
Supplement to “The Multiscale Laplacian Graph Kernel”1

1 Proofs2

Proposition 1. Let G1 and G2 be two graphs with vertex sets V1 = {v1 . . . vn1} and V2 = {v′1 . . . v′n2
}, and let3

{ξ1, . . . , ξp} be an orthonormal basis for the subspace4

W = span
{
φ(v1), . . . ,φ(vn1

),φ(v′1), . . . ,φ(v
′
n2
)
}
.

Then, kFLG(as defined in equation (4) of our paper) can be rewritten as5

kFLG(G1,G2) =
∣∣( 1

2S
−1
1 + 1

2S
−1
2

)−1 ∣∣1/2
|S1 |1/4 |S2 |1/4

, (1)

where [S1]i,j = ξ>i S1ξj and [S2]i,j = ξ>i S2ξj . In other words, S1 and S2 are the projections of S1 and S2 to W .6

Proof. The proposition hinges on the fact that kFLG(as defined in equation (4) in our paper) is invariant to rotation. In7

particular, if we extend {ξ1, . . . , ξp} to an orthonormal basis {ξ1, . . . , ξm} for the whole of Rm, let O = [ξ1, . . . , ξm]8

(the change of basis matrix) and set S̃1 =O>S1O, and S̃2 =O>S2O, then (4) can equivalently be written as9

kFLG(G1,G2) =
∣∣( 1

2 S̃
−1
1 + 1

2 S̃
−1
2

)−1 ∣∣1/2
|S̃1 |1/4 |S̃2 |1/4

. (2)

However, in the {ξ1, . . . , ξm} basis S̃1 and S̃2 take on a special form. Writing S1 in the outer product form10

S1 =

n1∑
a,b=1

φ(va)[L
−1
1 ]a,bφ(vb)

>+ γI

and considering that for i > p, 〈φ(va), ξi〉= 0 shows that S̃1 splits into a direct sum S̃1 = S1 ⊕ Ŝ1 of two matrices:11

a p×p matrix S1 whose (i, j) entry is12

ξ>i S1ξj =

n1∑
a,b=1

〈ξi,φ(v1,a)〉 [L−11 ]a,b〈φ(v1,b), ξj〉+ γδi,j , (3)

where δi,j is the Kronecker delta; and an (n−p)× (n−p) dimensional matrix Ŝ1 = γIn−p (where In−p denotes the13

n−p dimensional identity matrix). Naturally, S̃2 decomposes into S2⊕ Ŝ2 in an analogous way.14

Recall that for any pair of square matricesM1 andM2, |M1⊕M2 | = |M1 |·|M2 | and (M1⊕M2)
−1 =M−11 ⊕M

−1
2 .15

Applying this to (2) then gives16

kFLG(G1,G2) =
∣∣(( 1

2S
−1
1 + 1

2S
−1
2

)
⊕ γ−1In−p

)−1 ∣∣1/2∣∣S1⊕γIn−k
∣∣1/4 ∣∣S2⊕γIn−k

∣∣1/4
=

∣∣ ( 1
2S
−1
1 + 1

2S
−1
2

)−1⊕ γIn−p ∣∣1/2∣∣S1⊕γIn−k
∣∣1/4 ∣∣S2⊕γIn−k

∣∣1/4
=

γ(n−p)/2

γ(n−p)/4 γ(n−p)/4

∣∣ ( 1
2S
−1
1 + 1

2S
−1
2

)−1 ∣∣1/2∣∣S1

∣∣1/4 ∣∣S2

∣∣1/4
=

∣∣ ( 1
2S
−1
1 + 1

2S
−1
2

)−1 ∣∣1/2∣∣S1

∣∣1/4 ∣∣S2

∣∣1/4
17
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Proposition 2. Let G1 and G be as in Proposition 1, V = {v1, . . . , vn1+n2} be the union of their vertex sets (where it18

is assumed that the first n1 vertices are {v1, . . . , vn1
} and the second n2 vertices are

{
v′1, . . . , v

′
n2

}
), and define the19

joint Gram matrix K ∈R(n1+n2)×(n1+n2) as20

Ki,j = κ(vi, vj) = φ(vi)
>φ(vj).

