Supplementary Material: A Minimax Approach to Supervised Learning

Farzan Farnia, David Tse Department of Electrical Engineering Stanford University {farnia, dntse}@stanford.edu

1 Proof of Theorem 1

1.a Weak Version

First, we list the assumptions of the weak version of Theorem 1:

- Γ is convex and closed,
- Loss function L is bounded by a constant C,
- \mathcal{X}, \mathcal{Y} are finite,
- Risk set $S = \{ [L(y, a)]_{y \in \mathcal{Y}} : a \in \mathcal{A} \}$ is closed.

Given these assumptions, Sion's minimax theorem [1] implies that the minimax problem has a finite answer H^* ,

$$H^* := \sup_{P \in \Gamma} \inf_{\psi \in \Psi} \mathbb{E}[L(Y, \psi(X))] = \inf_{\psi \in \Psi} \sup_{P \in \Gamma} \mathbb{E}[L(Y, \psi(X))].$$
(1)

Thus, there exists a sequence of decision rules $(\psi_n)_{n=1}^{\infty}$ for which

$$\lim_{n \to \infty} \sup_{P \in \Gamma} \mathbb{E}[L(Y, \psi_n(X))] = H^*.$$
 (2)

As we supposed, the risk set S is closed. Therefore, the randomized risk set $S_r = \{ [L(y, \zeta)]_{y \in \mathcal{Y}} : \zeta \in \mathcal{Z} \}$ defined over the space of randomized acts \mathcal{Z} is also closed and, since L is bounded, is a compact subset of $\mathbb{R}^{|\mathcal{Y}|}$. Therefore, since \mathcal{X} and \mathcal{Y} are both finite, we can find a randomized decision rule ψ^* which on taking a subsequence $(n_k)_{k=1}^{\infty}$ satisfies

$$\forall x \in \mathcal{X}, y \in \mathcal{Y}: \quad L(y, \psi^*(x)) = \lim_{k \to \infty} L(y, \psi_{n_k}(x)). \tag{3}$$

Then ψ^* is a robust Bayes decision rule against Γ , because

$$\sup_{P \in \Gamma} \mathbb{E}\left[L(Y, \psi^*(X))\right] = \sup_{P \in \Gamma} \lim_{k \to \infty} \mathbb{E}\left[L(Y, \psi_{n_k}(X))\right] \le \lim_{k \to \infty} \sup_{P \in \Gamma} \mathbb{E}\left[L(Y, \psi_{n_k}(X))\right] = H^*.$$
(4)

Moreover, since Γ is assumed to be convex and closed (hence compact), H(Y|X) achieves its supremum over Γ at some distribution P^* . By the definition of conditional entropy, (4) implies that

$$E_{P^*}[L(Y,\psi^*(X))] \le \sup_{P \in \Gamma} \mathbb{E}\left[L(Y,\psi^*(X))\right] \le H^* = H_{P^*}(Y|X),$$
(5)

which shows that ψ^* is a Bayes decision rule for P^* as well. This completes the proof.

 $^{{}^{1}}L(y,\zeta)$ is a short-form for E[L(y,A)] where $A \in \mathcal{A}$ is a random action distributed according to ζ .

³⁰th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

1.b Strong Version

Let's recall the assumptions of the strong version of Theorem 1:

- Γ is convex.
- For any distribution $P \in \Gamma$, there exists a Bayes decision rule.
- We assume continuity in Bayes decision rules over Γ, i.e., if a sequence of distributions
 (Q_n)_{n=1}[∞] ∈ Γ with the corresponding Bayes decision rules (ψ_n)_{n=1}[∞] converges to Q with a
 Bayes decision rule ψ, then under any P ∈ Γ, the expected loss of ψ_n converges to the expected
 loss of ψ.
- P^* maximizes the conditional entropy H(Y|X).

Note: A particular structure used in our paper is given by fixing the marginal P_X across Γ . Under this structure, the condition of the continuity in Bayes decision rules reduces to the continuity in Bayes acts over P_Y 's in $\Gamma_{Y|X}$. It can be seen that while this condition holds for the logarithmic and quadratic loss functions, it does not hold for the 0-1 loss.

Let ψ^* be a Bayes decision rule for P^* . We need to show that ψ^* is a robust Bayes decision rule against Γ . To show this, it suffices to show that (P^*, ψ^*) is a saddle point of the mentioned minimax problem, i.e.,

$$\mathbb{E}_{P^*}[L(Y,\psi^*(X))] \le \mathbb{E}_{P^*}[L(Y,\psi(X))],\tag{6}$$

and

$$\mathbb{E}_{P^*}[L(Y,\psi^*(X))] \ge \mathbb{E}_P[L(Y,\psi^*(X))].$$
(7)

Clearly, inequality (6) holds due to the definition of the Bayes decision rule. To show (7), let us fix an arbitrary distribution $P \in \Gamma$. For any $\lambda \in (0, 1]$, define $P_{\lambda} = \lambda P + (1 - \lambda)P^*$. Notice that $P_{\lambda} \in \Gamma$ since Γ is convex. Let ψ_{λ} be a Bayes decision rule for P_{λ} . Due to the linearity of the expected loss in the probability distribution, we have

$$\mathbb{E}_{P}[L(Y,\psi_{\lambda}(X))] - \mathbb{E}_{P^{*}}[L(Y,\psi_{\lambda}(X))] = \frac{\mathbb{E}_{P_{\lambda}}[L(Y,\psi_{\lambda}(X))] - \mathbb{E}_{P^{*}}[L(Y,\psi_{\lambda}(X))]}{\lambda}$$

$$\leq \frac{H_{P_{\lambda}}(Y|X) - H_{P^{*}}(Y|X)}{\lambda}$$

$$\leq 0,$$

for any $0 < \lambda \le 1$. Here the first inequality is due to the definition of the conditional entropy and the last inequality holds since P^* maximizes the conditional entropy over Γ . Applying the assumption of the continuity in Bayes decision rules, we have

$$\mathbb{E}_{P}[L(Y,\psi^{*}(X))] - \mathbb{E}_{P^{*}}[L(Y,\psi^{*}(X))] = \lim_{\lambda \to 0} \mathbb{E}_{P}[L(Y,\psi_{\lambda}(X))] - \mathbb{E}_{P^{*}}[L(Y,\psi_{\lambda}(X))] \le 0, \quad (8)$$

which makes the proof complete.

