Supplementary Material: A Minimax Approach to Supervised Learning

Farzan Farnia, David Tse Department of Electrical Engineering Stanford University {farnia,dntse}@stanford.edu

1 Proof of Theorem 1

1.a Weak Version

First, we list the assumptions of the weak version of Theorem 1:

- Γ is convex and closed,
- Loss function L is bounded by a constant C ,
- \mathcal{X}, \mathcal{Y} are finite,
- Risk set $S = \{ [L(y, a)]_{y \in \mathcal{Y}} : a \in \mathcal{A} \}$ is closed.

Given these assumptions, Sion's minimax theorem [\[1\]](#page-7-0) implies that the minimax problem has a finite answer H^* ,

$$
H^* := \sup_{P \in \Gamma} \inf_{\psi \in \Psi} \mathbb{E}[L(Y, \psi(X))] = \inf_{\psi \in \Psi} \sup_{P \in \Gamma} \mathbb{E}[L(Y, \psi(X))]. \tag{1}
$$

Thus, there exists a sequence of decision rules $(\psi_n)_{n=1}^{\infty}$ for which

$$
\lim_{n \to \infty} \sup_{P \in \Gamma} \mathbb{E}[L(Y, \psi_n(X))] = H^*.
$$
\n(2)

As we supposed, the risk set S is closed. Therefore, the randomized risk set^{[1](#page-0-0)} $S_r = \{ [L(y, \zeta)]_{y \in \mathcal{Y}} :$ $\zeta \in \mathcal{Z}$ } defined over the space of randomized acts $\mathcal Z$ is also closed and, since L is bounded, is a compact subset of $\mathbb{R}^{|\mathcal{Y}|}$. Therefore, since X and Y are both finite, we can find a randomized decision rule ψ^* which on taking a subsequence $(n_k)_{k=1}^{\infty}$ satisfies

$$
\forall x \in \mathcal{X}, y \in \mathcal{Y}: L(y, \psi^*(x)) = \lim_{k \to \infty} L(y, \psi_{n_k}(x)).
$$
 (3)

Then ψ^* is a robust Bayes decision rule against Γ , because

$$
\sup_{P \in \Gamma} \mathbb{E}\left[L(Y, \psi^*(X))\right] = \sup_{P \in \Gamma} \lim_{k \to \infty} \mathbb{E}\left[L(Y, \psi_{n_k}(X))\right] \le \lim_{k \to \infty} \sup_{P \in \Gamma} \mathbb{E}[L(Y, \psi_{n_k}(X))] = H^*.
$$
 (4)

Moreover, since Γ is assumed to be convex and closed (hence compact), $H(Y|X)$ achieves its supremum over Γ at some distribution P^* . By the definition of conditional entropy, [\(4\)](#page-0-1) implies that

$$
E_{P^*}[L(Y, \psi^*(X))] \le \sup_{P \in \Gamma} \mathbb{E}\left[L(Y, \psi^*(X))\right] \le H^* = H_{P^*}(Y|X),\tag{5}
$$

which shows that ψ^* is a Bayes decision rule for P^* as well. This completes the proof.

 ${}^{1}L(y,\zeta)$ is a short-form for $E[L(y,A)]$ where $A \in \mathcal{A}$ is a random action distributed according to ζ .

³⁰th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

1.b Strong Version

Let's recall the assumptions of the strong version of Theorem 1:

- \bullet Γ is convex.
- For any distribution $P \in \Gamma$, there exists a Bayes decision rule.
- We assume continuity in Bayes decision rules over Γ , i.e., if a sequence of distributions $(Q_n)_{n=1}^{\infty} \in \Gamma$ with the corresponding Bayes decision rules $(\psi_n)_{n=1}^{\infty}$ converges to Q with a Bayes decision rule ψ , then under any $P \in \Gamma$, the expected loss of ψ_n converges to the expected loss of ψ .
- P^* maximizes the conditional entropy $H(Y|X)$.

Note: A particular structure used in our paper is given by fixing the marginal P_X across Γ. Under this structure, the condition of the continuity in Bayes decision rules reduces to the continuity in Bayes acts over P_Y 's in $\Gamma_{Y|X}$. It can be seen that while this condition holds for the logarithmic and quadratic loss functions, it does not hold for the 0-1 loss.

Let ψ^* be a Bayes decision rule for P^* . We need to show that ψ^* is a robust Bayes decision rule against Γ . To show this, it suffices to show that (P^*, ψ^*) is a saddle point of the mentioned minimax problem, i.e.,

$$
\mathbb{E}_{P^*}[L(Y,\psi^*(X))] \le \mathbb{E}_{P^*}[L(Y,\psi(X))],\tag{6}
$$

and

$$
\mathbb{E}_{P^*}[L(Y, \psi^*(X))] \ge \mathbb{E}_P[L(Y, \psi^*(X))].\tag{7}
$$