Let u1, . . . ,up be (a maximal orthonormal set of) the non-zero eigenvalue eigenvectors of K with corresponding21

eigenvalues λ1, . . . , λp. Then the vectors22

ξi =
1√
λi

n1+n2∑
`=1

[ui]` φ(v`) (4)

form an orthonormal basis for W . Moreover, defining Q = [λ
1/2
1 u1, . . . , λ

1/2
p up] ∈ Rp×p and setting Q1 = Q1:n1, :23

and Q2 = Qn1+1:n2, : (the first n1 and remaining n2 rows of Q, respectively), the matrices S1 and S2 appearing in24

(5) can be computed as25

S1 = Q>1 L
−1
1 Q1 + γI, S2 = Q>2 L

−1
2 Q2 + γI. (5)

Proof. For i 6= j,26

ξ>i ξj =
1√
λiλj

n1+n2∑
k=1

n1+n2∑
`=1

[ui]k φ(vk)
>φ(v`)︸ ︷︷ ︸

κ(vk,v`)

[uj ]`

= (λiλj)
−1/2 u>i Kuj = (λj/λi)

1/2u>i uj
= 0,

27 while for i= j, ξ>i ξj = λ−1i u>i Kui = u
>
i ui = 1, showing that {ξ1, . . . , ξp} is an orthonormal set.28

At the same time, p= rank(K) = dim(W ) and ξ1, . . . , ξp ∈W , proving that {ξ1, . . . , ξp} is an orthonormal basis for29

W .30

To derive the form of S1, simply plug (4) into (3):31

ξ>i S1ξj =
1√
λiλj

n1∑
k=1

n1∑
`=1

n∑
a,b=1

[ui]k φ(vk)
>φ(va)︸ ︷︷ ︸

κ(vk,va)

[L−11 ]a,b φ(vb)
>φ(v`)︸ ︷︷ ︸

κ(vb,v`)

[uj ]` + γδi,j

= (λiλj)
−1/2u>i KL

−1Kuj + γδi,j

= (λiλj)
1/2u>i L

−1uj + γδi,j ,

and similarly for S2.32

2 Experiments33

2.1 Datasets34

We used the following datasets in our experiments: MUTAG, PTC, ENZYMES, PROTEINS, NCI1 and NCI109.35

MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic compounds. PTC is a dataset of 344 chemical36

compounds that reports their carcinogenicity for male and female rats. ENZYMES is a dataset of protein tertiary37

structures consisting of 600 enzymes from the BRENDA enzyme database with 3 discrete node labels. PROTEINS is a38

dataset of 1113 compounds where the nodes are seconadary structure elements with 3 discrete node labels representing39

helix, sheet and turn. NCI1 and NCI109 are two datasets(4110, 4127 nodes) of chemical compounds made available40

by the National Cancer Institute, screened for activity against non-small cell lung cancer and ovarian cancer cell lines,41

respectively. All six datasets are endowed with discrete node labels.42

2.2 Parameter Settings43

In our experiments, we found the optimal settings for the number of levels to be 2 or 3 and the radius size to be 244

or 3 for each dataset. As can be seen from the average number of nodes and average diameter values in Table 1, the45
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Table 1: Summary of the datasets used in our experiments

Dataset Size Labels Nodes Edges Diameter Classes
MUTAG 188 7 17.9 39.6 8.2 2 (125 vs 63)
PTC 344 19 25.6 51.9 8.9 2 (192 vs 152)
ENZYMES 600 3 32.6 124.3 10.9 6 (100 each)
PROTEINS 1113 3 39.1 145.6 11.6 2 (663 vs 450)
NCI1 4110 37 29.9 64.6 13.3 2 (2057 vs 2053)
NCI109 4127 38 29.7 64.3 13.1 2 (2079 vs 2048)

