote moreover by T the tangent to ~ at the closest point to x (see Fig. [).
Let 0 be the angle between u and v as depicted in Fig.[l| We assume that rx < 1. We have

—Cyritan®(h) < llzy 2 (A.19)
[l
Moreover, if
0.2
tan2(9) p—
TR
then, the following upper bound holds
wﬁu_”j”Q — 1 < Cyrrtan?(6). (A.20)

We can set C1 = 0.625 and Cy = 2.25.

Proof of upper bound. We consider two distinct cases for the curve . In the case where ~y is concave-
shaped (Fig. [T} right figure), we have

[y — |2

<1,
(]|

and the upper bound in Eq. (A.20) directly holds. We therefore focus on the case where 7 is
convex-shaped as illustrated in the left figure of Fig. [1| Define R := 1/«, one can write using simple
geometric inspection

R? = sin(0)r" + (R+r — 1" cos(0))?, (A.21)



Figure 1: Bounding ||z, — x||2 in terms of .

where 7’ = ||x~, — x||2. The discriminant of the second order equation (with variable 7') is equal to
¥ q q
A=4(R+ )% cos®(f) — (2rR + rz)) .

We have A > 0 as 6 satisfies the two assumptions tan?(f) < 0.2R/r and r/R < 1. The smallest
solution of this second order equation is given as follows

' = (R+7)cos(f) — /(R +r)2cos2(f) — 2Rr — 2. (A.22)
Using some simple algebraic manipulations, we obtain
T R 5 R o 2R 412
P = wos(@) ((r + 1) cos“(0) — — cos (9)\/1 — tan (G)T . (A.23)
Using the inequality in Lemma [7] together with the two assumptions, we get
T 9 R 9 2Rr + 1?2
r < cos(0) (cos 0) + - cos (0) tan*(6) (QRZ
o 2 (A.24)
R 2R
+ . cos? () tan* () (;R_Zr) )
With simple trigonometric identities, the above expression can be simplified to
.2 .4
, T r (sin“(f) = sin®(0) ( r )2
< 1+ — 1+ — . A25
"= cos(0) ( * R ( 2 cos?(0) * 2R ( )
We expand this quantity, and obtain
) .4 .4 2 -4 3
, T sin®(f)  sin®(0)\ r  sin*(0) r sin®(0) r
< 1 — —+——. A.26
"= cos(0) ( * < 7 cos?2(0) ) R + cos2(0) R? * 4 cos?(0) R3 ( )
Since sin?(0) tan?() = tan?(0) — sin?(#), we have
2 3
, r 9 roor r
<—— 1+t Nl=+—=+-—=1])- A27
T‘cos(@)(+an()(R+R2+4R3>> (A27)
According to the assumptions 7/ R < 1, therefore
, r ( 9 r)
< ——=(142.25¢ 0)—=). A28
"= cos(6) N an( )R ( )
Since '/ cos(#) = ||u||2, one can finally conclude on the upper bound
s =22 1 < 2.25rk tan?(6). (A.29)
[[e]l2
O

Proof of lower bound. When the curve is convex shaped (Fig. [I]left), we have ||z, — |2 > ||lull2,
and the desired lower bound holds. We focus therefore on the case where v has a concave shape,



and coincides with with v, (see Fig. [I|right). The following equation holds using simple geometric
arguments

R? =sin(0)r"? + (R — r + 1’ cos(0))%. (A.30)

where 1’ = ||&,, — ||2. Solving this second order equation gives

' = —(R—r)cos(0) + /(R —r)2 cos?(f) — r2 + 2Rr. (A.31)

After some algebraic manipulations, we get

, r R R 2Rr — r?
T = m ( <7" — 1> COSQ(G) =+ ? COSQ(G)\/l + tanz(G)RQ> . (A32)

Using the inequality in Lemma 8] together with the fact that rx < 1, we obtain

r

cos(6)

r >

(cos2(0) + %cosQ(G) tan?(0) <W>

2R?
(A.33)

R cos?(0) tan*(6) [ 2Rr —r? ?
r 2 2R?