2 Proof of Theorem 2

Let us recall the definition of the set $\Gamma(Q)$:

$$\Gamma(Q) = \{ P_{\mathbf{X},Y} : P_{\mathbf{X}} = Q_{\mathbf{X}}, \\ \forall 1 \le i \le t : \| \mathbb{E}_{P} \left[\theta_{i}(Y) \mathbf{X} \right] - \mathbb{E}_{Q} \left[\theta_{i}(Y) \mathbf{X} \right] \| \le \epsilon_{i} \}.$$

$$(9)$$

Defining $\tilde{\mathbf{E}}_i \triangleq \mathbb{E}_Q \left[\theta_i(Y) \mathbf{X} \right]$ and $C_i \triangleq \{ \mathbf{u} : \| \mathbf{u} - \tilde{\mathbf{E}}_i \| \le \epsilon_i \}$, we have

$$\max_{P \in \Gamma(Q)} H(Y|\mathbf{X}) = \max_{P, \mathbf{w}: \ \forall i: \ \mathbf{w}_i = \mathbb{E}_P[\theta_i(Y)\mathbf{X}]} \mathbb{E}_{Q_{\mathbf{X}}} \left[H_P(Y|\mathbf{X} = \mathbf{x}) \right] + \sum_{i=1}^{\iota} I_{C_i}(\mathbf{w}_i)$$
(10)

where I_C is the indicator function for the set C defined as

$$I_C(x) = \begin{cases} 0 & \text{if } x \in C, \\ -\infty & \text{Otherwise.} \end{cases}$$
(11)

First of all, the law of iterated expectations implies that $\mathbb{E}_P \left[\theta_i(Y)\mathbf{X}\right] = \mathbb{E}_{Q_{\mathbf{X}}} \left[\mathbf{X} \mathbb{E}[\theta_i(Y) | \mathbf{X} = \mathbf{x}]\right]$. Furthermore, (10) is equivalent to a convex optimization problem where it is not hard to check that the Slater condition is satisfied. Hence strong duality holds and we can write the dual problem as

$$\min_{\mathbf{A}} \sup_{P_{Y|\mathbf{X}},\mathbf{w}} \mathbb{E}_{Q_{\mathbf{X}}} \left[H_{P}(Y|\mathbf{X}=\mathbf{x}) + \sum_{i=1}^{t} \mathbb{E}[\theta_{i}(Y)|\mathbf{X}=\mathbf{x}] \mathbf{A}_{i} \mathbf{X} \right] + \sum_{i=1}^{t} \left[I_{C_{i}}(\mathbf{w}_{i}) - \mathbf{A}_{i} \mathbf{w}_{i} \right], \quad (12)$$

where the rows of matrix **A**, denoted by \mathbf{A}_i , are the Lagrange multipliers for the constraints of $\mathbf{w}_i = \mathbb{E}_P \left[\theta_i(Y) \mathbf{X} \right]$. Notice that the above problem decomposes across $P_{Y|\mathbf{X}=\mathbf{x}}$'s and \mathbf{w}_i 's. Hence, the dual problem can be rewritten as

$$\min_{\mathbf{A}} \left[\mathbb{E}_{Q_{\mathbf{X}}} \left[\sup_{P_{Y|\mathbf{X}=\mathbf{x}}} H_{P}(Y|\mathbf{X}=\mathbf{x}) + \sum_{i=1}^{t} \mathbb{E}[\theta_{i}(Y)|\mathbf{X}=\mathbf{x}] \mathbf{A}_{i} \mathbf{X} \right] + \sum_{i=1}^{t} \sup_{\mathbf{w}_{i}} \left[I_{C_{i}}(\mathbf{w}_{i}) - \mathbf{A}_{i} \mathbf{w}_{i} \right] \right] \quad (13)$$

Furthermore, according to the definition of F_{θ} , we have

$$F_{\boldsymbol{\theta}}(\mathbf{A}\mathbf{x}) = \sup_{P_{Y|\mathbf{X}=\mathbf{x}}} H(Y|\mathbf{X}=\mathbf{x}) + \mathbb{E}[\boldsymbol{\theta}(Y)|\mathbf{X}=\mathbf{x}]^T \mathbf{A}\mathbf{x}.$$
 (14)

Moreover, the definition of the dual norm $\|\cdot\|_*$ implies

$$\sup_{\mathbf{w}_{i}} I_{C_{i}}(\mathbf{w}_{i}) - \mathbf{A}_{i}\mathbf{w}_{i} = \max_{\mathbf{u}\in C_{i}} - \mathbf{A}_{i}\mathbf{u} = -\mathbf{A}_{i}\tilde{\mathbf{E}}_{i} + \epsilon_{i}\|\mathbf{A}_{i}\|_{*}.$$
(15)

