Linear dynamical neural population models through
nonlinear embeddings

Yuanjun Gao*' , Evan Archer*'2, Liam Paninski'2, John P. Cunningham'2
Department of Statistics’ and Grossman Center?
Columbia University
New York, NY, United States
yg23120columbia.edu, evan@stat.columbia.edu,
liam@stat.columbia.edu, jpc2181@columbia.edu

Abstract

A body of recent work in modeling neural activity focuses on recovering low-
dimensional latent features that capture the statistical structure of large-scale neural
populations. Most such approaches have focused on linear generative models,
where inference is computationally tractable. Here, we propose fLLDS, a general
class of nonlinear generative models that permits the firing rate of each neuron
to vary as an arbitrary smooth function of a latent, linear dynamical state. This
extra flexibility allows the model to capture a richer set of neural variability than
a purely linear model, but retains an easily visualizable low-dimensional latent
space. To fit this class of non-conjugate models we propose a variational inference
scheme, along with a novel approximate posterior capable of capturing rich tem-
poral correlations across time. We show that our techniques permit inference in a
wide class of generative models.We also show in application to two neural datasets
that, compared to state-of-the-art neural population models, fLDS captures a much
larger proportion of neural variability with a small number of latent dimensions,
providing superior predictive performance and interpretability.

1 Introduction

Until recently, neural data analysis techniques focused primarily upon the analysis of single neurons
and small populations. However, new experimental techniques enable the simultaneous recording
of ever-larger neural populations (at present, hundreds to tens of thousands of neurons). Access to
these high-dimensional data has spurred a search for new statistical methods. One recent approach
has focused on extracting latent, low-dimensional dynamical trajectories that describe the activity
of an entire population [1, 2, 3]. The resulting models and techniques permit tractable analysis and
visualization of high-dimensional neural data. Further, applications to motor cortex [4] and visual
cortex [5, 6] suggest that the latent trajectories recovered by these methods can provide insight into
underlying neural computations.

Previous work for inferring latent trajectories has considered models with a latent linear dynamics
that couple with observations either linearly, or through a restricted nonlinearity [1, 3, 7]. When
the true data generating process is nonlinear (for example, when neurons respond nonlinearly to
a common, low-dimensional unobserved stimulus), the observation may lie in a low-dimensional
nonlinear subspace that can not be captured using a mismatched observation model, hampering
the ability of latent linear models to recover the low-dimensional structure from the data. Here,
we propose fLDS, a new approach to inferring latent neural trajectories that generalizes several
previously proposed methods. As in previous methods, we model a latent dynamical state with a

*These authors contributed equally.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

linear dynamical system (LDS) prior. But, under our model, each neuron’s spike rate is permitted to
vary as an arbitrary smooth nonlinear function of the latent state. By permitting each cell to express
its own, private non-linear response properties, our approach seeks to find a nonlinear embedding of
a neural time series into a linear-dynamical state space.

To perform inference in this nonlinear model we adapt recent advances in variational inference
[8, 9, 10]. Using a novel approximate posterior that is capable of capturing rich correlation structure
in time, our techniques can be applied to a large class of latent-LDS models. We show that our
variational inference approach, when applied to learn generative models that predominate in the neural
data analysis literature, performs comparably to inference techniques designed for a specific model.
More interestingly, we show in both simulation and application to two neural datasets that our fLDS
modeling framework yields higher prediction performance with a more compact and informative
latent representation, as compared to state-of-the-art neural population models.

2 Notation and overview of neural data

Neuronal signals take the form of temporally fast (~ 1 ms) spikes that are typically modeled as
discrete events. Although the spiking response of individual neurons has been the focus of intense
research, modern experimental techniques make it possible to study the simultaneous activity of large
numbers of neurons. In real data analysis, we usually discretize time into small bins of duration At
and represent the response of a population of n neurons at time ¢ by a vector x; of length n, whose
it" entry represents number of spikes recorded from neuron i in time bin ¢, where i € {1,...,n},
t € {1,...,T}. Additionally, because spike responses are variable even under identical experimental
conditions, it is commonplace to record many repeated trials, r € {1, ..., R}, of the same experiment.