N———

Using simple trigonometric identities, the above expression is simplified to

rr s (e (OO (- YY) s

When expanding it, we obtain

/ r sin?()  sin*(0) \ r  sin*(@) 2 sin*(9) 3
72 (- (T2 e ) T s sed @) A

Since sin?(#) tan?(#) = tan?(6) — sin?(#), we have

" (e (T
cos(0) <1 tan“(6) <2R+8R3>)' (A.36)

Using again the assumption /R < 1, we obtain

r’ >

, r ( o T )
> ——11-0.625¢t 0)—). A.37
"= cos(0) an( )R ( )
Since '/ cos(#) = ||u|2, one can rewrite it as
|2y =l o —0.6257 tan(0), (A.38)
[[wll2
which completes the proof. O

We now use the previous lemma to bound the semi-random robustness of the classifier, i.e. ||r%
the worst-case robustness ||7¥||, in the case where the curvature is sufficiently small.

Theorem |2} Let S be a random m-dimensional subspace of R%. Define o := \/™/d, and let
K := K(By). Assuming that k < m, the following inequalities hold between |7 |2 and

2, to

the worst-case perturbation ||7" ||

MW@O_QWW%MMUiJ@ﬁ<MW®@+@W%%Wﬂf

o? o? Sk ST a2 o?

(A.39)
with probability larger than 1 — 46. The constants can be taken C' = 0.2, C; = 0.625,Cy = 2.25.
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Figure 2: Left: To prove the upper bound, we consider a ball B included in Ry, that intersects with
the boundary at =*. Upper bounds on ||7% || derived when the boundary is O3 are also valid upper
bounds for the real boundary ;.. Right: Normal section to the decision boundary %, = 0B along
the normal plane U = span (r%, 7). We denote by ~y the normal section of boundary %y, along the

plane U, and by 7.~ % the tangent space to the sphere 013 at *.

Proof of upper bound. Denote by x* the point belonging to the boundary %, that is closest to the
original data point xy. By definition of the curvature x, there exists a point z* such that the ball B
centered at z* and of radius 1/k = ||z* — x*|| is inscribed in the region Ry, = {x € R? : fi(x) >

ii(@o) (®)} (see Fig. (a))ﬂ

Observe that the worst-case perturbation along any subspace S that reaches the ball B is larger
than the perturbation along S that reaches the region Ry, as B C Ry. Therefore, any upper bound
derived when the boundary is the sphere of radius 1/x; i.e., 2, = 0B is also a valid upper bound for
boundary %, (see Fig. [2|(a)). It is therefore sufficient to derive an upper bound in the worst case
scenario where the boundary %), = 9B, and we consider this case for the remainder of the proof of
the upper bound.

We now consider the linear classifier whose boundary is tangent to %), at *. For the random
subspace S, we denote by rg the worst-case subspace perturbation for this linear classifier. We then
focus on the intersection between the boundary %, and the two-dimensional plane I/ spanned by
the vectors r* and Tg. This normal section of the boundary cuts the ball B through its center as the
tangent spaces of the decision boundary and the ball coincide. See Fig. or a clarifying figure of this

B [P

two-dimensional cross-section. We define the angle 6 as denoted in Fig. , such that cos(6) = Tl
S

We apply our result on linear classifiers in Theorem T] for the tangent classifier. We have

1 I=Z15 _ 1
— = < —(2(m,9), A.40)
cos(6)2 [rk]3 ~— a? Ca(m.9) (

with probability exceeding 1 — 26. Hence, using tan2(f) < (cos2(#)) ! and the assumption of the
theorem, we deduce that

A 1 0.2
20) < = < —
tan”(0) < a2(2(m,5) ST

with probability exceeding 1 — 20. Note moreover that

0.202
[7*]|ok < — <1,

CQ(m7 6)

Hence, the assumptions of Lemma ] hold with probability larger than 1 — 24. Using the notations of
Fig. 2] we therefore obtain from Lemma 4]

— 1 < Cyrl|r||2 tan?(h) (A41)

?For a fixed point 2* on the boundary, the maximal radius 1/x might not be achieved. To prove the result in
the general case where the supremum is not achieved, one can consider instead a sequence (%, )n converging to
K, such that the balls of radius 1/x,, and intersecting the boundary at ™ are included in Ry. The same proof
and results follow by taking the limit on the bounds derived with ball of radius 1/k,.



with probability larger than 1 — 24.