Clearly, inequality [\(6\)](#page-1-0) holds due to the definition of the Bayes decision rule. To show [\(7\)](#page-1-1), let us fix an arbitrary distribution $P \in \Gamma$. For any $\lambda \in (0,1]$, define $P_{\lambda} = \lambda P + (1 - \lambda)P^*$. Notice that $P_{\lambda} \in \Gamma$ since Γ is convex. Let ψ_{λ} be a Bayes decision rule for P_{λ} . Due to the linearity of the expected loss in the probability distribution, we have

$$
\mathbb{E}_{P}[L(Y,\psi_{\lambda}(X))] - \mathbb{E}_{P^*}[L(Y,\psi_{\lambda}(X))] = \frac{\mathbb{E}_{P_{\lambda}}[L(Y,\psi_{\lambda}(X))] - \mathbb{E}_{P^*}[L(Y,\psi_{\lambda}(X))]}{\lambda} \leq \frac{H_{P_{\lambda}}(Y|X) - H_{P^*}(Y|X)}{\lambda} \leq 0,
$$

for any $0 < \lambda < 1$. Here the first inequality is due to the definition of the conditional entropy and the last inequality holds since P^* maximizes the conditional entropy over Γ . Applying the assumption of the continuity in Bayes decision rules, we have

$$
\mathbb{E}_{P}[L(Y,\psi^{*}(X))] - \mathbb{E}_{P^{*}}[L(Y,\psi^{*}(X))] = \lim_{\lambda \to 0} \mathbb{E}_{P}[L(Y,\psi_{\lambda}(X))] - \mathbb{E}_{P^{*}}[L(Y,\psi_{\lambda}(X))] \le 0, (8)
$$

which makes the proof complete.

2 Proof of Theorem 2

Let us recall the definition of the set $\Gamma(Q)$:

$$
\Gamma(Q) = \{ P_{\mathbf{X}, Y} : P_{\mathbf{X}} = Q_{\mathbf{X}}, \forall 1 \le i \le t : \| \mathbb{E}_P [\theta_i(Y) \mathbf{X}] - \mathbb{E}_Q [\theta_i(Y) \mathbf{X}] \| \le \epsilon_i \}.
$$
\n(9)

Defining $\tilde{\mathbf{E}}_i \triangleq \mathbb{E}_Q \left[\theta_i(Y) \mathbf{X} \right]$ and $C_i \triangleq \{ \mathbf{u} : ||\mathbf{u} - \tilde{\mathbf{E}}_i|| \leq \epsilon_i \}$, we have

$$
\max_{P \in \Gamma(Q)} H(Y|\mathbf{X}) = \max_{P, \mathbf{w}: \forall i: \mathbf{w}_i = \mathbb{E}_P[\theta_i(Y)\mathbf{X}]} \mathbb{E}_{Q_{\mathbf{X}}}[H_P(Y|\mathbf{X}=\mathbf{x})] + \sum_{i=1}^t I_{C_i}(\mathbf{w}_i)
$$
(10)

where I_C is the indicator function for the set C defined as

$$
I_C(x) = \begin{cases} 0 & \text{if } x \in C, \\ -\infty & \text{Otherwise.} \end{cases}
$$
 (11)

First of all, the law of iterated expectations implies that $\mathbb{E}_P\left[\theta_i(Y) \mathbf{X}\right] = \mathbb{E}_{Q_{\mathbf{X}}}\bigg[\, \mathbf{X}\, \mathbb{E}[\theta_i(Y)|\mathbf{X}=\mathbf{x}]\, \bigg].$ Furthermore, [\(10\)](#page-1-2) is equivalent to a convex optimization problem where it is not hard to check that

the Slater condition is satisfied. Hence strong duality holds and we can write the dual problem as

$$
\min_{\mathbf{A}} \sup_{P_{Y|\mathbf{X}}, \mathbf{w}} \mathbb{E}_{Q_{\mathbf{X}}} \left[H_P(Y|\mathbf{X}=\mathbf{x}) + \sum_{i=1}^t \mathbb{E}[\theta_i(Y)|\mathbf{X}=\mathbf{x}]\mathbf{A}_i\mathbf{X} \right] + \sum_{i=1}^t \left[I_{C_i}(\mathbf{w}_i) - \mathbf{A}_i\mathbf{w}_i \right],\tag{12}
$$

where the rows of matrix A, denoted by A_i , are the Lagrange multipliers for the constraints of $\mathbf{w}_i = \mathbb{E}_P [\theta_i(Y) \mathbf{X}]$. Notice that the above problem decomposes across $P_{Y | \mathbf{X} = \mathbf{x}}$'s and \mathbf{w}_i 's. Hence, the dual problem can be rewritten as

$$
\min_{\mathbf{A}} \left[\mathbb{E}_{Q_{\mathbf{X}}} \left[\sup_{P_{Y|{\mathbf{X}}=\mathbf{x}}} H_P(Y|{\mathbf{X}}=\mathbf{x}) + \sum_{i=1}^t \mathbb{E}[\theta_i(Y)|{\mathbf{X}}=\mathbf{x}] \mathbf{A}_i {\mathbf{X}} \right] + \sum_{i=1}^t \sup_{\mathbf{w}_i} \left[I_{C_i}(\mathbf{w}_i) - \mathbf{A}_i \mathbf{w}_i \right] \right] \tag{13}
$$

Furthermore, according to the definition of F_{θ} , we have

$$
F_{\theta}(\mathbf{A}\mathbf{x}) = \sup_{P_{Y|\mathbf{X}=\mathbf{x}}} H(Y|\mathbf{X}=\mathbf{x}) + \mathbb{E}[\theta(Y)|\mathbf{X}=\mathbf{x}]^T \mathbf{A}\mathbf{x}.
$$
 (14)

Moreover, the definition of the dual norm $\|\cdot\|_*$ implies

$$
\sup_{\mathbf{w}_i} I_{C_i}(\mathbf{w}_i) - \mathbf{A}_i \mathbf{w}_i = \max_{\mathbf{u} \in C_i} -\mathbf{A}_i \mathbf{u} = -\mathbf{A}_i \tilde{\mathbf{E}}_i + \epsilon_i ||\mathbf{A}_i||_*.
$$
 (15)