Here, we denote Xt = (Zpt1, .-y :cmm)T € N™ as spike counts of n neurons for time ¢ and trial .
When the time index is suppressed, we refer to a data matrix x,, = (X1, ..., Xp1) € NT*n_ We also
use X = (X1, ...,xg) € NT*"X (5 denote all the observations. We use analogous notation for other
temporal variables; for instance z, and z.

3 Review of latent LDS neural population models

Latent factor models are popular tools in neural data analysis, where they are used to infer low-
dimensional, time-evolving latent trajectories (or factors) z,; € R™,m < n that capture a large
proportion of the variability present in a neural population recording. Many recent techniques follow
this general approach, with distinct noise models [3], different priors on the latent factors [11, 12],
extra model structure [13] and so on.

We focus upon one thread of this literature that takes its inspiration directly from the classical
Kalman filter. Under this approach, the dynamics of a population of n neurons are modulated by
an unobserved, linear dynamical system (LDS) with an m-dimensional latent state z,, that evolves
according to,

zr1 ~ N(p1, Q1) (D
z'r'(t+1)|zrt ~ N(Az,Q), (2)

where A is an m x m linear dynamics matrix, and the matrices Q; and Q are the covariances of the
initial states and Gaussian innovation noise, respectively. The spike count observation is then related
to the latent state via an observation model,

xrti|zrt ~ Px ()\rti = [f(zrt)]z) : 3)

where [f(z,¢)]; is the i*" element of a deterministic “rate” function f(z,;) : R™ — R", and Py ()
is a noise model with parameter \. Each choice among the ingredients f and P, leads to a model
with distinct characteristics. When P, is a Gaussian distribution with mean parameter A and linear
rate function f, the model reduces to the classical Kalman filter. All operations in the Kalman filter
are conjugate, and inference may be performed in closed form. However, any non-Gaussian noise
model P, or nonlinear rate function f breaks conjugacy and necessitates the use of approximate
inference techniques. This is generally the case for neural models, where the discrete, positive nature
of spikes suggests the use of discrete noise models with positive link[1, 3].

Examples of latent LDS models for neural populations: Existing LDS models usually impose
strong assumptions on the rate function. When P, is chosen to be Poisson with f(z,;) to be the
(element-wise) exponential of a linear transformation of z,.., we recover the Poisson linear dynamical
system model (PLDS)[1],

Xypti|Zrt ~ Poisson (A = exp(cizps + d;)) 4)

where ¢; is the ith row of the n x m observation matrix C and d; € R is the baseline firing rate of
neuron ¢. With Py chosen to be a generalized count (GC) distribution and linear rate f, the model is
called the generalized count linear dynamical system (GCLDS) [3],

Trti|2e ~ GC (Arti = CiZrt, Gi(4)) - (&)

where GC(A, g(+)) is a distribution family parameterized by A € R and a function g(-) : N — R,
distributed as,
exp(Ak + g(k))

where M (X, (1)) = > 1y %W is the normalizing constant. The GC model can flexibly
capture under— and over-dispersed count distributions.

pge(k; X g(-) = keN (6)

4 Nonlinear latent variable models for neural populations

4.1 Generative Model: Linear dynamical system with nonlinear observation

We relax the linear assumptions of the previous LDS-based neural population models by incorporating
a per-neuron rate function. We retain the latent LDS of eq. 1 and eq. 2, but select an observation
model such that each neuron has a separate nonlinear dependence upon the latent variable,

mrti|zrt ~ P)\ (>\rti = [fw(zrt)]i) 5 (7)

where Py () is a noise model with parameter \; fy, : R™ — R" is an arbitrary continuous function
from the latent state into the spike rate; and [fy (z,¢)]; is the i*" element of f,(z,). In principle,
the rate functions may be represented using any technique for function approximation. Here, we
represent fy(-) through a feed-forward neural network model. The parameters ¢ then amount to the
weights and biases of all units across all layers. For the remainder of the text, we use 6 to denote all
generative model parameters: 0 = (u1,Q1, A, Q,). We refer to this class of models as fLDS.

