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1 Proof of Theorem 1

1.a Weak Version

First, we list the assumptions of the weak version of Theorem 1:

• Γ is convex and closed,

• Loss function L is bounded by a constant C,

• X ,Y are finite,

• Risk set S = { [L(y, a)]y∈Y : a ∈ A} is closed.

Given these assumptions, Sion’s minimax theorem [1] implies that the minimax problem has a finite
answer H∗,

H∗ := sup
P∈Γ

inf
ψ∈Ψ

E[L(Y, ψ(X))] = inf
ψ∈Ψ

sup
P∈Γ

E[L(Y, ψ(X))]. (1)

Thus, there exists a sequence of decision rules (ψn)∞n=1 for which

lim
n→∞

sup
P∈Γ

E[L(Y, ψn(X))] = H∗. (2)

As we supposed, the risk set S is closed. Therefore, the randomized risk set1 Sr = { [L(y, ζ)]y∈Y :

ζ ∈ Z } defined over the space of randomized acts Z is also closed and, since L is bounded, is a
compact subset of R|Y|. Therefore, since X and Y are both finite, we can find a randomized decision
rule ψ∗ which on taking a subsequence (nk)∞k=1 satisfies

∀ x ∈ X , y ∈ Y : L(y, ψ∗(x)) = lim
k→∞

L(y, ψnk(x)). (3)

Then ψ∗ is a robust Bayes decision rule against Γ, because

sup
P∈Γ

E [L(Y, ψ∗(X))] = sup
P∈Γ

lim
k→∞

E [L(Y, ψnk(X))] ≤ lim
k→∞

sup
P∈Γ

E[L(Y, ψnk(X))] = H∗. (4)

Moreover, since Γ is assumed to be convex and closed (hence compact), H(Y |X) achieves its
supremum over Γ at some distribution P ∗. By the definition of conditional entropy, (4) implies that

EP∗ [L(Y, ψ∗(X))] ≤ sup
P∈Γ

E [L(Y, ψ∗(X))] ≤ H∗ = HP∗(Y |X), (5)

which shows that ψ∗ is a Bayes decision rule for P ∗ as well. This completes the proof.

1L(y, ζ) is a short-form for E[L(y,A)] where A ∈ A is a random action distributed according to ζ.
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1.b Strong Version

Let’s recall the assumptions of the strong version of Theorem 1:

• Γ is convex.

• For any distribution P ∈ Γ, there exists a Bayes decision rule.

• We assume continuity in Bayes decision rules over Γ, i.e., if a sequence of distributions
(Qn)∞n=1 ∈ Γ with the corresponding Bayes decision rules (ψn)∞n=1 converges to Q with a
Bayes decision rule ψ, then under any P ∈ Γ, the expected loss of ψn converges to the expected
loss of ψ.

• P ∗ maximizes the conditional entropy H(Y |X).

Note: A particular structure used in our paper is given by fixing the marginal PX across Γ. Under
this structure, the condition of the continuity in Bayes decision rules reduces to the continuity in
Bayes acts over PY ’s in ΓY |X . It can be seen that while this condition holds for the logarithmic and
quadratic loss functions, it does not hold for the 0-1 loss.

Let ψ∗ be a Bayes decision rule for P ∗. We need to show that ψ∗ is a robust Bayes decision rule
against Γ. To show this, it suffices to show that (P ∗, ψ∗) is a saddle point of the mentioned minimax
problem, i.e.,

EP∗ [L(Y, ψ∗(X))] ≤ EP∗ [L(Y, ψ(X))], (6)

and
EP∗ [L(Y, ψ∗(X))] ≥ EP [L(Y, ψ∗(X))]. (7)

Clearly, inequality (6) holds due to the definition of the Bayes decision rule. To show (7), let us fix an
arbitrary distribution P ∈ Γ. For any λ ∈ (0, 1], define Pλ = λP + (1− λ)P ∗. Notice that Pλ ∈ Γ
since Γ is convex. Let ψλ be a Bayes decision rule for Pλ. Due to the linearity of the expected loss in
the probability distribution, we have

EP [L(Y, ψλ(X))]− EP∗ [L(Y, ψλ(X))] =
EPλ [L(Y, ψλ(X))]− EP∗ [L(Y, ψλ(X))]

λ

≤ HPλ(Y |X)−HP∗(Y |X)

λ
≤ 0,

for any 0 < λ ≤ 1. Here the first inequality is due to the definition of the conditional entropy and the
last inequality holds since P ∗ maximizes the conditional entropy over Γ. Applying the assumption of
the continuity in Bayes decision rules, we have

EP [L(Y, ψ∗(X))]−EP∗ [L(Y, ψ∗(X))] = lim
λ→0

EP [L(Y, ψλ(X))]−EP∗ [L(Y, ψλ(X))] ≤ 0, (8)

which makes the proof complete.