Observe that ||, — 2ol > ||7% |2, and that tan?() < |“|:%‘|I|§. Hence, we obtain by re-writing Eq.
2
(A.41)
k|12 TN2Y2 157112
P ”Tng < {1 + Coril|7F || ”’"g';} ”’"i”g > 125, (A.42)
!B ¥z ) llr*]I2

Using the inequality in Eq. (A.40), we obtain
k(2 2
. <||rs|2 - {1+02K||rk|2<2<21,5>} <2<m,a>> 1o

l7¥113 — ? a?
which concludes the proof of the upper bound. O

Proof of the lower bound. We now consider the ball B’ of center z* and radius 1/x = [|2* — x*||2
that is included in the region Rl;(mo). Since the ball B’ is, by definition, included in the region R,;(

xg)’
the worst-case scenario for the lower bound on ||7%||2 occurs whenever the decision boundary %,
coincides with the ball B’ (see Fig. |3|(a)). We consider this case in the remainder of the proof.

To derive the lower bound, we consider the cross-section 24’ spanned by the vectors ’rg and r* (Fig.
(b)). We have ||r¥||ox < 1; using the lower bound of Lemma we obtain

. k
Gt s tan2(§) < —Tslz_ (A.43)
e —aoll2
for any S. Observe moreover that
~ 1 — 2
tan2(9) < _ ||£l:7’ kw20||2
cos(6)? [* 13

Hence, the following bound holds:

_ 2 . 2\ 2 k|2
oz 2ol (1 cunprip 27 20l ) < WSl
[ E ) S IR

Let rg denote the worst-case perturbation belonging to subspace S for the linear classifier T~ %y It

is not hard to see that 7% is collinear to vk (see Lemmaor a proof). Hence, we have 7} = 7 —x.

By applying our result on linear classifiers in Theorem [I] for the tangent classifier 7, %}, we have:

T2
P ¢1(m, d) < Irsllz < C2(m, 9) >1- 926
a? %13 a?

‘We therefore conclude that

2 k12
P(Cl(m76> {1_01HTI§”2C2(777;6)} < |TS||2> 21—2(5,
«

a® L

which concludes the proof of the lower bound.
O

The goal is now to extend the previous result, derived for binary classifiers, to the multiclass
classification case. To do so, we show the following lemma.

Lemma 5 (Binary case to multiclass). Let p = argmin; ||r?||o. Define the deterministic set

d
A= {k SRl > 1.45\/Cg(m,5)\/;||r*||2}. (A.44)

Assume that, for all k € A°, we have

k
plr<lmsll o sy s (A.45)
7|2



(b)

Figure 3: Left: To prove the lower bound, we consider a ball B’ included in R, (o) that intersects

with the boundary at z*. Lower bounds on ||7% |2 derived when the boundary is the sphere O3’ are
also valid lower bounds for the real boundary %j. Right: Cross section of the problem along the
plane U’ = span (rg, rk). ~ denotes the normal section of %), = B’ along the plane U’

and that
d
P <||7°§||2 > 1.45+/C2(m, 6)4/ m|7'*||2> <t. (A.46)

Then, we have

P (1 < ||||Tf||||2 < u) >1—(L+1)5—t (A.47)
T2

Proof. Note first that

* D
P (”Tf”2 > u> <P ({ Irsll> > u}) <. (A.48)
[[7* |2 77|

We now focus on bounding the other bad event probability PP ( Irs |2 < l). We have

[T
5l ) < ek i Irsll ) ( ok 5112
P <!l)=P(minl|r|s = l|rs|ls, <Il)+P(minl|r|s = ||r%]e, <l
<||T*||2 kﬁAH S” || SH ||,,,,.<||2 ke A || S” ” S” HT*HQ
(A.49)
The first probability can be bounded as follows:
P(minl|r§|z= 752, ”’“%”2 31) <r|{J ”’"%”2 <) <L (A.50)
kA 7]l pza 177112
The second probability can also be bounded in the following way
: k * ||T* ||2 : k * k *
P(ggg||rs||2=||rs||z, e 1) <P (pinlrble = lIrsl: ) =B (3% € A, lIrklz < r3]2).