Plugging [\(14\)](#page-2-0) and [\(15\)](#page-2-1) in [\(13\)](#page-2-2), the dual problem can be simplified to

$$
\min_{\mathbf{A}} \mathbb{E}_{Q_{\mathbf{X}}} \left[F_{\theta}(\mathbf{A}\mathbf{X}) - \sum_{i=1}^{t} \mathbf{A}_{i} \tilde{\mathbf{E}}_{i} \right] + \sum_{i=1}^{t} \epsilon_{i} \|\mathbf{A}_{i}\|_{*}
$$
\n
$$
= \min_{\mathbf{A}} \mathbb{E}_{Q} \left[F_{\theta}(\mathbf{A}\mathbf{X}) - \theta(Y)^{T} \mathbf{A}\mathbf{X} \right] + \sum_{i=1}^{t} \epsilon_{i} \|\mathbf{A}_{i}\|_{*}, \tag{16}
$$

which is equal to the primal problem [\(10\)](#page-1-2) since the strong duality holds. Furthermore, note that we can rewrite the definition given for F_{θ} as

$$
F_{\theta}(\mathbf{z}) = \max_{\mathbf{E} \in \mathbb{R}^t} G(\mathbf{E}) + \mathbf{E}^T \mathbf{z},
$$
 (17)

where we define

$$
G(\mathbf{E}) = \begin{cases} \max_{P \in \mathcal{P}_{\mathcal{Y}} : \mathbb{E}[\theta(Y)] = \mathbf{E}} H(Y) & \text{if } \{P \in \mathcal{P}_{\mathcal{Y}} : \mathbb{E}[\theta(Y)] = \mathbf{E}\} \neq \emptyset \\ -\infty & \text{Otherwise.} \end{cases}
$$
(18)

Observe that F_{θ} is the convex conjugate of the convex $-G$. Therefore, applying the derivative property of convex conjugates [\[2\]](#page-7-1) to [\(14\)](#page-2-0),

$$
\mathbb{E}_{P^*}[\boldsymbol{\theta}(Y) | \mathbf{X} = \mathbf{x}] \in \partial F_{\boldsymbol{\theta}}(\mathbf{A}^* \mathbf{x}).
$$
\n(19)

Here, ∂F_{θ} denotes the subgradient of F_{θ} . Assuming F_{θ} is differentiable at \mathbf{A}^* x, [\(19\)](#page-2-3) implies that

$$
\mathbb{E}_{P^*}[\theta(Y) | \mathbf{X} = \mathbf{x}] = \nabla F_{\theta}(\mathbf{A}^* \mathbf{x}).
$$
\n(20)

2.a A generalization of Theorem 2

It can be seen that the above proof can be slightly generalized to prove the following generalization of Theorem 2.

Theorem. *Given a conjugate pair of convex functions* g, g[∗] *, the following duality holds*

$$
\max_{P:\;P_X=Q_X} H(Y|\mathbf{X}) - \sum_{i=1}^t g\bigg(\mathbb{E}_P[\theta_i(Y)\mathbf{X}] - \mathbb{E}_Q[\theta_i(Y)\mathbf{X}]\bigg) = \tag{21}
$$

$$
\min_{\mathbf{A}\in\mathbb{R}^{t\times d}}\mathbb{E}_{Q}\left[F_{\theta}(\mathbf{A}\mathbf{X})-\theta(Y)^{T}\mathbf{A}\mathbf{X}\right]+\sum_{i=1}^{t}g^{*}(\mathbf{A}_{i}),
$$
\n(22)

where A_i denotes the ith row of A . In addition, for the optimal P^* and A^*

$$
\mathbb{E}_{P^*}[\boldsymbol{\theta}(Y) | \mathbf{X} = \mathbf{x}] = \nabla F_{\boldsymbol{\theta}}(\mathbf{A}^* \mathbf{x}).
$$
 (23)

Corollary. *Consider a pair of dual norms* $\|\cdot\|$, $\|\cdot\|_*$ *. Then, the following duality holds*

$$
\max_{P:\;P_X=Q_X} H(Y|\mathbf{X}) - \sum_{i=1}^t \frac{1}{2\lambda_i} \left\| \mathbb{E}_P[\theta_i(Y)\mathbf{X}] - \mathbb{E}_Q[\theta_i(Y)\mathbf{X}] \right\|^2 = \tag{24}
$$

$$
\min_{\mathbf{A}\in\mathbb{R}^{t\times d}}\mathbb{E}_{Q}\left[F_{\theta}(\mathbf{A}\mathbf{X})-\theta(Y)^{T}\mathbf{A}\mathbf{X}\right]+\sum_{i=1}^{t}\frac{\lambda_{i}}{2}\left\|\mathbf{A}_{i}\right\|_{*}^{2},\tag{25}
$$

where λ_i 's are positive real numbers and \mathbf{A}_i denotes the ith row of \mathbf{A} *. Moreover, for the optimal* P^* *and* A[∗]

$$
\mathbb{E}_{P^*}[\boldsymbol{\theta}(Y) | \mathbf{X} = \mathbf{x}] = \nabla F_{\boldsymbol{\theta}}(\mathbf{A}^* \mathbf{x}).
$$
 (26)

3 Proof of Theorem 3

First, we aim to show that

$$
\max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X}))] \leq \mathbb{E}_{\tilde{P}}\left[F_{\theta}(\hat{\mathbf{A}}_n\mathbf{X}) - \theta(Y)^T\hat{\mathbf{A}}_n\mathbf{X}\right] + \sum_{i=1}^t \epsilon_i \|\hat{\mathbf{A}}_{n_i}\|_*\tag{27}
$$

where \hat{A}_n denotes the solution to the RHS of the duality equation in Theorem 2 for the empirical distribution \hat{P}_n . Similar to the duality proven in Theorem 2, we can show that