2 Proof of Theorem 2

Let us recall the definition of the set Γ(Q):

Γ(Q) = { PX,Y : PX = QX , (9)
∀ 1 ≤ i ≤ t : ‖EP [θi(Y )X]− EQ [θi(Y )X] ‖ ≤ εi }.

Defining Ẽi , EQ [θi(Y )X] and Ci , {u : ‖u− Ẽi‖ ≤ εi}, we have

max
P∈Γ(Q)

H(Y |X) = max
P,w: ∀i: wi=EP [θi(Y )X]

EQX
[HP (Y |X = x)] +

t∑
i=1

ICi(wi) (10)

where IC is the indicator function for the set C defined as

IC(x) =

{
0 if x ∈ C,
−∞ Otherwise.

(11)
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First of all, the law of iterated expectations implies that EP [θi(Y )X] = EQX

[
XE[θi(Y )|X = x]

]
.

Furthermore, (10) is equivalent to a convex optimization problem where it is not hard to check that
the Slater condition is satisfied. Hence strong duality holds and we can write the dual problem as

min
A

sup
PY |X,w

EQX

[
HP (Y |X = x) +

t∑
i=1

E[θi(Y )|X = x]AiX

]
+

t∑
i=1

[ICi(wi)−Aiwi] , (12)

where the rows of matrix A, denoted by Ai, are the Lagrange multipliers for the constraints of
wi = EP [θi(Y )X]. Notice that the above problem decomposes across PY |X=x’s and wi’s. Hence,
the dual problem can be rewritten as

min
A

[
EQX

[
sup

PY |X=x

HP (Y |X = x) +

t∑
i=1

E[θi(Y )|X = x]AiX

]
+

t∑
i=1

sup
wi

[ICi(wi)−Aiwi]

]
(13)

Furthermore, according to the definition of Fθ, we have

Fθ(Ax) = sup
PY |X=x

H(Y |X = x) + E[θ(Y )|X = x]TAx. (14)

Moreover, the definition of the dual norm ‖ · ‖∗ implies

sup
wi

ICi(wi)−Aiwi = max
u∈Ci

−Aiu = −AiẼi + εi‖Ai‖∗. (15)

Plugging (14) and (15) in (13), the dual problem can be simplified to

min
A

EQX

[
Fθ(AX)−

t∑
i=1

AiẼi

]
+

t∑
i=1

εi‖Ai‖∗

= min
A

EQ
[
Fθ(AX)− θ(Y )TAX

]
+

t∑
i=1

εi‖Ai‖∗, (16)

which is equal to the primal problem (10) since the strong duality holds. Furthermore, note that we
can rewrite the definition given for Fθ as

Fθ(z) = max
E∈Rt

G(E) + ET z, (17)

where we define

G(E) =

{
max

P∈PY : E[θ(Y )]=E
H(Y ) if {P ∈ PY : E[θ(Y )] = E} 6= ∅

−∞ Otherwise.
(18)

Observe that Fθ is the convex conjugate of the convex −G. Therefore, applying the derivative
property of convex conjugates [2] to (14),

EP∗ [θ(Y ) |X = x ] ∈ ∂Fθ (A∗x). (19)

Here, ∂Fθ denotes the subgradient of Fθ. Assuming Fθ is differentiable at A∗x, (19) implies that

EP∗ [θ(Y ) |X = x ] = ∇Fθ (A∗x). (20)

2.a A generalization of Theorem 2

It can be seen that the above proof can be slightly generalized to prove the following generalization
of Theorem 2.
Theorem. Given a conjugate pair of convex functions g, g∗, the following duality holds

max
P : PX=QX

H(Y |X)−
t∑
i=1

g

(
EP [θi(Y )X]− EQ[θi(Y )X]

