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Abstract

We consider cooperative multi-agent consensus optimization problems over an
undirected network of agents, where only those agents connected by an edge
can directly communicate. The objective is to minimize the sum of agent-
specific composite convex functions over agent-specific private conic constraint
sets; hence, the optimal consensus decision should lie in the intersection of these
private sets. We provide convergence rates in sub-optimality, infeasibility and
consensus violation; examine the effect of underlying network topology on the
convergence rates of the proposed decentralized algorithms; and show how to ex-
tend these methods to handle time-varying communication networks.

1 Introduction

Let G = (N , E) denote a connected undirected graph of N computing nodes, where N ,
{1, . . . , N} and E ⊆ N × N denotes the set of edges – without loss of generality assume that
(i, j) ∈ E implies i < j. Suppose nodes i and j can exchange information only if (i, j) ∈ E , and
each node i ∈ N has a private (local) cost function Φi : R

n → R ∪ {+∞} such that

Φi(x) , ρi(x) + fi(x), (1)

where ρi : Rn → R ∪ {+∞} is a possibly non-smooth convex function, and fi : Rn → R is a
smooth convex function. We assume that fi is differentiable on an open set containing dom ρi with
a Lipschitz continuous gradient∇fi, of which Lipschitz constant is Li; and the prox map of ρi,

proxρi
(x) , argmin

y∈Rn

{

ρi(y) +
1

2
‖y − x‖2

}

, (2)

is efficiently computable for i ∈ N , where ‖.‖ denotes the Euclidean norm. Let Ni , {j ∈ N :

(i, j) ∈ E or (j, i) ∈ E} denote the set of neighboring nodes of i ∈ N , and di , |Ni| is the degree
of node i ∈ N . Consider the following minimization problem:

min
x∈Rn

∑

i∈N

Φi(x) s.t. Aix− bi ∈ Ki, ∀i ∈ N , (3)

where Ai ∈ R
mi×n, bi ∈ R

mi and Ki ⊆ Rmi is a closed, convex cone. Suppose that projections

ontoKi can be computed efficiently, while the projection onto the preimageA−1
i (Ki+bi) is assumed

to be impractical, e.g., when Ki is the positive semidefinite cone, projection to preimage requires
solving an SDP. Our objective is to solve (3) in a decentralized fashion using the computing nodes
N and exchanging information only along the edges E . In Section 2 and Section 3, we consider (3)
when the topology of the connectivity graph is static and time-varying, respectively.

This computational setting, i.e., decentralized consensus optimization, appears as a generic model
for various applications in signal processing, e.g., [1, 2], machine learning, e.g., [3, 4, 5] and sta-
tistical inference, e.g., [6]. Clearly, (3) can also be solved in a “centralized” fashion by commu-
nicating all the private functions Φi to a central node, and solving the overall problem at this

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



node. However, such an approach can be very expensive both from communication and com-
putation perspectives when compared to the distributed algorithms which are far more scalable

to increasing problem data and network sizes. In particular, suppose (Ai, bi) ∈ R
m×(n+1) and

Φi(x) = λ ‖x‖1 + ‖Aix− bi‖2 for some given λ > 0 for i ∈ N such that m ≪ n and N ≫ 1.
Hence, (3) is a very large scale LASSO problem with distributed data. To solve (3) in a centralized
fashion, the data {(Ai, bi) : i ∈ N} needs to be communicated to the central node. This can be
prohibitively expensive, and may also violate privacy constraints – in case some node i does not
want to reveal the details of its private data. Furthermore, it requires that the central node has large
enough memory to be able to accommodate all the data. On the other hand, at the expense of slower
convergence, one can completely do away with a central node, and seek for consensus among all
the nodes on an optimal decision using “local” decisions communicated by the neighboring nodes.
From computational perspective, for certain cases, computing partial gradients locally can be more
computationally efficient when compared to computing the entire gradient at a central node. With
these considerations in mind, we propose decentralized algorithms that can compute solutions to (3)
using only local computations without explicitly requiring the nodes to communicate the functions
{Φi : i ∈ N}; thereby, circumventing all privacy, communication and memory issues. Examples
of constrained machine learning problems that fit into our framework include multiple kernel learn-
ing [7], and primal linear support vector machine (SVM) problems. In the numerical section we
implemented the proposed algorithms on the primal SVM problem.