 \mathbf{r}

$$
\max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X}))] = \min_{\mathbf{A}} \mathbb{E}_{\tilde{P}_X} \bigg[\sup_{P_{Y|X} \in \mathcal{P}_{\mathcal{Y}}} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X})) | \mathbf{X} = \mathbf{x}] + \mathbb{E}[\boldsymbol{\theta}(Y) | \mathbf{X} = \mathbf{x}]^T \mathbf{A} \mathbf{X} \bigg]
$$

\n
$$
- \mathbb{E}_{\tilde{P}}[\boldsymbol{\theta}(Y)^T \mathbf{A} \mathbf{X}] + \sum_{i=1}^t \epsilon_i ||\mathbf{A}_i||_*
$$

\n
$$
\leq \mathbb{E}_{\tilde{P}_X} \bigg[\sup_{P_{Y|X=x} \in \mathcal{P}_{\mathcal{Y}}} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X})) | \mathbf{X} = \mathbf{x}] + \mathbb{E}[\boldsymbol{\theta}(Y) | \mathbf{X}]^T \hat{\mathbf{A}}_n \mathbf{X} \bigg]
$$

\n
$$
- \mathbb{E}_{\tilde{P}}[\boldsymbol{\theta}(Y)^T \hat{\mathbf{A}}_n \mathbf{X}] + \sum_{i=1}^t \epsilon_i ||\hat{\mathbf{A}}_{n_i}||_*
$$

\n
$$
= \mathbb{E}_{\tilde{P}} \bigg[F_{\boldsymbol{\theta}}(\hat{\mathbf{A}}_n \mathbf{X}) - \boldsymbol{\theta}(Y)^T \hat{\mathbf{A}}_n \mathbf{X} \bigg] + \sum_{i=1}^t \epsilon_i ||\hat{\mathbf{A}}_{n_i}||_*.
$$

Here we first upper bound the minimum by taking the specific $A = \hat{A}_n$. Then the equality holds because $\hat{\psi}_n$ is a robust Bayes decision rule against $\Gamma(\hat{P}_n)$ and therefore adding the second term based on $\hat{\mathbf{A}}_n\mathbf{x}$, $\hat{\psi}_n(\mathbf{x})$ results in a saddle point for the following problem

$$
F_{\theta}(\hat{\mathbf{A}}_{n}\mathbf{X}) = \sup_{P \in \mathcal{P}_{\mathcal{Y}}} H(Y) + \mathbb{E}[\theta(Y)]^{T} \hat{\mathbf{A}}_{n}\mathbf{X}
$$

=
$$
\sup_{P \in \mathcal{P}_{\mathcal{Y}}} \inf_{\zeta \in \mathcal{Z}} \mathbb{E}[L(Y,\zeta)] + \mathbb{E}[\theta(Y)]^{T} \hat{\mathbf{A}}_{n}\mathbf{X}
$$

=
$$
\sup_{P \in \mathcal{P}_{\mathcal{Y}}} \mathbb{E}[L(Y,\hat{\psi}_{n}(\mathbf{X}))] + \mathbb{E}[\theta(Y)]^{T} \hat{\mathbf{A}}_{n}\mathbf{X}.
$$

Therefore, by Theorem 2 we have

$$
\max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X}))] - \max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \tilde{\psi}(\mathbf{X}))] \leq
$$
\n
$$
\mathbb{E}_{\tilde{P}}[F_{\theta}(\hat{\mathbf{A}}_n \mathbf{X}) - \theta(Y)^T \hat{\mathbf{A}}_n \mathbf{X}] + \sum_{i=1}^t \epsilon_i ||\hat{\mathbf{A}}_{n_i}||_* - \mathbb{E}_{\tilde{P}}[F_{\theta}(\tilde{\mathbf{A}} \mathbf{X}) - \theta(Y)^T \tilde{\mathbf{A}} \mathbf{X}] - \sum_{i=1}^t \epsilon_i ||\tilde{\mathbf{A}}_i||_*.
$$
\n(28)

As a result, we only need to bound the uniform convergence rate in the other side of the duality. Note that by the definition of F_{θ} ,

$$
\forall P \in \mathcal{P}_{\mathcal{Y}}, \mathbf{z} \in \mathbb{R}^t : \quad F_{\theta}(\mathbf{z}) - \mathbb{E}_P[\theta(Y)]^T \mathbf{z} \ge H_P(Y) \ge 0. \tag{29}
$$

Hence, \forall **A** : F_{θ} (**AX**) – $\mathbb{E}[\theta(Y)]^T A X \ge 0$ and comparing the optimal solution to the RHS of the duality equation in Theorem 2 to the case $A = 0$ implies that for any possible solution A^*

$$
\forall 1 \leq i \leq t: \quad \epsilon_i \| \mathbf{A}_i^* \|_q \leq \sum_{j=1}^t \epsilon_j \| \mathbf{A}_j^* \|_q \leq F_{\theta}(\mathbf{0}) = \max_{P \in \mathcal{P}_{\mathcal{Y}}} H(Y) = M. \tag{30}
$$