)
= (21)

min
A∈Rt×d

EQ
[
Fθ(AX)− θ(Y )TAX

]
+

t∑
i=1

g∗(Ai), (22)

where Ai denotes the ith row of A. In addition, for the optimal P ∗ and A∗

EP∗ [θ(Y ) |X = x ] = ∇Fθ (A∗x). (23)
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Corollary. Consider a pair of dual norms ‖ · ‖, ‖ · ‖∗. Then, the following duality holds

max
P : PX=QX

H(Y |X)−
t∑
i=1

1

2λi

∥∥∥∥EP [θi(Y )X]− EQ[θi(Y )X]

∥∥∥∥2

= (24)

min
A∈Rt×d

EQ
[
Fθ(AX)− θ(Y )TAX

]
+

t∑
i=1

λi
2

∥∥Ai

∥∥2

∗, (25)

where λi’s are positive real numbers and Ai denotes the ith row of A. Moreover, for the optimal P ∗
and A∗

EP∗ [θ(Y ) |X = x ] = ∇Fθ (A∗x). (26)

3 Proof of Theorem 3

First, we aim to show that

max
P∈Γ(P̃ )

E[L(Y, ψ̂n(X))] ≤ EP̃
[
Fθ(ÂnX)− θ(Y )T ÂnX

]
+

t∑
i=1

εi‖Âni‖∗ (27)

where Ân denotes the solution to the RHS of the duality equation in Theorem 2 for the empirical
distribution P̂n. Similar to the duality proven in Theorem 2, we can show that

max
P∈Γ(P̃ )

E[L(Y, ψ̂n(X))] = min
A

EP̃X

[
sup

PY |X∈PY
E
[
L(Y, ψ̂n(X))|X = x

]
+ E[θ(Y )|X = x]TAX

]

− EP̃ [θ(Y )TAX] +

t∑
i=1

εi‖Ai‖∗

≤ EP̃X

[
sup

PY |X=x∈PY
E
[
L(Y, ψ̂n(X))|X = x

]
+ E[θ(Y )|X]T ÂnX

]

− EP̃ [θ(Y )T ÂnX] + +

t∑
i=1

εi‖Âni‖∗

= EP̃
[
Fθ(ÂnX)− θ(Y )T ÂnX

]
+

t∑
i=1

εi‖Âni‖∗.

Here we first upper bound the minimum by taking the specific A = Ân. Then the equality holds
because ψ̂n is a robust Bayes decision rule against Γ(P̂n) and therefore adding the second term based
on Ânx, ψ̂n(x) results in a saddle point for the following problem

Fθ(ÂnX) = sup
P∈PY

H(Y ) + E[θ(Y )]T ÂnX

= sup
P∈PY

inf
ζ∈Z

E[L(Y, ζ)] + E[θ(Y )]T ÂnX

= sup
P∈PY

E[L(Y, ψ̂n(X))] + E[θ(Y )]T ÂnX.

Therefore, by Theorem 2 we have

max
P∈Γ(P̃ )

E[L(Y, ψ̂n(X))] − max
P∈Γ(P̃ )

E[L(Y, ψ̃(X))] ≤ (28)

EP̃
[
Fθ(ÂnX)− θ(Y )T ÂnX

]
+

t∑
i=1

εi‖Âni‖∗ − EP̃
[
Fθ(ÃX)− θ(Y )T ÃX

]
−

t∑
i=1

εi‖Ãi‖∗.

As a result, we only need to bound the uniform convergence rate in the other side of the duality. Note
that by the definition of Fθ,

∀ P ∈ PY , z ∈ Rt : Fθ(z)− EP [θ(Y )]T z ≥ HP (Y ) ≥ 0. (29)
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Hence, ∀A : Fθ(AX)− E[θ(Y )]TAX ≥ 0 and comparing the optimal solution to the RHS of the
duality equation in Theorem 2 to the case A = 0 implies that for any possible solution A∗

∀ 1 ≤ i ≤ t : εi‖A∗i ‖q ≤
t∑

j=1

εj‖A∗j‖q ≤ Fθ(0) = max
P∈PY

H(Y ) = M. (30)

Hence, since 1 ≤ q ≤ 2, we only need to bound the uniform convergence rate in a bounded space
where ∀ 1 ≤ i ≤ t : ‖Ai‖2 ≤ ‖Ai‖q ≤ M

