Supplement of “Improved Dropout for Shallow and
Deep Learning"

Zhe Li', Boging Gong?, Tianbao Yang'
IThe University of lowa, lowa city, IA 52245
2University of Central Florida, Orlando, FL 32816
{zhe-1i-1,tianbao-yang}Quiowa.edu
bgong@crcv.ucf.edu

1 Proof of Theorem 1

The update given by w1 = w; —nV{(W/ (x;0€;), ;) can be considered as the stochastic gradient
descent (SGD) update of the following problem

n&n{f(w) L Ep[l(w' (x0€),y)]}

Define g; as gy = V(W (x; 0 €),y:) = £'(w, (x; 0 €), y:)X; 0 €, where ¢'(z,y) denotes the
derivative in terms of z. Since the loss function is G-Lipschitz continuous, therefore g2 <
G||x+ o €t||2. According to the analysis of SGD [3]], we have the following lemma.

Lemma 1. Let w; 1 = wy — g and wi = 0. Thenfor any |w.||2 < 7 we have
n
77
> gl (wi—w.) s legtllz (1)
t=1

By taking expectation on both sides over the randomness in (x¢, y:, €;) and noting the bound on
llg¢|l2, we have

~ T i 2R
;gt (wtw*]_2 ZG l1xe o €f3]

where Ef; denote the expectation over (x;,y;, €;),i = 1,...,t. Let E¢[-] denote the expectation over
(Xt,Yt, €) with (x;,y;,€;),i=1,...,t —1 given. Then we have

- L0
> Epgle! (wi —w.)] < 2— ZGQEt ¢ © ]
t=1

Since

Bl (we—w.)] = By [Belge] T (wi—w.)] = By [VL(W:) T (we—w.)] > By [L(we)—L(w

As a result

Epn) o

noo R 2
g(ﬁ(wt)—ﬁ( ]<+UZG2 \xtoet||]<r——|—gG2B2n (2)

where the last inequality follows the assumed upper bound of E5[|x; o €;[3]. Following the definition
of w,, and the convexity of £(w) we have

1 zn:(f(w )= L(wy))| < o +1g2p2
n ¢ * ~2nmm 2

t=1

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

o)



By minimizing the upper bound in terms of 7, we have Ej,, [L(W,) — L(w,)] < Ci/ff{. According to

Proposition 1 in the paper £(w) = £(w) + Rp (W), therefore
. ~ GBr
Ep[£(Wn) + Bp am(Wn)] < L(W.) + B pm(we) + —=
Vn
1.1 Proof of Lemma 1

We have the following:

1 172
§||Wt+1 - W*Hg = §||Wt —ngt — W*||§ = S|we — W*||§ + EHgtH% —n(wy — W*)Tgt

5!

Then 1 1
n

(Wi — W*)Tgt < %Hwt - W*H% - %Hwtﬂ - W*||§ + §|Igt||§

By summing the above inequality over t = 1,...,n, we obtain

n n

Wy W1 n
E g (wy —w,) < 7” I 5 E llgell3
t=1 —

By noting that w; = 0 and ||w.||2 < r, we obtain the inequality in Lemmal[l]

2 Proof of Proposition 2

We have

Esllx o e[} = Ep

d .2
i 2
> bl 1]
Since {my, ..., mg4} follows a multinomial distribution Mult(p1,...,pq; k), we have
E[m?] = var(m;) + (E[mq])? = kp;(1 — p;) + kp?
The result in the Proposition follows by combining the above two equations.

3 Proof of Proposition 3

Note that only the first term in the R.H.S of Eqn. (7) depends on p;. Thus,

d
: Ep[27]
P« =arg min E —
p>0,pT1=1 - b

The result then follows the KKT conditions.