To refer to an fLDS with a given noise model Py, we prepend the noise model to the acronym. In the
experiments, we will consider both PfLDS (taking P to be Poisson) and GCfLDS (taking P, to be a
generalized count distribution).

4.2 Model Fitting: Auto-encoding variational Bayes (AEVB)

Our goal is to learn the model parameters € and to infer the posterior distribution over the la-
tent variables z. Ideally, we would perform maximum likelihood estimation on the parameters,

0 = arg maxgp log pg(x) = arg maxy ZT 1 J po(Xy,2,)dz,, and compute the posterior p(z|x).
However, under a fLDS neither the py(z|x) nor p,(x) are computationally tractable (both due to
the noise model Py and the nonlinear observation model f (+)). As aresult, we pursue a stochastic
variational inference approach to simultaneously learn parameters 6 and infer the distribution of z.

The strategy of variational inference is to approximate the intractable posterior distribution pg(z|x) by
a tractable distribution g4(z|x), which carries its own parameters ¢.> With an approximate posterior®
in hand, we learn both py(z, x) and g, (z|x) simultanously by maximizing the evidence lower bound
(ELBO) of the marginal log likelihood:

R

log po(x) 2 L(6, ¢ %) = Z 0,9;%y) = ZE%(Z, %) |:10g pe(xr’zr)} (®)

— (zr|xr)

*Here, we consider a posterior g4 (z|x) that is conditioned explicitly upon x. However, this is not necessary
for variational inference.
3The approximate posterior is also sometimes called a “recognition model”.

We optimize £(6, ¢; x) by stochastic gradient ascent, using a Monte Carlo estimate of the gradient
VL. It is well-documented that Monte Carlo estimates of VL are typically of very high variance,
and strategies for variance reduction are an active area of research [14, 15].

Here, we take an auto-encoding variational Bayes (AEVB) approach [8, 9, 10] to estimate VL. In
AEVB, we choose an easy-to-sample random variable ¢ ~ p(¢) and sample z through a transformation
of random sample e parameterized by observations x and parameters ¢: z = hy(x, €) to get a rich
set of variational distributions g, (z|x). We then use the unbiased gradient estimator on minibatches
consisting of a randomly selected single trials x,.,

VL(O,¢;x) = RVL(Y, §; xr) 9

L
1
~ R I Z V log po (%, he (X, el)) — VEy, (z,|x,) [log ¢4 (2 |%,)] | , (10)
=1

where €’ are iid samples from p(¢). In practice, we evaluate the gradient in eq. 9 using a single sample
from p(e) (L = 1) and use ADADELTA for stochastic optimization [16].

Choice of approximate posterior ¢4(z|x): The AEVB approach to inference is appealing in
its generality: it is well-defined for a large class of generative models py(x,z) and approximate
posteriors gy (z|x). In practice, however, the performance of the algorithm has a strong dependence
upon the particular structure of these models. In our case, we use an approximate posterior that is
designed explicitly to parameterize a temporally correlated approximate posterior [17]. We use a
Gaussian approximate posterior,

96(2r|%r) = N (pgp(xr), 8o (%r)) 5 (11)

where p4(x,) is a mT x 1 mean vector and X4 (x,) is a mT x mT' covariance matrix. Both p4 (%)
and X4 (x,) are parameterized by observations x through a structured neural network, as described
in detail in supplementary material. We can sample from this approximate by setting p(e) ~ N (0, I)

and hy(6;,x) = pp(x) + E;/Z(XT)E , Where Z;/Q is the Cholesky decomposition of .

This approach is similar to that of [8], except that we impose a block-tridiagonal structure upon
the precision matrix Edfl (rather than a diagonal covariance), which can express rich temporal
correlations across time (essential for the posterior to capture the smooth, correlated trajectories
typical of LDS posteriors), while remaining tractable with a computational complexity that scales
linearly with 7', the length of a trial.

S Experiments

5.1 Simulation experiments

Linear dynamical system models with shared, fixed rate function: Our AEVB approach in
principle permits inference in any latent LDS model. To illustrate this flexibility, we simulate
3 datasets from previously-proposed models of neural responses. In our simulations, each data-
generating model has a latent LDS state of m = 2 dimensions, as described by eq. 1 and eq. 2. In all
data-generating models, spike rates depend on the latent state variable through a fixed link function f
that is common across neurons. Each data-generating model has a distinct observation model (eq. 3):
Bernoulli (logistic link), Poisson (exponential link), or negative-binomial (exponential link).