1.1 Previous Work

There has been active research [8, 9, 10, 11, 12] on solving convex-concave saddle point problems
minx maxy L(x, y). In [9] primal-dual proximal algorithms are proposed for convex-concave prob-

lems with known saddle-point structure minx maxy Ls(x, y) , Φ(x) + 〈Tx, y〉 − h(y), where Φ
and h are convex functions, and T is a linear map. These algorithms converge with rate O(1/k) for
the primal-dual gap, and they can be modified to yield a convergence rate of O(1/k2) when either

Φ or h is strongly convex, and O(1/ek) linear rate, when both Φ and h are strongly convex. More
recently, in [11] Chambolle and Pock extend their previous work in [9], using simpler proofs, to
handle composite convex primal functions, i.e., sum of smooth and (possibly) nonsmooth functions,
and to deal with proximity operators based on Bregman distance functions.

Consider minx∈Rn{∑i∈N Φi(x) : x ∈ ∩i∈NXi} over G = (N , E). Although the uncon-
strained consensus optimization, i.e., Xi = R

n, is well studied – see [13, 14] and the references
therein, the constrained case is still an immature, and recently developing area of active research
[13, 14, 15, 16, 17, 18, 19]. Other than few exceptions, e.g., [15, 16, 17], the methods in liter-
ature require that each node compute a projection on the privately known set Xi in addition to
consensus and (sub)gradient steps, e.g., [18, 19]. Moreover, among those few exceptions that do not
use projections onto Xi when ΠXi

is not easy to compute, only [15, 16] can handle agent-specific
constraints without assuming global knowledge of the constraints by all agents. However, no rate
results in terms of suboptimality, local infeasibility, and consensus violation exist for the primal-
dual distributed methods in [15, 16] when implemented for the agent-specific conic constraint sets
Xi = {x : Aix − bi ∈ Ki} studied in this paper. In [15], a consensus-based distributed primal-
dual perturbation (PDP) algorithm using a square summable but not summable step-size sequence
is proposed. The objective is to minimize a composition of a global network function (smooth) with
the summation of local objective functions (smooth), subject to local compact sets and inequality
constraints on the summation of agent specific constrained functions. They showed that the local
primal-dual iterate sequence converges to a global optimal primal-dual solution; however, no rate
result was provided. The proposed PDP method can also handle non-smooth constraints with sim-
ilar convergence guarantees. Finally, while we were preparing this paper, we became aware of a
very recent work [16] related to ours. The authors proposed a distributed algorithm on time-varying
communication network for solving saddle-point problems subject to consensus constraints. The
algorithm can also be applied to solve consensus optimization problems with inequality constraints
that can be written as summation of local convex functions of local and global variables. Under
some assumptions, it is shown that using a carefully selected decreasing step-size sequence, the

ergodic average of primal-dual sequence converges with O(1/
√
k) rate in terms of saddle-point

evaluation error; however, when applied to constrained optimization problems, no rate in terms of
either suboptimality or infeasibility is provided.
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Contribution. We propose primal-dual algorithms for distributed optimization subject to agent
specific conic constraints. By assuming composite convex structure on the primal functions, we
show that our proposed algorithms converge with O(1/k) rate where k is the number of consensus
iterations. To the best of our knowledge, this is the best rate result for our setting. Indeed, ǫ-optimal
and ǫ-feasible solution can be computed within O(1/ǫ) consensus iterations for the static topology,

and within O(1/ǫ1+1/p) consensus iterations for the dynamic topology for any rational p ≥ 1,
although O(1) constant gets larger for large p. Moreover, these methods are fully distributed, i.e.,
the agents are not required to know any global parameter depending on the entire network topology,
e.g., the second smallest eigenvalue of the Laplacian; instead, we only assume that agents know who
their neighbors are. Due to limited space, we put all the technical proofs to the appendix.

1.2 Preliminary

Let X and Y be finite-dimensional vector spaces. In a recent paper, Chambolle and Pock [11]
proposed a primal-dual algorithm (PDA) for the following convex-concave saddle-point problem:

min
x∈X

max
y∈Y

L(x,y) , Φ(x) + 〈Tx,y〉 − h(y), where Φ(x) , ρ(x) + f(x), (4)

ρ and h are possibly non-smooth convex functions, f is a convex function and has a Lipschitz
continuous gradient defined on dom ρ with constant L, and T is a linear map. Briefly, given x0,y0

and algorithm parameters νx, νy > 0, PDA consists of two proximal-gradient steps:

x
k+1 ← argmin

x

ρ(x) + f(xk) +
〈

∇f(xk), x− x
k
〉

+
〈

Tx,yk
〉

+
1

νx
Dx(x,x

k) (5a)

y
k+1 ← argmin

y

h(y)−
〈

T (2xk+1 − x
k),y

〉

+
1

νy
Dy(y,y

k), (5b)

where Dx and Dy are Bregman distance functions corresponding to some continuously differen-
tiable strongly convex ψx and ψy such that domψx ⊃ dom ρ and domψy ⊃ domh. In particu-

lar, Dx(x, x̄) , ψx(x)−ψx(x̄)− 〈∇ψx(x̄), x− x̄〉, and Dy is defined similarly. In [11], a simple
proof for the ergodic convergence is provided for (5); indeed, it is shown that, when the convexity

modulus for ψx and ψy is 1, if τ, κ > 0 are chosen such that ( 1
νx
− L) 1

νy
≥ σ2

max(T ), then

L(x̄K ,y)− L(x, ȳK) ≤ 1

K

(

1

νx
Dx(x,x

0) +
1

νy
Dy(y,y

0)−
〈

T (x− x
0),y − y

0
〉

)