Table 2: Runtime for Computing Gram Matrix
Method MUTAG PTC ENZYMES PROTEINS NCI1 NCI109
WL 2.0s 5.2s 12.0s 30.1s 1min 22.4s 1min 23.1s
WL-Edge 2.1s 5.4s 12.99s 41.1s 1min 34.8 1min 34.7
SP 0.10s 0.4s 0.9s 1min 53.6s 35.0s 35.2s
Graphlet 1min 17.6s 3min 3.7s 7min 22.6s 11min 10.7s 40min 41.1s 41min 0.10s
p–RW 4min 9.3s 70min 54.4s 38min 25.0s 34min 8.0s >24hrs >24hrs
MLG 0.86s 1min 11.18s 36.65s 16min 19.8s 22min 12.6s 23min 40.3

graphs in each dataset are small enough that a 2 or 3 level deep MLG kernel is sufficient to effectively characterize the46

similarity between graphs.47

Across all datasets, the optimal η and γ parameters were set to 0.01 and 0.1 or 0.01 respectively. In general, these two48

parameters can be set through cross validation over a small set of values. For two graphs G and Ĝ, that are reasonably49

similar with only slight differences(ex: Ĝ is similar to G in degree distribution, connectivity, etc), increasing the η50

and/or γ value will have the effect of artificially increasing the value of kFLG(G, Ĝ), smoothing out their differences.51

Of course, this sort of smoothing is not desirable for all pairs of graphs, particularly graphs that belong to different52

classes, so typically the optimal η and γ values will be small, often between 0.01 and 1.53

2.3 Runtime54

In table (2), we display the wall clock time for how long it took to compute each kernel with the optimal parameter55

settings. Our implementation was in C++ and takes advantage of multithreading, where as the competing methods were56

provided by their authors in Matlab. Some of the kernels implemented in Matlab do perform parallelized computations,57

but the extent to which each method uses parallelism is unclear so a direct comparison of runtimes might not be fair.58
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Algorithm 1 The fast MLG algorithm (high level overview)

INPUT: A collection of graphs G = {G1, . . . ,GM} with joint vertex set V , a base kernel κ : V × V → R,
a system of nested subgraphs v ∈N1(v) ⊆ N2(v) ⊆ . . . ⊆ NL(v) for each vertex v ∈ V , and
smoothing parameters η and γ.

Sample {ṽ1, . . . , ṽÑ} from V

Compute the subsampled Gram matrix K̃, with elements K̃i,j = κ(ṽi, ṽj)

Compute a basis {ξ1, . . . , ξP̃ } for the approximate joint feature space W̃ from K

For each ( v ∈ V ) { φ(v)← the projection of φκ(v) to W̃κ }

For ( `=1 to L ) {
For each ( v ∈ V ) {
Lv ← the Laplacian of G`(v)
Uv ← [φ(w1), . . . ,φ(w|G`(v)|)]

>, where (w1, . . . , w|G`(v)|) are the vertices of G`(v)
Sv ← Uv(Lv + ηI)−1U>v + γI
}
Sample {ṽ1, . . . , ṽÑ} from V

Compute the subsampled Gram matrix K̃ ∈RÑ×Ñ , with elements

K̃i,j = kFLG(G`(ṽi), G(ṽj)) =

∣∣( 1
2S
−1
ṽ1 + 1

2S
−1
ṽ2

)−1 ∣∣1/2
|Sṽ1 |1/4 |Sṽ2 |1/4

Compute a basis {ξ1, . . . , ξP̃ } for the approximate joint feature space W̃κ from K

For each ( v ∈ V ) { φ(v)← the projection of φκ(v) to W̃κ }
}

For ( i=1 to M ) {
Li ← the Laplacian of Gi
Ui ← [φ(v1), . . . ,φ(v|Vi|)]

>, where (v1, . . . , v|Vi|) are the vertices of Gi
Si ← Ui(Li + ηI)−1U>i + γI
}

Compute the MLG Gram matrix G∈RM×M , with elements

Gi,j = K(Gi,Gj) =
∣∣( 1

2S
−1
i + 1

2S
−1
j

)−1 ∣∣1/2
|Si |1/4 |Sj |1/4

OUTPUT: the MLG Gram matrix G
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