(A51)

Observe that, for k € A, we have |[r%|s > ||r¥||s > 1.45\/(2(m, 6)1/ L||r*||2. Hence, we
conclude that

: * ’l"* d * *
P (pin Irbla = Irsle {752 < 1) <7 (1'4W<2<m,6>\/mnr Is < ||rs2> (432

lrll2 —

d
<P (1.45\/42(m,5)\/;||r*||2 < ||r§2> <t. (A53)

O



Corollarym Let S be a random m-dimensional subspace of RY. Assume that, for all k ¢ A, we
have

02m

k
#( i) ll2 < Gn9) d

(A.54)

Then, we have

d
0.875+/C1(m \/ < ”’"5”2 < 1.45\/(a(m, 5)\/; (A.55)
with probability larger than 1 — 4(L + 2)5.

Proof. Using Theoreml we have that for all k ¢ A the result in Eq. (A.39) holds. We 51mp11fy the
result with the assumption (%) ||r |2 < 42(m 5 ' - Hence, the bounds of Theorem are given as

follows

k(|2
Glm0) (g aey)? < '”(‘g”g < @lm0) (4 g0y, (A.56)
e
which leads to the following bounds:
d 2 ||7°5H2 a 2
Cl(m,é) 0.875 < TP < Co(m, 6) 1.45%, (A.57)
2

with probability exceeding 1 — 44.
By using Lemma 3] together with the fact that ¢ = §, we obtain

(o 875+/C1(m \/> < |||’"3”2 1.45\/<2(m,5)\/z> >1—4(L +2)4, (A.58)

which concludes the proof. O

A.3 Useful results

Figure 4: The worst-case perturbatlon in the subspace S when the decision boundary is 05 and
T+ (OB) (denoted respectively by 75 gandr S) are collinear.

Lemma 6. Let xo € RY, and x* denote the closest point to xq on the sphere 0B (see Flg l) Let
Tz (OB) be the tangent space to OB at x*. For an arbitrary subspace S, let r§ T and 3 < denote the
worst-case perturbations of xo on the subspace S, when the decision boundaries are respectively
T (0B) and OB. Then, the two perturbations r% and r& are collinear.

Proof. Assuming the center of the ball 13 is the origin, the points on the sphere 0B satisfy equation:
|z|l2 = R, where R denotes the radius. Hence, the perturbation 75 is given by
5 = argmin |73 such that ||z, + Psr||3 = R?. (A.59)
reR?
By equating the gradient of Lagrangian of the above constrained optimization problem to zero, we
obtain the following necessary optimality condition

r+ APs(xo+ Psr) =0.



It should further be noted that Psr5 = 5. Indeed, if 5 had a component orthogonal to S, the
projection of rg onto S would have strictly lower ¢ norm, while still satisfying the condition in
Eq.(A.59). Hence, the necessary condition of optimality becomes

(1+ X7+ APsxo =0,
from which we conclude that rg is collinear to Psxy.

It should further be noted that #Z can be computed in closed form, and is collinear to Ps(z* — x),
which is itself collinear to x(, as the the center of the ball was assumed to be the origin. This
concludes the proof. O

Lemma7. Ifz € [0,2(v/2 — 1)],

2
\/1—:521—;—% (A.60)
Lemma 8. Ifx > 0,
2
\/1+x21+§—% (A.61)

References

[1] Dasgupta, S. and Gupta, A. (2003). An elementary proof of a theorem of johnson and lindenstrauss. Random
Structures & Algorithms, 22(1):60-65.

10



	Proof of Theorem 1 (affine classifiers)
	Proof of Theorem 2 and Corollary 1 (nonlinear classifiers)
	Useful results