4 Proof of Proposition 4

We prove the first upper bound first. From Eqn. (4) in the paper, we have
~ 1
Boaa(w.) < SEpfw] Caa(x o w.]

where we use the fact vVab < %H’ for a,b > 0. Using Eqn. (5) in the paper, we have

1 1 1[G ow?a?
Ep[w, Cr(x0e)w,] = Ep |:WI <kdiag(x?/pi) - kxxT> W*:| = EED ; f —(w]x

This gives a tight bound of EDM (W), ie.,

d
D 1 wfiED [Xf] T2
Fro(w.) < o {;_1: P B (w!x)

DPi



By minimizing the above upper bound over p;, we obtain following probabilities
_ w} Ep[z}]
Y51y whiEla]]

which depend on unknown w,.. We address this issue, we derive a relaxed upper bound. We note that

*

D;

3)

Ca(xo€) = Ey(xoe—x)(xoe—x)]
< (Bumlxoe—x|3) - Ia = (Emllx o ell3] — [Ix[I3) Za
where I; denotes the identity matrix of dimension d. Thus
Ep[w, Cam(x 0 e)w.] < w3 (Epllx o €3] - Enll|x|3])
By noting the result in Proposition 2 in the paper, we have

T Lo (5 Enled) )
Eplw, Culxow.] < wlw. > o — En[|x[3]
i=1 ¢
which proves the upper bound in Proposition 4.

5 Neural Network Structures

In this section we present the neural network structures and the number of filters, filter size, padding
and stride parameters for MNIST, SVHN, CIFAR-10 and CIFAR-100, respectively. Note that in
Table 2] Table[3]and Table[d] the rnorm layer is the local response normalization layer and the local
layer is the locally-connected layer with unshared weights.

5.1 MNIST

We used the similar neural network structure to [2]]: two convolution layers, two fully connected
layers, a softmax layer and a cost layer at the end. The dropout is added to the first fully connected
layer. Tables|[I] presents the neural network structures and the number of filters, filter size, padding
and stride parameters for MNIST.

Table 1: The Neural Network Structure for MNIST

Layer Type | Input Size #Filters | Filter size | Padding/Stride | Output Size
convl 28 x 28 x1 | 32 4 x4 071 21 x 21 x 32
pooll(max) | 21 x 21 x 32 2 x 2 02 11 x 11 x 32
conv?2 11 x11x32 | 64 5X5H 071 7TX7x64
pool2(max) | 7 x 7 x 64 3 x3 0/3 3 X 3 x 64
fcl 3x3x64 150
dropout 150 150
fc2 150 10
softmax 10 10
cost 10 1

5.2 SVHN

The neural network structure used for this data set is from [2], including 2 convolutional layers, 2
max pooling layers, 2 local response layers, 2 fully connected layers, a softmax layer and a cost layer
with one dropout layer. Tables [2] presents the neural network structures and the number of filters,
filter size, padding and stride parameters used for SVHN data set.

5.3 CIFAR-10

The neural network structure is adopted from [2], which consists two convolutional layer, two pooling
layers, two local normalization response layers, 2 locally connected layers, two fully connected layers
and a softmax and a cost layer. Table [3| presents the detail neural network structure and the number of
filters, filter size, padding and stride parameters used.



Table 2: The Neural Network Structure for SVHN

Layer Type | Input Size #Filters | Filter Size | Padding/Stride | Output Size
convl 28 X 28 x 3 64 5% 5 0/1 24 x 24 x 64
pooll(max) | 24 x 24 x 64 3x3 0/2 12 x 12 x 64
rnorm1 12 x 12 x 64 12 x 12 x 64
conv2 12 x12x64 | 64 5x5 2/1 12 x 12 x 64
rnorm?2 12 x 12 x 64 12 x 12 x 64
pool2(max) | 12 x 12 x 64 3x3 0/2 6 x 6 x 64
local3 6 X 6 x 64 64 3x3 1/1 6 X 6 x 64
local4 6 X 6 x 64 32 3x3 1/1 6 X6 x 32
dropout 1152 1152
fcl 1152 512
fc10 512 10
softmax 10 10
cost 10 1