Plugging (14) and (15) in (13), the dual problem can be simplified to

$$\min_{\mathbf{A}} \mathbb{E}_{Q_{\mathbf{X}}} \left[F_{\boldsymbol{\theta}}(\mathbf{A}\mathbf{X}) - \sum_{i=1}^{t} \mathbf{A}_{i} \tilde{\mathbf{E}}_{i} \right] + \sum_{i=1}^{t} \epsilon_{i} \|\mathbf{A}_{i}\|_{*}$$
$$= \min_{\mathbf{A}} \mathbb{E}_{Q} \left[F_{\boldsymbol{\theta}}(\mathbf{A}\mathbf{X}) - \boldsymbol{\theta}(Y)^{T} \mathbf{A}\mathbf{X} \right] + \sum_{i=1}^{t} \epsilon_{i} \|\mathbf{A}_{i}\|_{*},$$
(16)

which is equal to the primal problem (10) since the strong duality holds. Furthermore, note that we can rewrite the definition given for F_{θ} as

$$F_{\boldsymbol{\theta}}(\mathbf{z}) = \max_{\mathbf{E} \in \mathbb{R}^t} G(\mathbf{E}) + \mathbf{E}^T \mathbf{z}, \tag{17}$$

where we define

$$G(\mathbf{E}) = \begin{cases} \max_{P \in \mathcal{P}_{\mathcal{Y}}: \mathbb{E}[\boldsymbol{\theta}(Y)] = \mathbf{E}} H(Y) & \text{if } \{P \in \mathcal{P}_{\mathcal{Y}}: \mathbb{E}[\boldsymbol{\theta}(Y)] = \mathbf{E}\} \neq \emptyset \\ -\infty & \text{Otherwise.} \end{cases}$$
(18)

Observe that F_{θ} is the convex conjugate of the convex -G. Therefore, applying the derivative property of convex conjugates [2] to (14),

$$\mathbb{E}_{P^*}[\boldsymbol{\theta}(Y) \,|\, \mathbf{X} = \mathbf{x}] \in \partial F_{\boldsymbol{\theta}}(\mathbf{A}^* \mathbf{x}). \tag{19}$$

Here, ∂F_{θ} denotes the subgradient of F_{θ} . Assuming F_{θ} is differentiable at $\mathbf{A}^*\mathbf{x}$, (19) implies that

$$\mathbb{E}_{P^*}[\boldsymbol{\theta}(Y) \,|\, \mathbf{X} = \mathbf{x}] = \nabla F_{\boldsymbol{\theta}} \,(\mathbf{A}^* \mathbf{x}). \tag{20}$$

2.a A generalization of Theorem 2

It can be seen that the above proof can be slightly generalized to prove the following generalization of Theorem 2.

Theorem. Given a conjugate pair of convex functions g, g^* , the following duality holds

$$\max_{P: P_X = Q_X} H(Y|\mathbf{X}) - \sum_{i=1}^t g\left(\mathbb{E}_P[\theta_i(Y)\mathbf{X}] - \mathbb{E}_Q[\theta_i(Y)\mathbf{X}]\right) =$$
(21)

$$\min_{\mathbf{A} \in \mathbb{R}^{t \times d}} \mathbb{E}_Q \left[F_{\boldsymbol{\theta}}(\mathbf{A}\mathbf{X}) - \boldsymbol{\theta}(Y)^T \mathbf{A}\mathbf{X} \right] + \sum_{i=1}^t g^*(\mathbf{A}_i),$$
(22)

where A_i denotes the *i*th row of A. In addition, for the optimal P^* and A^*

$$\mathbb{E}_{P^*}[\boldsymbol{\theta}(Y) \,|\, \mathbf{X} = \mathbf{x}] = \nabla F_{\boldsymbol{\theta}} \,(\mathbf{A}^* \mathbf{x}).$$
(23)

Corollary. Consider a pair of dual norms $\|\cdot\|$, $\|\cdot\|_*$. Then, the following duality holds

$$\max_{P: P_X = Q_X} H(Y|\mathbf{X}) - \sum_{i=1}^t \frac{1}{2\lambda_i} \left\| \mathbb{E}_P[\theta_i(Y)\mathbf{X}] - \mathbb{E}_Q[\theta_i(Y)\mathbf{X}] \right\|^2 =$$
(24)

$$\min_{\mathbf{A}\in\mathbb{R}^{\mathbf{t}\times\mathbf{d}}} \mathbb{E}_{Q}\left[F_{\boldsymbol{\theta}}(\mathbf{A}\mathbf{X}) - \boldsymbol{\theta}(Y)^{T}\mathbf{A}\mathbf{X}\right] + \sum_{i=1}^{\iota} \frac{\lambda_{i}}{2} \left\|\mathbf{A}_{i}\right\|_{*}^{2},$$
(25)

where λ_i 's are positive real numbers and \mathbf{A}_i denotes the *i*th row of \mathbf{A} . Moreover, for the optimal P^* and \mathbf{A}^*

$$\mathbb{E}_{P^*}[\boldsymbol{\theta}(Y) \,|\, \mathbf{X} = \mathbf{x}] = \nabla F_{\boldsymbol{\theta}} \,(\mathbf{A}^* \mathbf{x}).$$
(26)

3 Proof of Theorem 3

First, we aim to show that

$$\max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X}))] \le \mathbb{E}_{\tilde{P}} \left[F_{\boldsymbol{\theta}}(\hat{\mathbf{A}}_n \mathbf{X}) - \boldsymbol{\theta}(Y)^T \hat{\mathbf{A}}_n \mathbf{X} \right] + \sum_{i=1}^t \epsilon_i \| \hat{\mathbf{A}}_{n_i} \|_*$$
(27)

where $\hat{\mathbf{A}}_n$ denotes the solution to the RHS of the duality equation in Theorem 2 for the empirical distribution \hat{P}_n . Similar to the duality proven in Theorem 2, we can show that