We compare PLDS and GCLDS model fits to each datasets, using both our AEVB algorithm and two
EM-based inference algorithms: LapEM (which approximates p(z|x) with a multivariate Gaussian
by Laplace approximation in the E-step [1, 3]) and VBDual (which approximates p(z|x) with a
multivariate Gaussian by variational inference, through optimization in the dual space [18, 3]).
Additionally, we fit PFLDS and GCfLDS models with the AEVB algorithm. On this linear simulated
data we do not expect these nonlinear techniques to outperform linear methods. In all simulation
studies we generate 20 training trials and 20 testing trials, with 100 simulated neurons and 200 time
bins for each trial. Results are averaged across 10 repeats.

We compare the predictive performance and running times of the algorithms in Table 1. For both
PLDS and GCLDS, our AEVB algorithm gives results comparable to, though slightly worse than, the

Table 1: Simulation results with a linear observation model: Each column contains results for a
distinct experiment, where the true data-generating distribution was either Bernoulli, Poisson or
Negative-binomial. For each generative model and inference algorithm (one per row), we report the
predictive log likelihood (PLL) and computation time (in minutes) of the model fit to each dataset.
We report the PLL (divided by number of observations) on test data, using one-step-ahead prediction.
When training a model using the AEVB algorithm, we run 500 epochs before stopping. For LapEM
and VBDual, we initialize with nuclear norm minimization [2] and stop either after 200 iterations or
when the ELBO (scaled by number of time bins) increases by less than ¢ = 10~ after one iteration.

Bernoulli Poisson Negative-binomial
Model Inference PLL Time PLL Time PLL Time
LapEM -0.446 3 -0.385 5 -0.359 5

PLDS VBDual -0446 157 -0.385 170 -0.359 138
AEVB -0.445 50 -0387 55 -0.363 53
PfLDS AEVB -0.445 56 -0.387 58 -0.362 50
LapEM -0.389 40 -0385 97 -0.359 101
GCLDS VBDual -0.389 131 -0.385 126 -0.359 127
AEVB -0390 69 -0386 75 -0.361 73
GCfLDS AEVB -0390 72 -0386 76 -0.361 68

LapEM and VBEM algorithms. Although PfL.DS and GCfLDS assume a much more complicated
generative model, both provide comparable predictive performance and running time. We note that
while LapEM is competitive in running time in this relatively small-data setting, the AEVB algorithm
may be more desirable in a large data setting, where it can learn model parameters even before seeing
the full dataset. In constrast, both LapEM and VBDual require a full pass through the data in the
E-step before the M-step parameter updates. The recognition model used by AEVB can also be used
to initialize the LapEM and VBEM in the linear LDS cases.

Simulation with “grid cell” type response: A grid cell is a type of neuron that is activated when
an animal occupies any vertex of a grid spanning the environment [19]. When an animal moves
along a one-dimensional line in the space, grid cells exhibit oscillatory responses. Motivated by the
response properties of grid cells, we simulated a population of 100 spiking neurons with oscillatory
link functions and a shared, one-dimensional input z,.; € R given by,

2z =0, (12)
Zy 11y ~ N(0.992,4,0.01). (13)

The log firing rate of each neuron, indexed by ¢, is coupled to the latent variable z,.; through a sinusoid
with a neuron-specific phase ¢, and frequency w;

X,t; ~ Poisson (A;; = exp(2sin(w;zyt + ¢;) — 2)) . (14)

We generated ¢; uniformly at random in the region [0, 27| and set w; = 1 for neurons with index
1 < 50 and w; = 3 for neurons with index 7 > 50. We simulated 150 training and 20 testing trials,
each with 7" = 120 time bins. We repeated this simulated experiment 10 times.