εi
. Also, applying the derivative property of the conjugate

relationship indicates that ∂Fθ(z) is a subset of the convex hull of {E[θ(Y )] : P ∈ PY}. Therefore,
when θ(Y ) includes only one variable, for any u ∈ ∂Fθ(z) we have |u| ≤ L, and Fθ(z) − θ(Y )z
is 2L-Lipschitz in z. As a result, since ||X||2 ≤ B and |θ(Y )| ≤ L for any α1,α2 ∈ Rd such that
‖αi‖2 ≤ M

ε ,

∀x1,x2, y1, y2 : [Fθ(αT1 x1)− θ(y1)αT1 x1 ]− [Fθ(αT2 x2)− θ(y2)αT2 x2 ] ≤ 4BML

ε
(31)

Consequently, we can apply standard uniform convergence results given convexity-Lipschitzness-
boundedness [3] to show that for any δ > 0 with a probability at least 1− δ

∀α ∈ Rd, ‖α‖2 ≤
M

ε
: (32)

EP̃
[
Fθ(αTX)− θ(Y )αTX

]
− EP̂n

[
Fθ(αTX)− θ(Y )αTX

]
≤ 4BLM

ε
√
n

(
1 +

√
log(2/δ)

2

)
.

Therefore, considering α̂n and α̃ as the solution to the dual problems corresponding to the empirical
and underlying cases, for any δ > 0 with a probability at least 1− δ/2

EP̃
[
Fθ(α̂TnX)− θ(Y )α̂TnX

]
+ ε‖α̂n‖q (33)

−EP̂n
[
Fθ(α̂TnX)− θ(Y )α̂TnX

]
− ε‖α̂n‖q ≤

4BLM

ε
√
n

(
1 +

√
log(4/δ)

2

)
.

Since α̂n is minimizing the objective for Q = P̂n,

EP̂n
[
Fθ(α̂TnX)− θ(Y )α̂TnX

]
+ ε‖α̂n‖q (34)

−EP̂n
[
Fθ(α̃TX)− θ(Y )α̃TX

]
− ε‖α̃‖q ≤ 0.

Also, since α̃ does not depend on the samples, the Hoeffding’s inequality implies that with a
probability at least 1− δ/2

EP̂n
[
Fθ(α̃TX)− θ(Y )α̃TX

]
+ ε‖α̃‖q (35)

−EP̃
[
Fθ(α̃TX)− θ(Y )α̃TX

]
− ε‖α̃‖q ≤

2BML

ε

√
log(4/δ)

2n
.

Applying the union bound, combining (33), (34), (35) shows that with a probability at least 1− δ, we
have

EP̂n
[
Fθ(α̂TnX)− θ(Y )α̂TnX

]
+ ε‖α̂n‖q (36)

−EP̃
[
Fθ(α̃TX)− θ(Y )α̃TX

]
− ε‖α̃‖q ≤

4BLM

ε
√
n

(
1 +

3

2

√
log(4/δ)

2

)
.

Given (28) and (36), the proof is complete.

Note that we can improve the result in the case q = 1 by using the same proof and plugging in the
Rademacher complexity of the `1-bounded linear functions. Here, we replace the assumption that
‖X‖2 ≤ B with ‖X‖∞ ≤ B which can be much weaker for high-dimensional X’s.
Theorem. Consider a loss function L with the entropy H and suppose θ(Y ) includes only one
element. Let M = maxP∈PY H(Y ) be the maximum entropy value over PY . Also, take ‖ · ‖/‖ · ‖∗
to be the `∞/`1 pair . Given that X is a d-dimensional vector with ‖X‖∞ ≤ B, and |θ(Y )| ≤ L,
for any δ > 0 with probability at least 1− δ

max
P∈Γ(P̃ )

E[L(Y, ψ̂n(X))] − max
P∈Γ(P̃ )

E[L(Y, ψ̃(X))] ≤ 4BLM

ε
√
n

(√
2 log(2d) +

√
9 log(4/δ)

8

)
.