$$\begin{aligned} \max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X}))] &= \min_{\mathbf{A}} \mathbb{E}_{\tilde{P}_X} \left| \sup_{P_{Y|\mathbf{X}} \in \mathcal{P}_Y} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X})) | \mathbf{X} = \mathbf{x}] + \mathbb{E}[\boldsymbol{\theta}(Y) | \mathbf{X} = \mathbf{x}]^T \mathbf{A} \mathbf{X} \right| \\ &- \mathbb{E}_{\tilde{P}}[\boldsymbol{\theta}(Y)^T \mathbf{A} \mathbf{X}] + \sum_{i=1}^t \epsilon_i \|\mathbf{A}_i\|_* \\ &\leq \mathbb{E}_{\tilde{P}_X} \left[\sup_{P_{Y|\mathbf{X}=\mathbf{x}} \in \mathcal{P}_Y} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X})) | \mathbf{X} = \mathbf{x}] + \mathbb{E}[\boldsymbol{\theta}(Y) | \mathbf{X}]^T \hat{\mathbf{A}}_n \mathbf{X} \right] \\ &- \mathbb{E}_{\tilde{P}}[\boldsymbol{\theta}(Y)^T \hat{\mathbf{A}}_n \mathbf{X}] + \sum_{i=1}^t \epsilon_i \|\hat{\mathbf{A}}_{n_i}\|_* \\ &= \mathbb{E}_{\tilde{P}} \left[F_{\boldsymbol{\theta}}(\hat{\mathbf{A}}_n \mathbf{X}) - \boldsymbol{\theta}(Y)^T \hat{\mathbf{A}}_n \mathbf{X} \right] + \sum_{i=1}^t \epsilon_i \|\hat{\mathbf{A}}_{n_i}\|_*. \end{aligned}$$

Here we first upper bound the minimum by taking the specific $\mathbf{A} = \hat{\mathbf{A}}_n$. Then the equality holds because $\hat{\psi}_n$ is a robust Bayes decision rule against $\Gamma(\hat{P}_n)$ and therefore adding the second term based on $\hat{\mathbf{A}}_n \mathbf{x}$, $\hat{\psi}_n(\mathbf{x})$ results in a saddle point for the following problem

$$F_{\boldsymbol{\theta}}(\mathbf{A}_{n}\mathbf{X}) = \sup_{P \in \mathcal{P}_{\mathcal{Y}}} H(Y) + \mathbb{E}[\boldsymbol{\theta}(Y)]^{T}\mathbf{A}_{n}\mathbf{X}$$
$$= \sup_{P \in \mathcal{P}_{\mathcal{Y}}} \inf_{\zeta \in \mathcal{Z}} \mathbb{E}[L(Y,\zeta)] + \mathbb{E}[\boldsymbol{\theta}(Y)]^{T}\hat{\mathbf{A}}_{n}\mathbf{X}$$
$$= \sup_{P \in \mathcal{P}_{\mathcal{Y}}} \mathbb{E}[L(Y,\hat{\psi}_{n}(\mathbf{X}))] + \mathbb{E}[\boldsymbol{\theta}(Y)]^{T}\hat{\mathbf{A}}_{n}\mathbf{X}.$$

Therefore, by Theorem 2 we have

$$\max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X}))] - \max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \tilde{\psi}(\mathbf{X}))] \leq$$

$$\mathbb{E}_{\tilde{P}}\left[F_{\boldsymbol{\theta}}(\hat{\mathbf{A}}_n \mathbf{X}) - \boldsymbol{\theta}(Y)^T \hat{\mathbf{A}}_n \mathbf{X}\right] + \sum_{i=1}^t \epsilon_i \|\hat{\mathbf{A}}_{n_i}\|_* - \mathbb{E}_{\tilde{P}}\left[F_{\boldsymbol{\theta}}(\tilde{\mathbf{A}}\mathbf{X}) - \boldsymbol{\theta}(Y)^T \tilde{\mathbf{A}}\mathbf{X}\right] - \sum_{i=1}^t \epsilon_i \|\tilde{\mathbf{A}}_i\|_*.$$
(28)

As a result, we only need to bound the uniform convergence rate in the other side of the duality. Note that by the definition of F_{θ} ,

$$\forall P \in \mathcal{P}_{\mathcal{Y}}, \, \mathbf{z} \in \mathbb{R}^t : \quad F_{\boldsymbol{\theta}}(\mathbf{z}) - \mathbb{E}_P[\boldsymbol{\theta}(Y)]^T \mathbf{z} \ge H_P(Y) \ge 0.$$
⁽²⁹⁾

Hence, $\forall \mathbf{A} : F_{\theta}(\mathbf{A}\mathbf{X}) - \mathbb{E}[\theta(Y)]^T \mathbf{A}\mathbf{X} \ge 0$ and comparing the optimal solution to the RHS of the duality equation in Theorem 2 to the case $\mathbf{A} = \mathbf{0}$ implies that for any possible solution \mathbf{A}^*

$$\forall 1 \le i \le t: \quad \epsilon_i \|\mathbf{A}_i^*\|_q \le \sum_{j=1}^t \epsilon_j \|\mathbf{A}_j^*\|_q \le F_{\boldsymbol{\theta}}(\mathbf{0}) = \max_{P \in \mathcal{P}_{\mathcal{Y}}} H(Y) = M.$$
(30)