We compare performance of PLDS with PfL.DS, both with a 1-dimensional latent variable. As
shown in Figure 1, PLDS is not able to adapt to the nonlinear and non-monotonic link function, and
cannot recover the true latent variable (left panel and bottom right panel) or spike rate (upper right
panel). On the other hand the PfLDS model captures the nonlinearity well, recovering the true latent
trajectory. The one-step-ahead predictive log likelihood (PLL) on a held-out dataset for PLDS is
-0.622 (se=0.006), for PfLDS is -0.581 (se=0.006). A paired t-test for PLL is significant (p < 107%).

5.2 Applications to experimentally-recorded neural data

We analyze two multi-neuron spike-train datasets, recorded from primary visual cortex and primary
motor cortex of the macaque brain, respectively. We find that fLDS models outperform PLDS in terms
of predictive performance on held out data. Further, we find that the latent trajectories uncovered by
fLDS are lower-dimensional and more structured than those recovered by PLDS.

. Neuron #49] Neuron #50 15 Neuron #51 15 Neuron #52

1 . 1
. 0.5
: 05 0.5
) 0 0 0
1 0 1 1 0 1

-1 0 1 10 1

True
X PLDS, R?=0.75
X PfLDS, R?=0.98

Firing rate
o
(&)}

o

True latent variable

True
——PLDS
—— PfLDS

Fitted latent variable

x
True latent variable

Latent variable

o

B
20 40 60 80 100 120
Time

Figure 1: Sample simulation result with “grid cell” type response. Left panel: Fitted latent variable
compared to true latent variable; Upper right panel: Fitted rate compared to the true rate for 4 sample
neurons; Bottom right panel: Inferred trace of the latent variable compared to true latent trace. Note
that the latent trajectory for a 1-dimensional latent variable is identifiable up to multiplicative constant,
and here we scale the latent variables to lie between 0 and 1.

Macaque V1 with drifting grating stimulus with single orientation: The dataset consists of
148 neurons simultaneously recorded from the primary visual cortex (area V1) of an anesthetized
macaque, as described in [20] (array 5). Data were recorded while the monkey watched a 1280ms
movie of a sinusoidal grating drifting in one of 72 orientations: (0°, 5°, 10°,...). Each of the 72
orientations was repeated R = 50 times. We analyze the spike activity from 300ms to 1200ms
after stimulus onset. We discretize the data at At = 10ms, resulting in 7" = 90 timepoints per trial.
Following [20], we consider the 63 neurons with well-behaved tuning-curves. We performed both
single-orientation and whole-dataset analysis.

We first use 12 equal spaced grating orientations (0°, 30°, 60°,...) and analyze each orientation
separately. To increase sample size, for each orientation we pool data from the 2 neighboring
orientations (e.g. for orientation 0°, we include data from orientation 5°and 355°), thereby getting
150 trials for each dataset (we find similar, but more variable, results when we do not include
neighboring orientations). For each orientation, we divide the data into 120 training trials and 30
testing trials. For PfLDS we further divide the 120 training trials into 110 trials for fitting and 10
trials for validation (we use the ELBO on validation set to determine when to stop training). We do
not include a stimulus model, but rather perform unsupervised learning to recover a low-dimensional
representation that combines both internal and stimulus-driven dynamics.

We take orientation 0°as an example (the other orientations exhibit a similar pattern) and compare
the fitted result of PLDS and PfLDS with a 2-dimensional latent space, which should in principle
adequately capture the oscillatory pattern of the neural responses. We find that PfLDS is able to
capture the nonlinear response charateristics of V1 complex cells (Fig. 2(a), black line), while
PLDS can only reliably capture linear responses (Fig. 2(a), blue line). In Fig. 2(b)(c) we project
all trajectories onto the 2-dimensional latent manifold described by the PfLDS. We find that both
techniques recover a manifold that reveals the rotational structure of the data; however, by offsetting
the nonlinear features of the data into the observation model, PfLDS recovers a much cleaner latent
representation(Fig. 2(c)).