Hence, since $1 \le q \le 2$, we only need to bound the uniform convergence rate in a bounded space where $\forall 1 \leq i \leq t : ||A_i||_2 \leq ||A_i||_q \leq \frac{M}{\epsilon_i}$. Also, applying the derivative property of the conjugate relationship indicates that $\partial F_{\theta}(\mathbf{z})$ is a subset of the convex hull of $\{\mathbb{E}[\theta(Y)] : P \in \mathcal{P}_{\mathcal{Y}}\}$. Therefore, when $\theta(Y)$ includes only one variable, for any $u \in \partial F_{\theta}(z)$ we have $|u| \leq L$, and $F_{\theta}(z) - \theta(Y)z$ is 2L-Lipschitz in z. As a result, since $||\mathbf{X}||_2 \leq B$ and $|\theta(Y)| \leq L$ for any $\alpha_1, \alpha_2 \in \mathbb{R}^d$ such that $\|\boldsymbol{\alpha}_i\|_2 \leq \frac{M}{\epsilon},$

$$
\forall \mathbf{x}_1, \mathbf{x}_2, y_1, y_2: [F_{\theta}(\boldsymbol{\alpha}_1^T \mathbf{x}_1) - \theta(y_1)\boldsymbol{\alpha}_1^T \mathbf{x}_1] - [F_{\theta}(\boldsymbol{\alpha}_2^T \mathbf{x}_2) - \theta(y_2)\boldsymbol{\alpha}_2^T \mathbf{x}_2] \le \frac{4BML}{\epsilon}
$$
(31)

Consequently, we can apply standard uniform convergence results given convexity-Lipschitzness-boundedness [\[3\]](#page-7-2) to show that for any $\delta > 0$ with a probability at least $1 - \delta$

$$
\forall \alpha \in \mathbb{R}^d, \|\alpha\|_2 \le \frac{M}{\epsilon}:
$$
\n
$$
\mathbb{E}_{\tilde{P}}\left[F_{\theta}(\alpha^T \mathbf{X}) - \theta(Y)\alpha^T \mathbf{X}\right] - \mathbb{E}_{\hat{P}_n}\left[F_{\theta}(\alpha^T \mathbf{X}) - \theta(Y)\alpha^T \mathbf{X}\right] \le \frac{4BLM}{\epsilon \sqrt{n}} \left(1 + \sqrt{\frac{\log(2/\delta)}{2}}\right).
$$
\n(32)

Therefore, considering $\hat{\alpha}_n$ and $\tilde{\alpha}$ as the solution to the dual problems corresponding to the empirical and underlying cases, for any $\delta > 0$ with a probability at least $1 - \delta/2$

$$
\mathbb{E}_{\tilde{P}}\left[F_{\theta}(\hat{\alpha}_n^T \mathbf{X}) - \theta(Y)\hat{\alpha}_n^T \mathbf{X}\right] + \epsilon \|\hat{\alpha}_n\|_q
$$
\n
$$
-\mathbb{E}_{\hat{P}_n}\left[F_{\theta}(\hat{\alpha}_n^T \mathbf{X}) - \theta(Y)\hat{\alpha}_n^T \mathbf{X}\right] - \epsilon \|\hat{\alpha}_n\|_q \le \frac{4BLM}{\epsilon \sqrt{n}} \left(1 + \sqrt{\frac{\log(4/\delta)}{2}}\right).
$$
\n(33)

Since $\hat{\alpha}_n$ is minimizing the objective for $Q = \hat{P}_n$,

$$
\mathbb{E}_{\hat{P}_n} \left[F_{\theta}(\hat{\alpha}_n^T \mathbf{X}) - \theta(Y) \hat{\alpha}_n^T \mathbf{X} \right] + \epsilon ||\hat{\alpha}_n||_q
$$
\n
$$
- \mathbb{E}_{\hat{P}_n} \left[F_{\theta}(\tilde{\alpha}^T \mathbf{X}) - \theta(Y) \tilde{\alpha}^T \mathbf{X} \right] - \epsilon ||\tilde{\alpha}||_q \le 0.
$$
\n(34)

Also, since $\tilde{\alpha}$ does not depend on the samples, the Hoeffding's inequality implies that with a probability at least $1 - \delta/2$

$$
\mathbb{E}_{\hat{P}_n} \left[F_{\theta}(\tilde{\boldsymbol{\alpha}}^T \mathbf{X}) - \theta(Y) \tilde{\boldsymbol{\alpha}}^T \mathbf{X} \right] + \epsilon \| \tilde{\boldsymbol{\alpha}} \|_q
$$
\n
$$
- \mathbb{E}_{\tilde{P}} \left[F_{\theta}(\tilde{\boldsymbol{\alpha}}^T \mathbf{X}) - \theta(Y) \tilde{\boldsymbol{\alpha}}^T \mathbf{X} \right] - \epsilon \| \tilde{\boldsymbol{\alpha}} \|_q \le \frac{2BML}{\epsilon} \sqrt{\frac{\log(4/\delta)}{2n}}.
$$
\n(35)

Applying the union bound, combining [\(33\)](#page-4-0), [\(34\)](#page-4-1), [\(35\)](#page-4-2) shows that with a probability at least $1 - \delta$, we have

$$
\mathbb{E}_{\hat{P}_n} \left[F_{\theta}(\hat{\alpha}_n^T \mathbf{X}) - \theta(Y) \hat{\alpha}_n^T \mathbf{X} \right] + \epsilon ||\hat{\alpha}_n||_q
$$
\n
$$
- \mathbb{E}_{\tilde{P}} \left[F_{\theta}(\tilde{\alpha}^T \mathbf{X}) - \theta(Y) \tilde{\alpha}^T \mathbf{X} \right] - \epsilon ||\tilde{\alpha}||_q \le \frac{4BLM}{\epsilon \sqrt{n}} \left(1 + \frac{3}{2} \sqrt{\frac{\log(4/\delta)}{2}} \right).
$$
\n(36)

Given (28) and (36) , the proof is complete.