Hence, since $1 \le q \le 2$, we only need to bound the uniform convergence rate in a bounded space where $\forall 1 \le i \le t : \|\mathbf{A}_i\|_2 \le \|\mathbf{A}_i\|_q \le \frac{M}{\epsilon_i}$. Also, applying the derivative property of the conjugate relationship indicates that $\partial F_{\boldsymbol{\theta}}(\mathbf{z})$ is a subset of the convex hull of $\{\mathbb{E}[\boldsymbol{\theta}(Y)] : P \in \mathcal{P}_{\mathcal{Y}}\}$. Therefore, when $\theta(Y)$ includes only one variable, for any $u \in \partial F_{\boldsymbol{\theta}}(z)$ we have $|u| \le L$, and $F_{\boldsymbol{\theta}}(z) - \theta(Y)z$ is 2*L*-Lipschitz in *z*. As a result, since $||\mathbf{X}||_2 \le B$ and $|\theta(Y)| \le L$ for any $\alpha_1, \alpha_2 \in \mathbb{R}^d$ such that $\|\boldsymbol{\alpha}_i\|_2 \le \frac{M}{\epsilon}$,

$$\forall \mathbf{x}_1, \mathbf{x}_2, y_1, y_2 : [F_{\boldsymbol{\theta}}(\boldsymbol{\alpha}_1^T \mathbf{x}_1) - \boldsymbol{\theta}(y_1)\boldsymbol{\alpha}_1^T \mathbf{x}_1] - [F_{\boldsymbol{\theta}}(\boldsymbol{\alpha}_2^T \mathbf{x}_2) - \boldsymbol{\theta}(y_2)\boldsymbol{\alpha}_2^T \mathbf{x}_2] \leq \frac{4BML}{\epsilon} \quad (31)$$

Consequently, we can apply standard uniform convergence results given convexity-Lipschitznessboundedness [3] to show that for any $\delta > 0$ with a probability at least $1 - \delta$

$$\forall \boldsymbol{\alpha} \in \mathbb{R}^{d}, \|\boldsymbol{\alpha}\|_{2} \leq \frac{M}{\epsilon}:$$

$$\mathbb{E}_{\tilde{P}} \left[F_{\boldsymbol{\theta}}(\boldsymbol{\alpha}^{T} \mathbf{X}) - \boldsymbol{\theta}(Y) \boldsymbol{\alpha}^{T} \mathbf{X} \right] - \mathbb{E}_{\hat{P}_{n}} \left[F_{\boldsymbol{\theta}}(\boldsymbol{\alpha}^{T} \mathbf{X}) - \boldsymbol{\theta}(Y) \boldsymbol{\alpha}^{T} \mathbf{X} \right] \leq \frac{4BLM}{\epsilon \sqrt{n}} \left(1 + \sqrt{\frac{\log(2/\delta)}{2}} \right).$$

$$\mathbb{E}_{\tilde{P}} \left[F_{\boldsymbol{\theta}}(\boldsymbol{\alpha}^{T} \mathbf{X}) - \boldsymbol{\theta}(Y) \boldsymbol{\alpha}^{T} \mathbf{X} \right] = \frac{4BLM}{\epsilon \sqrt{n}} \left(1 + \sqrt{\frac{\log(2/\delta)}{2}} \right).$$

Therefore, considering $\hat{\alpha}_n$ and $\tilde{\alpha}$ as the solution to the dual problems corresponding to the empirical and underlying cases, for any $\delta > 0$ with a probability at least $1 - \delta/2$

$$\mathbb{E}_{\tilde{P}}\left[F_{\boldsymbol{\theta}}(\hat{\boldsymbol{\alpha}}_{n}^{T}\mathbf{X}) - \theta(Y)\hat{\boldsymbol{\alpha}}_{n}^{T}\mathbf{X}\right] + \epsilon \|\hat{\boldsymbol{\alpha}}_{n}\|_{q}$$

$$-\mathbb{E}_{\hat{P}_{n}}\left[F_{\boldsymbol{\theta}}(\hat{\boldsymbol{\alpha}}_{n}^{T}\mathbf{X}) - \theta(Y)\hat{\boldsymbol{\alpha}}_{n}^{T}\mathbf{X}\right] - \epsilon \|\hat{\boldsymbol{\alpha}}_{n}\|_{q} \le \frac{4BLM}{\epsilon\sqrt{n}}\left(1 + \sqrt{\frac{\log(4/\delta)}{2}}\right).$$
(33)

Since $\hat{\alpha}_n$ is minimizing the objective for $Q = \hat{P}_n$,

$$\mathbb{E}_{\hat{P}_{n}}\left[F_{\boldsymbol{\theta}}(\hat{\boldsymbol{\alpha}}_{n}^{T}\mathbf{X}) - \theta(Y)\hat{\boldsymbol{\alpha}}_{n}^{T}\mathbf{X}\right] + \epsilon \|\hat{\boldsymbol{\alpha}}_{n}\|_{q} \tag{34}$$

$$-\mathbb{E}_{\hat{P}_{n}}\left[F_{\boldsymbol{\theta}}(\tilde{\boldsymbol{\alpha}}^{T}\mathbf{X}) - \theta(Y)\tilde{\boldsymbol{\alpha}}^{T}\mathbf{X}\right] - \epsilon \|\tilde{\boldsymbol{\alpha}}\|_{q} \leq 0.$$

Also, since $\tilde{\alpha}$ does not depend on the samples, the Hoeffding's inequality implies that with a probability at least $1 - \delta/2$

$$\mathbb{E}_{\hat{P}_{n}}\left[F_{\boldsymbol{\theta}}(\tilde{\boldsymbol{\alpha}}^{T}\mathbf{X}) - \theta(Y)\tilde{\boldsymbol{\alpha}}^{T}\mathbf{X}\right] + \epsilon \|\tilde{\boldsymbol{\alpha}}\|_{q}$$

$$-\mathbb{E}_{\tilde{P}}\left[F_{\boldsymbol{\theta}}(\tilde{\boldsymbol{\alpha}}^{T}\mathbf{X}) - \theta(Y)\tilde{\boldsymbol{\alpha}}^{T}\mathbf{X}\right] - \epsilon \|\tilde{\boldsymbol{\alpha}}\|_{q} \leq \frac{2BML}{\epsilon}\sqrt{\frac{\log(4/\delta)}{2n}}.$$
(35)

Applying the union bound, combining (33), (34), (35) shows that with a probability at least $1 - \delta$, we have

$$\mathbb{E}_{\hat{P}_{n}}\left[F_{\boldsymbol{\theta}}(\hat{\boldsymbol{\alpha}}_{n}^{T}\mathbf{X}) - \theta(Y)\hat{\boldsymbol{\alpha}}_{n}^{T}\mathbf{X}\right] + \epsilon \|\hat{\boldsymbol{\alpha}}_{n}\|_{q}$$

$$-\mathbb{E}_{\tilde{P}}\left[F_{\boldsymbol{\theta}}(\tilde{\boldsymbol{\alpha}}^{T}\mathbf{X}) - \theta(Y)\tilde{\boldsymbol{\alpha}}^{T}\mathbf{X}\right] - \epsilon \|\tilde{\boldsymbol{\alpha}}\|_{q} \leq \frac{4BLM}{\epsilon\sqrt{n}}\left(1 + \frac{3}{2}\sqrt{\frac{\log(4/\delta)}{2}}\right).$$
(36)

Given (28) and (36), the proof is complete.