We assess the model fitting quality by one-step-ahead prediction on a held-out dataset; we compare
both percentage mean squared error (MSE) reduction and negative predictive log likelihood (NLL)
reduction. We find that PfLDS recovers more compact representations than the PLDS, for the same
performance in MSE and NLL. We illustrate this in Fig. 2(d)(e), where PLDS requires approximately
10 latent dimensions to obtain the same predictive performance as an PfLDS with 3 latent dimensions.
This result makes intuitive sense: during the stimulus-driven portion of the experiment, neural activity
is driven primarily by a low-dimensional, oscillatory stimulus drive (the drifting grating). We find
that the highly nonlinear generative models used by PfL.DS lead to lower-dimensional and hence
more interpretable latent-variable representations.

To compare the performance of PLDS and PfLDS on the whole dataset, we use 10 trials from each
of the 72 grating orientations (720 trials in total) as a training set, and 1 trial from each orientation

(a) (b) PLDS (c) PILDS

Neuron #77
100
50
0
% Neuron #115 Time after stimulus onset (ms)
X 100 300 600 900 1200
[} True
< ——PLDS
e 50 — PILDS (d) ()
> o WA/S c 15 _20
i Neuron #145 3 10 3 5
100 S 20
w g 3
50 2 3 5
S N
S0 600 00 1200 2 4 6 8 10 2 4 6 8 10
Time after stimulus onset (ms) Latent dimensionality Latent dimensionality

Figure 2: Results for fits to Macaque V1 data (single orientation) (a) Comparing true firing rate (black
line) with fitted rate from PLDS (blue) and PfLDS (red) with 2 dimensional latent space for selected
neurons (orientation 0°, averaged across all 120 training trials); (b)(c) 2D latent-space embeddings of
10 sample training trials, color denotes phase of the grating stimulus (orientation 0°); (d)(e) Predictive
mean square error (MSE) and predictive negative log likelihood (NLL) reduction with one-step-ahead
prediction, compared to a baseline model (homogeneous Poisson process). Results are averaged
across 12 orientations.

as a test set. For PFLDS we further divide the 720 trials into 648 for fitting and 72 for validation.
We observe in Fig. 3(a)(b) that PfLDS again provides much better predictive performance with a
small number of latent dimensions. We also find that for PfLDS with 4 latent dimensions, when we
projected the observation into the latent space and take the first 3 principal components, the trajectory
forms a torus (Fig. 3(c)). Once again, this result has an intuitive appeal: just as the sinusoidal stimuli
(for a fixed orientation, across time) are naturally embedded into a 2D ring, stimulus variation in
orientation (at a fixed time) also has a natural circular symmetry. Taken together, the stimulus has
a natural toroidal topology. We find that fLDS is capable of uncovering this latent structure, even
without any prior knowledge of the stimulus structure.

(a) (b) ()

5 15 c 20 -

= e @

S B 15 5

g 10 3 S1s0

2 210 =

u 2 100

o 5 2 5 ——PLDS £

= z ——PiLDS 2 50

* 0 ® o 2 o
2 4 6 8 10 2 4 6 8 10 b= .
Latent dimensionality Latent dimensionality 5 ——500ms after stimulus onset

Figure 3: Macaque V1 data fitting result (full data) (a)(b) Predictive MSE and NLL reduction. (c) 3D
embedding of the mean latent trajectory of the neuron activity during 300ms to 500ms after stimulus
onset across grating orientations 0°,5°, ..., 175°, here we use PfLDS with 4 latent dimensions and
then project the result on the first 3 principal components. A video for the 3D embedding can be
found at https://www.dropbox.com/s/cluevdfzfsob4q9/video_£fLDS.mp4?7d1=0

Macaque center-out reaching data: We analyzed the neural population data recorded from the
macaque motor cortex(G20040123), details of which can be found in [11, 1]. Briefly, the data consist
of simultaneous recordings of 105 neurons for 56 cued reaches from the center of a screen to 14
peripheral targets. We analyze the reaching period (50ms before and 370ms after movement onset)
for each trial. We discretize the data at At = 20ms, resulting in 7' = 21 timepoints per trial. For
each target we use 50 training trials and 6 testing trials and fit all the 14 reaching targets together
(making 700 training trials and 84 testing trials). We use both Poisson and GC noise models, as GC

https://www.dropbox.com/s/cluev4fzfsob4q9/video_fLDS.mp4?dl=0

has the flexibility to capture the noted under-dispersion of the data [3]. We compare both PLDS and
PfLDS as well as GCLDS and GCfLDS fits. For both PfLDS and GCfLDS we further divide the
training trials into 630 for fitting and 70 for validation.