Note that we can improve the result in the case $q = 1$ by using the same proof and plugging in the Rademacher complexity of the ℓ_1 -bounded linear functions. Here, we replace the assumption that $\|\mathbf{X}\|_2 \leq B$ with $\|\mathbf{X}\|_{\infty} \leq B$ which can be much weaker for high-dimensional X's.

Theorem. *Consider a loss function L* with the entropy *H* and suppose $\theta(Y)$ *includes only one element. Let* $M = \max_{P \in \mathcal{P}_{\mathcal{Y}}} H(Y)$ *be the maximum entropy value over* $\mathcal{P}_{\mathcal{Y}}$ *. Also, take* $\| \cdot \|/\| \cdot \|_*$ *to be the* ℓ_{∞}/ℓ_1 *pair . Given that* \bf{X} *is a d-dimensional vector with* $\|\bf{X}\|_{\infty} \leq B$ *, and* $|\theta(Y)| \leq L$ *, for any* $\delta > 0$ *with probability at least* $1 - \delta$

$$
\max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \hat{\psi}_n(\mathbf{X}))] - \max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \tilde{\psi}(\mathbf{X}))] \le \frac{4BLM}{\epsilon \sqrt{n}} \left(\sqrt{2\log(2d)} + \sqrt{\frac{9\log(4/\delta)}{8}}\right). \tag{37}
$$

4 0-1 Loss: minimax SVM

4.a F_{θ} derivation

Given the defined one-hot encoding θ we define $\tilde{\mathbf{z}} = (\mathbf{z}, 0)$ and represent each randomized decision rule ζ with its corresponding loss vector $\mathbf{L} \in \mathbb{R}^{t+1}$ such that $L_i = L_{0-1}(i, \zeta)$ denotes the 0-1 loss suffered by ζ when $Y=i.$ It can be seen that ${\bf L}$ is a feasible loss vector if and only if $\forall\,i:0\le L_i\le 1$ and $\sum_{i=1}^{t+1} L_i = t$. Then,

$$
F_{\theta}(\mathbf{z}) = \max_{\substack{\mathbf{p} \in \mathbb{R}^{t+1}: \mathbf{1}^T \mathbf{p} = 1, \ \mathbf{L} \in \mathbb{R}^{t+1}: \mathbf{1}^T \mathbf{L} = t, \\ \forall i: 0 \le p_i}} \sum_{\substack{\mathbf{v} \in \mathbb{R}^{t+1}: \mathbf{1}^T \mathbf{L} = t, \\ \forall i: 0 \le L_i \le 1}} \sum_{i=1}^{t+1} p_i(\tilde{z}_i + L_i). \tag{38}
$$

Hence, Sion's minimax theorem implies that the above minimax problem has a saddle point. Thus,

$$
F_{\theta}(\mathbf{z}) = \min_{\substack{\mathbf{L} \in \mathbb{R}^{t+1}: \mathbf{1}^T \mathbf{L} = t, \ 1 \le i \le t+1 \\ \forall i : 0 \le L_i \le 1}} \max_{1 \le i \le t+1} \{ \tilde{z}_i + L_i \}. \tag{39}
$$

Consider σ as the permutation sorting \tilde{z} in a descending order and for simplicity let $\tilde{z}_{(i)} = \tilde{z}_{\sigma(i)}$. Then,

$$
\forall 1 \le k \le t+1: \quad \max_{1 \le i \le t+1} \{ \tilde{z}_i + L_i \} \ge \frac{1}{k} \sum_{i=1}^k [\tilde{z}_{\sigma(i)} + L_{\sigma(i)}] \ge \frac{k-1 + \sum_{i=1}^k \tilde{z}_{(i)}}{k},\tag{40}
$$

which is independent of the value of L_i 's. Therefore,

$$
\max_{1 \le k \le t+1} \frac{k-1 + \sum_{i=1}^k \tilde{z}_{(i)}}{k} \le F_{\theta}(\mathbf{z}).\tag{41}
$$

On the other hand, if we let k_{\max} be the largest index satisfying $\sum_{i=1}^{k_{\max}} [\tilde{z}_{(i)} - \tilde{z}_{(k_{\max})}] < 1$ and define

$$
\forall 1 \le j \le t+1: \quad L^*_{\sigma(j)} = \begin{cases} \frac{k_{\max} - 1 + \sum_{i=1}^{k_{\max}} \tilde{z}_{(i)}}{k_{\max}} - \tilde{z}_{(j)} & \text{if } \sigma(j) \le k_{\max} \\ 1 & \text{if } \sigma(j) > k_{\max}, \end{cases} \tag{42}
$$

we can simply check that \mathbf{L}^* is a feasible point since $\sum_{i=1}^{t+1} L_i^* = t$ and $L_{\sigma(k_{\text{max}})}^* \leq 1$ so for all *i*'s $L^*_{\sigma(i)} \leq 1$. Also, $L^*_{\sigma(1)} \geq 0$ because $\tilde{z}_{(1)} - \tilde{z}_{(j)} < 1$ for any $j \leq k_{\text{max}}$, so for all i 's $L^*_{\sigma(i)} \geq 0$. Then for this L^* we have

$$
F_{\theta}(\mathbf{z}) \le \max_{1 \le i \le t+1} \{ \tilde{z}_i + L_i^* \} = \frac{k_{\text{max}} - 1 + \sum_{i=1}^{k_{\text{max}}} \tilde{z}_{(i)}}{k_{\text{max}}}.
$$
(43)