(37)
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4 0-1 Loss: minimax SVM

4.a Fθ derivation

Given the defined one-hot encoding θ we define z̃ = (z, 0) and represent each randomized decision
rule ζ with its corresponding loss vector L ∈ Rt+1 such that Li = L0-1(i, ζ) denotes the 0-1 loss
suffered by ζ when Y = i. It can be seen that L is a feasible loss vector if and only if ∀ i : 0 ≤ Li ≤ 1

and
∑t+1
i=1 Li = t. Then,

Fθ(z) = max
p∈Rt+1: 1Tp=1,
∀i: 0≤pi

min
L∈Rt+1: 1TL=t,
∀i: 0≤Li≤1

t+1∑
i=1

pi(z̃i + Li). (38)

Hence, Sion’s minimax theorem implies that the above minimax problem has a saddle point. Thus,

Fθ(z) = min
L∈Rt+1: 1TL=t,
∀i: 0≤Li≤1

max
1≤i≤t+1

{z̃i + Li}. (39)

Consider σ as the permutation sorting z̃ in a descending order and for simplicity let z̃(i) = z̃σ(i).
Then,

∀1 ≤ k ≤ t+ 1 : max
1≤i≤t+1

{z̃i + Li} ≥
1

k

k∑
i=1

[z̃σ(i) + Lσ(i)] ≥
k − 1 +

∑k
i=1 z̃(i)

k
, (40)

which is independent of the value of Li’s. Therefore,

max
1≤k≤t+1

k − 1 +
∑k
i=1 z̃(i)

k
≤ Fθ(z). (41)

On the other hand, if we let kmax be the largest index satisfying
∑kmax

i=1 [z̃(i)− z̃(kmax)] < 1 and define

∀ 1 ≤ j ≤ t+ 1 : L∗σ(j) =


kmax − 1 +

∑kmax

i=1 z̃(i)

kmax
− z̃(j) if σ(j) ≤ kmax

1 if σ(j) > kmax,

(42)

we can simply check that L∗ is a feasible point since
∑t+1
i=1 L

∗
i = t and L∗σ(kmax) ≤ 1 so for all i’s

L∗σ(i) ≤ 1. Also, L∗σ(1) ≥ 0 because z̃(1) − z̃(j) < 1 for any j ≤ kmax, so for all i’s L∗σ(i) ≥ 0. Then
for this L∗ we have

Fθ(z) ≤ max
1≤i≤t+1

{z̃i + L∗i } =
kmax − 1 +

∑kmax

i=1 z̃(i)

kmax
. (43)

Therefore, (41) holds with equality and achieves its maximum at k = kmax,

Fθ(z) = max
1≤k≤t+1

k − 1 +
∑k
i=1 z̃(i)

k
=
kmax − 1 +

∑kmax

i=1 z̃(i)

kmax
. (44)

Moreover, L∗ corresponds to a randomized robust Bayes act, where we select label i according to the
probability vector p∗ = 1− L∗ that is

∀ 1 ≤ j ≤ t+ 1 : p∗σ(j) =


1−

∑kmax

i=1 z̃(i)

kmax
+ z̃(j) if σ(j) ≤ kmax

0 if σ(j) > kmax.

(45)

Given Fθ we can simply derive the gradient∇Fθ to find the entropy maximizing distribution. Here if
the inequality

∑kmax

i=1 [z̃σ(i) − z̃(kmax+1) ] ≥ 1 holds strictly, which is true almost everywhere on Rt,

∀ 1 ≤ i ≤ t :
(
∇Fθ(z)

)
i

=

{
1/kmax if σ(i) ≤ kmax,

0 Otherwise.
(46)

If the inequality does not strictly hold, Fθ is not differentiable at z; however, the above vector still
lies in the subgradient ∂Fθ(z).
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4.b Sufficient Conditions for Applying Theorem 1.a

As supposed in Theorem 1.a, the space X should be finite in order to apply that result. Here, we show
for the proposed structure on Γ(Q) one can relax this condition while Theorem 1.a still holds. It is
because, as shown in the proofs of Theorems 2 and 3, we have

inf
ψ∈Ψ

max
P∈Γ(P̃ )

E[L(Y, ψ(X))] = inf
ψ∈Ψ

min
A

EP̃X

[
sup

PY |X∈PY
E
[
L(Y, ψ(X))|X = x

]
+ E[θ(Y )|X = x]TAX

]
− EP̃ [θ(Y )TAX] +

t∑
i=1

εi‖Ai‖∗

= min
A

EP̃X

[
inf

ψ(x)∈Z
sup

PY |X∈PY
E
[
L(Y, ψ(x))|X = x

]
+ E[θ(Y )|X = x]TAX

]
− EP̃ [θ(Y )TAX] +

t∑
i=1

εi‖Ai‖∗.