As is shown in figure Fig. 4(d), PELDS and GCfLDS with latent dimension 2 or 3 outperforms their
linear counterparts with much larger latent dimensions. We also find that GCLDS and GCfLDS
models give much better predictive likelihood than their Poisson counterparts. On figure Fig. 4(b)(c)
we project the neural activities on the 2 dimensional latent space. We find that PfLDS (Fig. 4(c))
clearly separates the reaching trajectories and orders them in exact correspondence with the true
spatial location of the targets.

(a)Reaching trajectory (b) PLDS (c) PfLDS (d)
S| fT T
310
S}
2 of S
e 4 —-—- GCILDS

2 4 6 8
Latent dimensionality

Figure 4: Macaque center-out reaching data analysis: (a) 5 sample reaching trajectory for each of
the 14 target locations. Directions are coded by different color, and distances are coded by different
marker size; (b)(c) 2D embeddings of neuron activity extracted by PLDS and PfLDS, circles represent
50ms before movement onset and triangles represent 340ms after movement onset. Here 5 training
reaches for each target location are plotted; (d) Predictive negative log likelihood (NLL) reduction
with one-step-ahead prediction.

6 Discussion and Conclusion

We have proposed fLDS, a modeling framework for high-dimensional neural population data that
extends previous latent, low-dimensional linear dynamical system models with a flexible, nonlinear
observation model. Additionally, we described an efficient variational inference algorithm suitable
for fitting a broad class of LDS models — including several previously-proposed models. We illustrate
in both simulation and application to real data that, even when a neural population is modulated by a
low-dimensional linear dynamics, a latent variable model with a linear rate function fails to capture
the true low-dimensional structure. In constrast, a fLLDS can recover the low-dimensional structure,
providing better predictive performance and more interpretable latent-variable representations.

[21] extends the linear Kalman filter by using neural network models to parameterize both the dynamic
equation and the observation equation, they uses RNN based recognition model for inference. [22]
composes graphical models with neural network observations and proposes structured auto encoder
variational inference algorithm for inference. Ours focus on modeling count observations for neural
spike train data, which is orthogonal to the papers mentioned above.

Our approach is distinct from related manifold learning methods [23, 24]. While most manifold
learning techniques rely primarily on the notion of nearest neighbors, we exploit the temporal structure
of the data by imposing strong prior assumption about the dynamics of our latent space. Further, in
contrast to most manifold learning approaches, our approach includes an explicit generative model
that lends itself naturally to inference and prediction, and allows for count-valued observations that
account for the discrete nature of neural data.

Future work includes relaxing the latent linear dynamical system assumption to incorporate more
flexible latent dynamics (for example, by using a Gaussian process prior [12] or by incorporating a
nonlinear dynamical phase space [25]). We also anticipate our approach may be useful in applications
to neural decoding and prosthetics: once trained, our approximate posterior may be evaluated in close
to real-time.

A Python/Theano [26, 27] implementation of our algorithms is available at http://github.com/
earcher/vilds.

http://github.com/earcher/vilds
http://github.com/earcher/vilds

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(91

(10]

(11]

[12]

(13]

(14]

(15]

[16]
(17]

(18]

[19]

[20]

[21]
(22]

(23]

[24]

[25]

(26]

[27]

J. H. Macke, L. Buesing, J. P. Cunningham, B. M. Yu, K. V. Shenoy, and M. Sahani, “Empirical models of
spiking in neural populations,” in NIPS, pp. 1350-1358, 2011.

D. Pfau, E. A. Pnevmatikakis, and L. Paninski, “Robust learning of low-dimensional dynamics from large
neural ensembles,” in NIPS, pp. 2391-2399, 2013.

Y. Gao, L. Busing, K. V. Shenoy, and J. P. Cunningham, “High-dimensional neural spike train analysis
with generalized count linear dynamical systems,” in NIPS, pp. 2035-2043, 2015.