Therefore, [\(41\)](#page-5-0) holds with equality and achieves its maximum at $k = k_{\text{max}}$,

$$
F_{\theta}(\mathbf{z}) = \max_{1 \le k \le t+1} \frac{k-1+\sum_{i=1}^{k} \tilde{z}_{(i)}}{k} = \frac{k_{\max} - 1 + \sum_{i=1}^{k_{\max}} \tilde{z}_{(i)}}{k_{\max}}.
$$
(44)

Moreover, L^* corresponds to a randomized robust Bayes act, where we select label i according to the probability vector $\overline{p^*} = 1 - \overline{L^*}$ that is

$$
\forall 1 \le j \le t+1: \quad p^*_{\sigma(j)} = \begin{cases} \frac{1 - \sum_{i=1}^{k_{\text{max}}} \tilde{z}_{(i)}}{k_{\text{max}}} + \tilde{z}_{(j)} & \text{if } \sigma(j) \le k_{\text{max}}\\ 0 & \text{if } \sigma(j) > k_{\text{max}}. \end{cases} \tag{45}
$$

Given F_{θ} we can simply derive the gradient ∇F_{θ} to find the entropy maximizing distribution. Here if the inequality $\sum_{i=1}^{k_{\text{max}}} [\tilde{\mathbf{z}}_{\sigma(i)} - \tilde{\mathbf{z}}_{(k_{\text{max}}+1)}] \ge 1$ holds strictly, which is true almost everywhere on \mathbb{R}^t ,

$$
\forall 1 \le i \le t: \left(\nabla F_{\theta}(\mathbf{z})\right)_i = \begin{cases} 1/k_{\text{max}} & \text{if } \sigma(i) \le k_{\text{max}}, \\ 0 & \text{Otherwise.} \end{cases} \tag{46}
$$

If the inequality does not strictly hold, F_{θ} is not differentiable at z; however, the above vector still lies in the subgradient $\partial F_{\theta}(\mathbf{z})$.

4.b Sufficient Conditions for Applying Theorem 1.a

As supposed in Theorem 1.a, the space X should be finite in order to apply that result. Here, we show for the proposed structure on $\Gamma(Q)$ one can relax this condition while Theorem 1.a still holds. It is because, as shown in the proofs of Theorems 2 and 3, we have

$$
\inf_{\psi \in \Psi} \max_{P \in \Gamma(\tilde{P})} \mathbb{E}[L(Y, \psi(\mathbf{X}))] = \inf_{\psi \in \Psi} \min_{\mathbf{A}} \mathbb{E}_{\tilde{P}_{X}} \Big[\sup_{P_{Y|X} \in \mathcal{P}_{Y}} \mathbb{E}[L(Y, \psi(\mathbf{X})) | \mathbf{X} = \mathbf{x}] \n+ \mathbb{E}[\theta(Y) | \mathbf{X} = \mathbf{x}]^{T} \mathbf{A} \mathbf{X} \Big] - \mathbb{E}_{\tilde{P}}[\theta(Y)^{T} \mathbf{A} \mathbf{X}] + \sum_{i=1}^{t} \epsilon_{i} ||\mathbf{A}_{i}||_{*} \n= \min_{\mathbf{A}} \mathbb{E}_{\tilde{P}_{X}} \Big[\inf_{\psi(\mathbf{x}) \in \mathcal{Z}} \sup_{P_{Y|X} \in \mathcal{P}_{Y}} \mathbb{E}[L(Y, \psi(\mathbf{x})) | \mathbf{X} = \mathbf{x}] \n+ \mathbb{E}[\theta(Y) | \mathbf{X} = \mathbf{x}]^{T} \mathbf{A} \mathbf{X} \Big] - \mathbb{E}_{\tilde{P}}[\theta(Y)^{T} \mathbf{A} \mathbf{X}] + \sum_{i=1}^{t} \epsilon_{i} ||\mathbf{A}_{i}||_{*}.
$$

Therefore, given this structure the minimax problem decouples across different x's. Hence, the assumption of finite X is no longer needed, because as long as θ is a bounded function (which is true for the one-hot encoding θ), the rest of assumptions suffice to guarantee the existence of a saddle point given $X = x$ for any x.

5 Quadratic Loss: Linear Regression

5.a F_{θ} derivation

Here, we find $F_{\theta}(\mathbf{z}) = \max_{P \in \mathcal{P}_{\mathcal{Y}}} H(Y) + \mathbb{E}[\theta(Y)]^T \mathbf{z}$ for $\theta(Y) = Y$ and $\mathcal{P}_{\mathcal{Y}} = \{P_Y : \mathbb{E}[Y^2] \leq \theta(Y)\}$ ρ^2 . Since for quadratic loss $H(Y) = \text{Var}(Y) = \mathbb{E}[Y^2] - \mathbb{E}[Y]^2$, the problem is equivalent to

$$
F_{\boldsymbol{\theta}}(z) = \max_{\mathbb{E}[Y^2] \le \rho^2} \mathbb{E}[Y^2] - \mathbb{E}[Y]^2 + z \mathbb{E}[Y] \tag{47}
$$

As $\mathbb{E}[Y]^2 \leq \mathbb{E}[Y^2]$, it can be seen for the solution $\mathbb{E}_{P^*}[Y^2] = \rho^2$ and therefore we equivalently solve

$$
F_{\theta}(z) = \max_{|\mathbb{E}[Y]| \le \rho} \rho^2 - \mathbb{E}[Y]^2 + z\mathbb{E}[Y] = \begin{cases} \rho^2 + z^2/4 & \text{if } |z/2| \le \rho \\ \rho |z| & \text{if } |z/2| > \rho. \end{cases}
$$
(48)