Table 3: The Neural Network Structure for CIFAR-10
Layer Type | Input Size #Filters | Filter Size | Padding/Stride | Output Size
convl 24 x 24 x 3 64 5 X5 2/1 24 x 24 x 64
pooll(max) | 24 x 24 x 64 3x3 0/2 12 x 12 x 64
rnorm1 12 x 12 x 64 12 x 12 x 64
conv2 12 x12x64 | 64 5% 5 2/1 12 x 12 x 64
rnorm?2 12 x 12 x 64 12 x 12 x 64
pool2(max) | 12 x 12 x 64 3x3 0/2 6 X 6 x 64
local3 6 x 6 x 64 64 3%x3 1/1 6 x 6 x 64
local4 6 x 6 x 64 32 3%x3 1/1 6 X 6 x 32
dropout 1152 1152
fcl 1152 128
fc10 128 10
softmax 10 10
cost 10 1

54 CIFAR-100

The network structure for this data set is similar to the neural network structure in [[1]], which consists
of 2 convolution layers, 2 max pooling layers, 2 local response normalization layers, 2 locally
connected layers, 3 fully connected layers, and a softmax and a cost layer. Table [4] presents the
neural network structures and the number of filters, filter size, padding and stride parameters used for
CIFAR-100 data set.

5.5 The Neural Network Structure used for BN

Tables [5]and [6] present the network structures of different methods in subsection 5.3 in the paper. The
layer pool(ave) in Table[5]and Table[6]represents the average pooling layer.

References

[1] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images,
2009.

[2] Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 1058-1066, 2013.



Table 4: The Neural Network Structure for CIFAR-100

Layer Type | Input Size #Filters | Filter Size | Padding/Stride | Output Size
conv] 32x32x3 | 64 5x5b 2/1 32 x 32 x 64
pooll(max) | 32 x 32 x 64 3%x3 0/2 16 x 16 x 64
rnorm1 16 x 16 x 64 16 x 16 x 64
conv2 16 x 16 x 64 | 64 5x5H 2/1 16 x 16 x 64
rnorm?2 16 x 16 x 64 16 x 16 x 64
pool2(max) | 16 x 16 x 64 3x3 0/2 8 x 8 x 64
local3 8 x 8 x 64 64 3x3 1/1 8 X 8 x 64
local4 8 x 8 x 64 32 3x3 1/1 8 X 8 x 32
fcl 2048 128

dropout 128 128

fc2 128 128

fc100 128 100

softmax 100 100

cost 100 1

Table 5: Layers of networks for the experiment comparing with BN on CIFAR-10

Layer Type | noBN-noDropout | BN e-dropout
Layer 1 convl convl convl
Layer 2 pooll(max) pool(max) | pooll(max)
Layer 3 N/A bnl N/A
Layer 4 conv2 conv2 conv2
Layer 5 N/A bn2 N/A
Layer 6 pool2(ave) pool2(ave) | pool2(ave)
Layer 7 conv3 conv3 conv3
Layer 8 N/A bn3 e-dropout
Layer 9 pool3(ave) pool3(ave) | pool3(ave)
Layer 10 fcl fcl fcl

Layer 11 softmax softmax softmax

Table 6: Sizes in networks for the experiment comparing with BN on CIFAR-10

Layer Type | Input size #Filters | Filter size | Padding/Stride | Output size
convl 32x32x3 |32 5X5 2/1 32 x 32 x 32
pooll(max) | 32 x 32 x 32 3x3 072 16 x 16 x 32
conv2 16 x 16 x 32 | 32 5X5 2/1 16 x 16 x 32
pool2(ave) | 16 x 16 x 32 3 %3 0/2 8 x 8 x 32
conv3 8 x 8 x 32 64 5X5H 2/1 8 x 8 x 64
pool3(ave) | 8 x 8 x 64 3 x3 0/2 4x4x64
fcl 4 x4 x64 10

softmax 10 10

cost 10 1




[3] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of the International Conference on Machine Learning (ICML), pages 928-936,
2003.



	Proof of Theorem 1
	Proof of Lemma 1

	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Neural Network Structures
	MNIST
	SVHN
	CIFAR-10
	CIFAR-100
	The Neural Network Structure used for BN