Note that we can improve the result in the case q = 1 by using the same proof and plugging in the Rademacher complexity of the ℓ_1 -bounded linear functions. Here, we replace the assumption that $\|\mathbf{X}\|_2 \leq B$ with $\|\mathbf{X}\|_{\infty} \leq B$ which can be much weaker for high-dimensional **X**'s.

Theorem. Consider a loss function L with the entropy H and suppose $\theta(Y)$ includes only one element. Let $M = \max_{P \in \mathcal{P}_{\mathcal{Y}}} H(Y)$ be the maximum entropy value over $\mathcal{P}_{\mathcal{Y}}$. Also, take $\|\cdot\|/\|\cdot\|_*$ to be the ℓ_{∞}/ℓ_1 pair. Given that \mathbf{X} is a d-dimensional vector with $\|\mathbf{X}\|_{\infty} \leq B$, and $|\theta(Y)| \leq L$, for any $\delta > 0$ with probability at least $1 - \delta$

$$\max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X}))] - \max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \tilde{\psi}(\mathbf{X}))] \le \frac{4BLM}{\epsilon\sqrt{n}} \left(\sqrt{2\log(2d)} + \sqrt{\frac{9\log(4/\delta)}{8}}\right).$$
(37)

4 0-1 Loss: minimax SVM

4.a F_{θ} derivation

Given the defined one-hot encoding $\boldsymbol{\theta}$ we define $\tilde{\mathbf{z}} = (\mathbf{z}, 0)$ and represent each randomized decision rule ζ with its corresponding loss vector $\mathbf{L} \in \mathbb{R}^{t+1}$ such that $L_i = L_{0-1}(i, \zeta)$ denotes the 0-1 loss suffered by ζ when Y = i. It can be seen that \mathbf{L} is a feasible loss vector if and only if $\forall i : 0 \leq L_i \leq 1$ and $\sum_{i=1}^{t+1} L_i = t$. Then,

$$F_{\boldsymbol{\theta}}(\mathbf{z}) = \max_{\substack{\mathbf{p} \in \mathbb{R}^{t+1}: \mathbf{1}^T \mathbf{p} = 1, \\ \forall i: \ 0 \le p_i}} \min_{\substack{\mathbf{L} \in \mathbb{R}^{t+1}: \mathbf{1}^T \mathbf{L} = t, \\ \forall i: \ 0 \le L_i \le 1}} \sum_{i=1}^{t+1} p_i(\tilde{z}_i + L_i).$$
(38)

Hence, Sion's minimax theorem implies that the above minimax problem has a saddle point. Thus,

$$F_{\boldsymbol{\theta}}(\mathbf{z}) = \min_{\substack{\mathbf{L} \in \mathbb{R}^{t+1}: \ \mathbf{1}^T \mathbf{L} = t, \ 1 \le i \le t+1 \\ \forall i: \ 0 \le L_i \le 1}} \max_{\substack{1 \le i \le t+1 \\ \forall i < 1 \le t \le t}} \{ \tilde{z}_i + L_i \}.$$
(39)

Consider σ as the permutation sorting \tilde{z} in a descending order and for simplicity let $\tilde{z}_{(i)} = \tilde{z}_{\sigma(i)}$. Then,

$$\forall 1 \le k \le t+1: \quad \max_{1 \le i \le t+1} \{ \tilde{z}_i + L_i \} \ge \frac{1}{k} \sum_{i=1}^k [\tilde{z}_{\sigma(i)} + L_{\sigma(i)}] \ge \frac{k-1 + \sum_{i=1}^k \tilde{z}_{(i)}}{k}, \quad (40)$$

which is independent of the value of L_i 's. Therefore,

$$\max_{1 \le k \le t+1} \frac{k-1+\sum_{i=1}^{k} \tilde{z}_{(i)}}{k} \le F_{\boldsymbol{\theta}}(\mathbf{z}).$$

$$\tag{41}$$

On the other hand, if we let k_{max} be the largest index satisfying $\sum_{i=1}^{k_{\text{max}}} [\tilde{z}_{(i)} - \tilde{z}_{(k_{\text{max}})}] < 1$ and define

$$\forall 1 \le j \le t+1: \quad L^*_{\sigma(j)} = \begin{cases} \frac{k_{\max} - 1 + \sum_{i=1}^{k_{\max}} \tilde{z}_{(i)}}{k_{\max}} - \tilde{z}_{(j)} & \text{if } \sigma(j) \le k_{\max} \\ 1 & \text{if } \sigma(j) > k_{\max}, \end{cases}$$
(42)

we can simply check that \mathbf{L}^* is a feasible point since $\sum_{i=1}^{t+1} L_i^* = t$ and $L_{\sigma(k_{\max})}^* \leq 1$ so for all *i*'s $L_{\sigma(i)}^* \leq 1$. Also, $L_{\sigma(1)}^* \geq 0$ because $\tilde{z}_{(1)} - \tilde{z}_{(j)} < 1$ for any $j \leq k_{\max}$, so for all *i*'s $L_{\sigma(i)}^* \geq 0$. Then for this \mathbf{L}^* we have

$$F_{\theta}(\mathbf{z}) \le \max_{1 \le i \le t+1} \{ \tilde{z}_i + L_i^* \} = \frac{k_{\max} - 1 + \sum_{i=1}^{k_{\max}} \tilde{z}_{(i)}}{k_{\max}}.$$
(43)