M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I. Ryu, and K. V.
Shenoy, “Neural population dynamics during reaching,” Nature, vol. 487, no. 7405, pp. 51-56, 2012.

R. L. Goris, J. A. Movshon, and E. P. Simoncelli, “Partitioning neuronal variability,” Nature neuroscience,
vol. 17, no. 6, pp. 858-865, 2014.

A. S. Ecker, P. Berens, R. J. Cotton, M. Subramaniyan, G. H. Denfield, C. R. Cadwell, S. M. Smirnakis,
M. Bethge, and A. S. Tolias, “State dependence of noise correlations in macaque primary visual cortex,”
Neuron, vol. 82, no. 1, pp. 235-248, 2014.

E. W. Archer, U. Koster, J. W. Pillow, and J. H. Macke, “Low-dimensional models of neural population
activity in sensory cortical circuits,” in NIPS, pp. 343-351, 2014.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114,2013.
M. Titsias and M. Lézaro-Gredilla, “Doubly stochastic variational bayes for non-conjugate inference,” in
ICML, pp. 1971-1979, 2014.

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and approximate inference in
deep generative models,” arXiv preprint arXiv:1401.4082, 2014.

B. M. Yu, J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani, “Gaussian-process
factor analysis for low-dimensional single-trial analysis of neural population activity,” Journal of Neuro-
physiology, vol. 102, no. 1, pp. 614-635, 2009.

Y. Zhao and I. M. Park, “Variational latent gaussian process for recovering single-trial dynamics from
population spike trains,” arXiv preprint arXiv:1604.03053, 2016.

L. Buesing, T. A. Machado, J. P. Cunningham, and L. Paninski, “Clustered factor analysis of multineuronal
spike data,” in NIPS, pp. 3500-3508, 2014.

Y. Burda, R. Grosse, and R. Salakhutdinov, “Importance weighted autoencoders,” arXiv preprint
arXiv:1509.00519, 2015.

R. Ranganath, S. Gerrish, and D. M. Blei, “Black box variational inference,” arXiv preprint
arXiv:1401.0118, 2013.

M. D. Zeiler, “ADADELTA: An adaptive learning rate method,” arXiv preprint arXiv:1212.5701, 2012.

E. Archer, I. M. Park, L. Buesing, J. Cunningham, and L. Paninski, “Black box variational inference for
state space models,” arXiv preprint arXiv:1511.07367, 2015.

M. Emtiyaz Khan, A. Aravkin, M. Friedlander, and M. Seeger, “Fast dual variational inference for
non-conjugate latent gaussian models,” in /ICML, pp. 951-959, 2013.

T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser, “Microstructure of a spatial map in the
entorhinal cortex,” Nature, vol. 436, no. 7052, pp. 801-806, 2005.

A. B. Graf, A. Kohn, M. Jazayeri, and J. A. Movshon, “Decoding the activity of neuronal populations in
macaque primary visual cortex,” Nature neuroscience, vol. 14, no. 2, pp. 239-245, 2011.

R. G. Krishnan, U. Shalit, and D. Sontag, “Deep Kalman filters,” arXiv preprint arXiv:1511.05121, 2015.

M. J. Johnson, D. Duvenaud, A. B. Wiltschko, S. R. Datta, and R. P. Adams, “Composing graphical models
with neural networks for structured representations and fast inference,” arXiv:1603.06277, 2016.

S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science,
vol. 290, no. 5500, pp. 2323-2326, 2000.

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for nonlinear dimen-
sionality reduction,” science, vol. 290, no. 5500, pp. 2319-2323, 2000.

R. Frigola, Y. Chen, and C. Rasmussen, “Variational gaussian process state-space models,” in NIPS,
pp- 3680-3688, 2014.

F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. Goodfellow, A. Bergeron, N. Bouchard, D. Warde-Farley,
and Y. Bengio, “Theano: new features and speed improvements,” arXiv preprint arXiv:1211.5590, 2012.

J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley,
and Y. Bengio, “Theano: a CPU and GPU math expression compiler,” in Proceedings of the Python for
scientific computing conference (SciPy), vol. 4, p. 3, Austin, TX, 2010.