Therefore, given this structure the minimax problem decouples across different x’s. Hence, the
assumption of finite X is no longer needed, because as long as θ is a bounded function (which is true
for the one-hot encoding θ), the rest of assumptions suffice to guarantee the existence of a saddle
point given X = x for any x.

5 Quadratic Loss: Linear Regression

5.a Fθ derivation

Here, we find Fθ(z) = maxP∈PY H(Y ) + E[θ(Y )]T z for θ(Y ) = Y and PY = {PY : E[Y 2] ≤
ρ2}. Since for quadratic loss H(Y ) = Var(Y ) = E[Y 2]− E[Y ]2, the problem is equivalent to

Fθ(z) = max
E[Y 2]≤ρ2

E[Y 2]− E[Y ]2 + zE[Y ] (47)

As E[Y ]2 ≤ E[Y 2], it can be seen for the solution EP∗ [Y 2] = ρ2 and therefore we equivalently solve

Fθ(z) = max
|E[Y ]|≤ρ

ρ2 − E[Y ]2 + zE[Y ] =

{
ρ2 + z2/4 if |z/2| ≤ ρ
ρ|z| if |z/2| > ρ.

(48)

5.b Applying Theorem 2 while restricting PY

For the quadratic loss, we first change PY = {PY : E[Y 2] ≤ ρ2} and then apply Theorem 2.
Note that by modifying Fθ based on the new PY we also solve a modified version of the maximum
conditional entropy problem

max
P : PX,Y ∈Γ(Q)
∀x: PY |X=x∈PY

H(Y |X) (49)

In the case PY = {PY : E[Y 2] ≤ ρ2} Theorem 2 remains valid given the above modification in the
maximum conditional entropy problem. This is because the inequality constraint E[Y 2|X = x] ≤ ρ2

is linear in PY |X=x, and thus the problem is still convex and strong duality holds as well. Also,
when we move the constraints of wi = EP [θi(Y )X] to the objective function, we get a similar dual
problem

min
A

sup
PY |X,w:

∀x: PY |X=x∈PY

EQX

[
HP (Y |X = x) +

t∑
i=1

E[θi(Y )|X = x]AiX

]
+

t∑
i=1

[ICi(wi)−Aiwi]

(50)
Following the next steps of the proof of Theorem 2, we complete the proof assuming the modification
on Fθ and the maximum conditional entropy problem.

7



5.c Derivation of group lasso

To derive the group lasso problem, we slightly change the structure of Γ(Q). First assume the subsets
I1, . . . , Ik are disjoint. Consider a set of distributions ΓGL(Q) with the following structure

ΓGL(Q) = { PX,Y : PX = QX , (51)

∀ 1 ≤ j ≤ k : ‖EP
[
YXIj

]
− EQ

[
YXIj

]
‖ ≤ εj }.

Now we prove a modified version of Theorem 2,

max
P∈ΓGL(Q)

H(Y |X) = min
α

EQ
[
Fθ(αTX)− YαTX

]
+

k∑
j=1

εj‖αIj‖∗. (52)

To prove this identity, we can use the same proof provided for Theorem 2. We only need to redefine
Ẽj = EQ

[
YXIj

]
and Cj = {u : ‖u− Ẽj‖ ≤ εj} for 1 ≤ j ≤ k. Notice that here t = 1. Using the

same technique in that proof, the dual problem can be formulated as

min
α

sup
PY |X,w

EQX

[
HP (Y |X = x) + E[Y |X = x]αTX

]
+

k∑
j=1

[
ICj (wIj )−αIjwIj

]
. (53)

Similarly, we can decouple and simplify the above problem to derive the RHS of (52). Then, if we let
‖ · ‖ be the `q-norm, we will get the group lasso problem with the `1,p regularizer.

If the subsets are not disjoint, we can create new copies of each feature corresponding to a repeated
index, such that there will be no repeated indices after adding the new features. Note that since
PX has been fixed over ΓGL(Q) adding the extra copies of original features does not change the
maximum-conditional entropy problem. Hence, we can use the result proven for the disjoint case and
derive the overlapping group lasso problem.
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