Therefore, (41) holds with equality and achieves its maximum at $k = k_{max}$,

$$F_{\theta}(\mathbf{z}) = \max_{1 \le k \le t+1} \frac{k - 1 + \sum_{i=1}^{k} \tilde{z}_{(i)}}{k} = \frac{k_{\max} - 1 + \sum_{i=1}^{k_{\max}} \tilde{z}_{(i)}}{k_{\max}}.$$
 (44)

Moreover, L^* corresponds to a randomized robust Bayes act, where we select label *i* according to the probability vector $\mathbf{p}^* = \mathbf{1} - \mathbf{L}^*$ that is

$$\forall 1 \le j \le t+1: \quad p_{\sigma(j)}^* = \begin{cases} \frac{1 - \sum_{i=1}^{k_{\max}} \tilde{z}_{(i)}}{k_{\max}} + \tilde{z}_{(j)} & \text{if } \sigma(j) \le k_{\max} \\ 0 & \text{if } \sigma(j) > k_{\max}. \end{cases}$$
(45)

Given F_{θ} we can simply derive the gradient ∇F_{θ} to find the entropy maximizing distribution. Here if the inequality $\sum_{i=1}^{k_{\max}} [\tilde{\mathbf{z}}_{\sigma(i)} - \tilde{\mathbf{z}}_{(k_{\max}+1)}] \ge 1$ holds strictly, which is true almost everywhere on \mathbb{R}^t ,

$$\forall 1 \le i \le t: \quad \left(\nabla F_{\theta}(\mathbf{z})\right)_{i} = \begin{cases} 1/k_{\max} & \text{if } \sigma(i) \le k_{\max}, \\ 0 & \text{Otherwise.} \end{cases}$$
(46)

If the inequality does not strictly hold, F_{θ} is not differentiable at z; however, the above vector still lies in the subgradient $\partial F_{\theta}(z)$.

4.b Sufficient Conditions for Applying Theorem 1.a

As supposed in Theorem 1.a, the space \mathcal{X} should be finite in order to apply that result. Here, we show for the proposed structure on $\Gamma(Q)$ one can relax this condition while Theorem 1.a still holds. It is because, as shown in the proofs of Theorems 2 and 3, we have

$$\begin{split} \inf_{\psi \in \Psi} \max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \psi(\mathbf{X}))] &= \inf_{\psi \in \Psi} \min_{\mathbf{A}} \mathbb{E}_{\tilde{P}_{X}} \left[\sup_{P_{Y|\mathbf{X}} \in \mathcal{P}_{\mathcal{Y}}} \mathbb{E}[L(Y, \psi(\mathbf{X})) | \mathbf{X} = \mathbf{x}] \right] \\ &+ \mathbb{E}[\boldsymbol{\theta}(Y) | \mathbf{X} = \mathbf{x}]^{T} \mathbf{A} \mathbf{X} \right] - \mathbb{E}_{\tilde{P}}[\boldsymbol{\theta}(Y)^{T} \mathbf{A} \mathbf{X}] + \sum_{i=1}^{t} \epsilon_{i} \|\mathbf{A}_{i}\|_{*} \\ &= \min_{\mathbf{A}} \mathbb{E}_{\tilde{P}_{X}} \left[\inf_{\psi(\mathbf{x}) \in \mathcal{Z}} \sup_{P_{Y|\mathbf{X}} \in \mathcal{P}_{\mathcal{Y}}} \mathbb{E}[L(Y, \psi(\mathbf{x})) | \mathbf{X} = \mathbf{x}] \right] \\ &+ \mathbb{E}[\boldsymbol{\theta}(Y) | \mathbf{X} = \mathbf{x}]^{T} \mathbf{A} \mathbf{X} \right] - \mathbb{E}_{\tilde{P}}[\boldsymbol{\theta}(Y)^{T} \mathbf{A} \mathbf{X}] + \sum_{i=1}^{t} \epsilon_{i} \|\mathbf{A}_{i}\|_{*}. \end{split}$$

Therefore, given this structure the minimax problem decouples across different x's. Hence, the assumption of finite \mathcal{X} is no longer needed, because as long as θ is a bounded function (which is true for the one-hot encoding θ), the rest of assumptions suffice to guarantee the existence of a saddle point given $\mathbf{X} = \mathbf{x}$ for any \mathbf{x} .

5 Quadratic Loss: Linear Regression

5.a F_{θ} derivation

Here, we find $F_{\theta}(\mathbf{z}) = \max_{P \in \mathcal{P}_{\mathcal{Y}}} H(Y) + \mathbb{E}[\theta(Y)]^T \mathbf{z}$ for $\theta(Y) = Y$ and $\mathcal{P}_{\mathcal{Y}} = \{P_Y : \mathbb{E}[Y^2] \le \rho^2\}$. Since for quadratic loss $H(Y) = \operatorname{Var}(Y) = \mathbb{E}[Y^2] - \mathbb{E}[Y^2]$, the problem is equivalent to

$$F_{\boldsymbol{\theta}}(z) = \max_{\mathbb{E}[Y^2] \le \rho^2} \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 + z\mathbb{E}[Y]$$
(47)