5.b Applying Theorem 2 while restricting P_y

For the quadratic loss, we first change $\mathcal{P}_{\mathcal{Y}} = \{P_Y : \mathbb{E}[Y^2] \leq \rho^2\}$ and then apply Theorem 2. Note that by modifying F_{θ} based on the new $\mathcal{P}_{\mathcal{Y}}$ we also solve a modified version of the maximum conditional entropy problem

$$
\max_{\substack{P:\ P_{\mathbf{X},Y}\in\Gamma(Q) \\ \forall \mathbf{x}:\ P_{Y|\mathbf{X}=\mathbf{x}}\in\mathcal{P}_{\mathcal{Y}}}} H(Y|\mathbf{X})\tag{49}
$$

In the case $P_{\mathcal{Y}} = \{P_Y : \mathbb{E}[Y^2] \leq \rho^2\}$ Theorem 2 remains valid given the above modification in the maximum conditional entropy problem. This is because the inequality constraint $\mathbb{E}[Y^2|\mathbf{X}=\mathbf{x}] \leq \rho^2$ is linear in $P_{Y|X=x}$, and thus the problem is still convex and strong duality holds as well. Also, when we move the constraints of $w_i = \mathbb{E}_P [\theta_i(Y)X]$ to the objective function, we get a similar dual problem

$$
\min_{\mathbf{A}} \sup_{P_{Y|\mathbf{X},\mathbf{w}:}} \mathbb{E}_{Q_{\mathbf{X}}}\left[H_{P}(Y|\mathbf{X}=\mathbf{x}) + \sum_{i=1}^{t} \mathbb{E}[\theta_{i}(Y)|\mathbf{X}=\mathbf{x}]\mathbf{A}_{i}\mathbf{X}\right] + \sum_{i=1}^{t} [I_{C_{i}}(\mathbf{w}_{i}) - \mathbf{A}_{i}\mathbf{w}_{i}]
$$
\n
$$
\forall \mathbf{x}: P_{Y|\mathbf{X}=\mathbf{x}} \in \mathcal{P}_{Y}
$$
\n(50)

Following the next steps of the proof of Theorem 2, we complete the proof assuming the modification on F_{θ} and the maximum conditional entropy problem.

5.c Derivation of group lasso

To derive the group lasso problem, we slightly change the structure of $\Gamma(Q)$. First assume the subsets I_1, \ldots, I_k are disjoint. Consider a set of distributions $\Gamma_{GL}(Q)$ with the following structure

$$
\Gamma_{GL}(Q) = \{ P_{\mathbf{X},Y} : P_{\mathbf{X}} = Q_{\mathbf{X}},
$$

\n
$$
\forall 1 \le j \le k : \|\mathbb{E}_P \left[Y \mathbf{X}_{I_j} \right] - \mathbb{E}_Q \left[Y \mathbf{X}_{I_j} \right] \| \le \epsilon_j \}.
$$
\n(51)

Now we prove a modified version of Theorem 2,

$$
\max_{P \in \Gamma_{GL}(Q)} H(Y|\mathbf{X}) = \min_{\mathbf{\alpha}} \mathbb{E}_Q \left[F_{\theta}(\mathbf{\alpha}^T \mathbf{X}) - Y \mathbf{\alpha}^T \mathbf{X} \right] + \sum_{j=1}^k \epsilon_j \|\mathbf{\alpha}_{I_j}\|_*.
$$
 (52)

To prove this identity, we can use the same proof provided for Theorem 2. We only need to redefine $\tilde{\mathbf{E}}_j = \mathbb{E}_Q \left[Y \mathbf{X}_{I_j} \right]$ and $C_j = \{ \mathbf{u} : ||\mathbf{u} - \tilde{\mathbf{E}}_j|| \leq \epsilon_j \}$ for $1 \leq j \leq k$. Notice that here $t = 1$. Using the same technique in that proof, the dual problem can be formulated as

$$
\min_{\mathbf{\alpha}} \sup_{P_{Y|\mathbf{X}}, \mathbf{w}} \mathbb{E}_{Q_{\mathbf{X}}} \left[H_P(Y|\mathbf{X}=\mathbf{x}) + \mathbb{E}[Y|\mathbf{X}=\mathbf{x}]\boldsymbol{\alpha}^T\mathbf{X} \right] + \sum_{j=1}^k \left[I_{C_j}(\mathbf{w}_{I_j}) - \boldsymbol{\alpha}_{I_j}\mathbf{w}_{I_j} \right].
$$
 (53)

Similarly, we can decouple and simplify the above problem to derive the RHS of [\(52\)](#page-7-3). Then, if we let $\|\cdot\|$ be the ℓ_q -norm, we will get the group lasso problem with the $\ell_{1,p}$ regularizer.

If the subsets are not disjoint, we can create new copies of each feature corresponding to a repeated index, such that there will be no repeated indices after adding the new features. Note that since P_X has been fixed over $\Gamma_{GL}(Q)$ adding the extra copies of original features does not change the maximum-conditional entropy problem. Hence, we can use the result proven for the disjoint case and derive the overlapping group lasso problem.

References

- [1] Maurice Sion. On general minimax theorems. *Pacific J. Math*, 8(1):171–176, 1958.
- [2] Ralph Rockafellar. Characterization of the subdifferentials of convex functions. *Pacific Journal of Mathematics*, 17(3):497–510, 1966.
- [3] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.