As $\mathbb{E}[Y]^2 \leq \mathbb{E}[Y^2]$, it can be seen for the solution $\mathbb{E}_{P^*}[Y^2] = \rho^2$ and therefore we equivalently solve

$$F_{\theta}(z) = \max_{|\mathbb{E}[Y]| \le \rho} \rho^2 - \mathbb{E}[Y]^2 + z\mathbb{E}[Y] = \begin{cases} \rho^2 + z^2/4 & \text{if } |z/2| \le \rho\\ \rho|z| & \text{if } |z/2| > \rho. \end{cases}$$
(48)

5.b Applying Theorem 2 while restricting $\mathcal{P}_{\mathcal{V}}$

For the quadratic loss, we first change $\mathcal{P}_{\mathcal{Y}} = \{P_Y : \mathbb{E}[Y^2] \leq \rho^2\}$ and then apply Theorem 2. Note that by modifying F_{θ} based on the new $\mathcal{P}_{\mathcal{Y}}$ we also solve a modified version of the maximum conditional entropy problem

$$\max_{\substack{P: P_{\mathbf{X}, Y} \in \Gamma(Q) \\ \forall \mathbf{x}: P_{Y \mid \mathbf{X} = \mathbf{x}} \in \mathcal{P}_{Y}}} H(Y \mid \mathbf{X})$$
(49)

In the case $\mathcal{P}_{\mathcal{Y}} = \{P_Y : \mathbb{E}[Y^2] \le \rho^2\}$ Theorem 2 remains valid given the above modification in the maximum conditional entropy problem. This is because the inequality constraint $\mathbb{E}[Y^2|\mathbf{X} = \mathbf{x}] \le \rho^2$ is linear in $P_{Y|\mathbf{X}=\mathbf{x}}$, and thus the problem is still convex and strong duality holds as well. Also, when we move the constraints of $\mathbf{w}_i = \mathbb{E}_P[\theta_i(Y)\mathbf{X}]$ to the objective function, we get a similar dual problem

$$\min_{\mathbf{A}} \sup_{\substack{P_{Y|\mathbf{X},\mathbf{w}:}\\\forall\mathbf{x}:\ P_{Y}|\mathbf{X}=\mathbf{x}\in\mathcal{P}_{\mathcal{Y}}}} \mathbb{E}_{Q_{\mathbf{X}}} \left[H_{P}(Y|\mathbf{X}=\mathbf{x}) + \sum_{i=1}^{t} \mathbb{E}[\theta_{i}(Y)|\mathbf{X}=\mathbf{x}] \mathbf{A}_{i} \mathbf{X} \right] + \sum_{i=1}^{t} \left[I_{C_{i}}(\mathbf{w}_{i}) - \mathbf{A}_{i} \mathbf{w}_{i} \right]$$
(50)

Following the next steps of the proof of Theorem 2, we complete the proof assuming the modification on F_{θ} and the maximum conditional entropy problem.

5.c Derivation of group lasso

To derive the group lasso problem, we slightly change the structure of $\Gamma(Q)$. First assume the subsets I_1, \ldots, I_k are disjoint. Consider a set of distributions $\Gamma_{GL}(Q)$ with the following structure

$$\Gamma_{\rm GL}(Q) = \{ P_{\mathbf{X},Y} : P_{\mathbf{X}} = Q_{\mathbf{X}}, \\ \forall 1 \le j \le k : \| \mathbb{E}_P \left[Y \mathbf{X}_{I_j} \right] - \mathbb{E}_Q \left[Y \mathbf{X}_{I_j} \right] \| \le \epsilon_j \}.$$
(51)

Now we prove a modified version of Theorem 2,

$$\max_{P \in \Gamma_{GL}(Q)} H(Y|\mathbf{X}) = \min_{\boldsymbol{\alpha}} \mathbb{E}_Q \left[F_{\boldsymbol{\theta}}(\boldsymbol{\alpha}^T \mathbf{X}) - Y \boldsymbol{\alpha}^T \mathbf{X} \right] + \sum_{j=1}^{k} \epsilon_j \|\boldsymbol{\alpha}_{I_j}\|_*.$$
(52)

,

To prove this identity, we can use the same proof provided for Theorem 2. We only need to redefine $\tilde{\mathbf{E}}_j = \mathbb{E}_Q \left[Y \mathbf{X}_{I_j} \right]$ and $C_j = \{ \mathbf{u} : \| \mathbf{u} - \tilde{\mathbf{E}}_j \| \le \epsilon_j \}$ for $1 \le j \le k$. Notice that here t = 1. Using the same technique in that proof, the dual problem can be formulated as

$$\min_{\boldsymbol{\alpha}} \sup_{P_{Y|\mathbf{X}}, \mathbf{w}} \mathbb{E}_{Q_{\mathbf{X}}} \left[H_P(Y|\mathbf{X} = \mathbf{x}) + \mathbb{E}[Y|\mathbf{X} = \mathbf{x}] \boldsymbol{\alpha}^T \mathbf{X} \right] + \sum_{j=1}^{k} \left[I_{C_j}(\mathbf{w}_{I_j}) - \boldsymbol{\alpha}_{I_j} \mathbf{w}_{I_j} \right].$$
(53)

Similarly, we can decouple and simplify the above problem to derive the RHS of (52). Then, if we let $\|\cdot\|$ be the ℓ_q -norm, we will get the group lasso problem with the $\ell_{1,p}$ regularizer.

If the subsets are not disjoint, we can create new copies of each feature corresponding to a repeated index, such that there will be no repeated indices after adding the new features. Note that since $P_{\mathbf{X}}$ has been fixed over $\Gamma_{GL}(Q)$ adding the extra copies of original features does not change the maximum-conditional entropy problem. Hence, we can use the result proven for the disjoint case and derive the overlapping group lasso problem.

References

- [1] Maurice Sion. On general minimax theorems. Pacific J. Math, 8(1):171–176, 1958.
- [2] Ralph Rockafellar. Characterization of the subdifferentials of convex functions. *Pacific Journal of Mathematics*, 17(3):497–510, 1966.
- [3] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.