, (6)

for all x,y ∈ X × Y , where x̄K , 1
K

∑K
k=1 x

k and ȳK , 1
K

∑K
k=1 y

k.

First, we define the notation used throughout the paper. Next, in Theorem 1.1, we discuss a special
case of (4), which will help us prove the main results of this paper, and also allow us to develop
decentralized algorithms for the consensus optimization problem in (3). The proposed algorithms in
this paper can distribute the computation over the nodes such that each node’s computation is based
on the local topology of G and the private information only available to that node.

Notation. Throughout the paper, ‖.‖ denotes the Euclidean norm. Given a convex set S , let σS(.)
denote its support function, i.e., σS(θ) , supw∈S 〈θ, w〉, let IS(·) denote the indicator function of

S , i.e., IS(w) = 0 for w ∈ S and equal to +∞ otherwise, and let PS(w) , argmin{‖v − w‖ :
v ∈ S} denote the projection onto S . For a closed convex set S , we define the distance function

as dS(w) , ‖PS(w)− w‖. Given a convex cone K ∈ R
m, let K∗ denote its dual cone, i.e.,

K∗ , {θ ∈ R
m : 〈θ, w〉 ≥ 0 ∀w ∈ K}, and K◦ , −K∗ denote the polar cone of K. Note that for

a given cone K ∈ R
m, σK(θ) = 0 for θ ∈ K◦ and equal to +∞ if θ 6∈ K◦, i.e., σK(θ) = IK◦(θ)

for all θ ∈ R
m. Cone K is called proper if it is closed, convex, pointed, and it has a nonempty

interior. Given a convex function g : Rn → R∪ {+∞}, its convex conjugate is defined as g∗(w) ,
supθ∈Rn 〈w, θ〉 − g(θ). ⊗ denotes the Kronecker product, and In is the n× n identity matrix.

Definition 1. Let X , Πi∈NR
n and X ∋ x = [xi]i∈N ; Y , Πi∈NR

mi × R
m0 , Y ∋ y =

[θ⊤λ⊤]⊤ and θ = [θi]i∈N ∈ R
m, where m ,

∑

i∈N mi, and Π denotes the Cartesian product.

Given parameters γ > 0, κi, τi > 0 for i ∈ N , let Dγ , 1
γ Im0

, Dκ , diag([ 1
κi
Imi

]i∈N ),

and Dτ , diag([ 1τi In]i∈N ). Defining ψx(x) , 1
2x

⊤Dτx and ψy(y) , 1
2θ

⊤Dκθ + 1
2λ

⊤Dγλ

leads to the following Bregman distance functions: Dx(x, x̄) = 1
2 ‖x− x̄‖2

Dτ
, and Dy(y, ȳ) =

1
2

∥

∥θ − θ̄
∥

∥

2

Dκ
+ 1

2

∥

∥λ− λ̄
∥

∥

2

Dγ
, where the Q-norm is defined as ‖z‖Q , (z⊤Qz)

1
2 for Q ≻ 0.
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Theorem 1.1. Let X , Y , and Bregman functions Dx, Dy be defined as in Definition 1. Suppose

Φ(x) ,
∑

i∈N Φi(xi), and h(y) , h0(λ) +
∑

i∈N hi(θi), where {Φi}i∈N are composite convex

functions defined as in (1), and {hi}i∈N are closed convex with simple prox-maps. Given A0 ∈
R

m0×n|N | and {Ai}i∈N such that Ai ∈ R
mi×n, let T = [A⊤ A⊤

0 ]
⊤, where A , diag([Ai]i∈N ) ∈

R
m×n|N | is a block-diagonal matrix. Given the initial point (x0,y0), the PDA iterate sequence

{xk,yk}k≥1, generated according to (5a) and (5b) when νx = νy = 1, satisfies (6) for all K ≥ 1

if Q̄(A,A0) ,





D̄τ −A⊤ −A⊤
0

−A Dκ 0
−A0 0 Dγ



 � 0, where D̄τ , diag([( 1
τi
− Li)In]i∈N ). Moreover, if a

saddle point exists for (4), and Q̄(A,A0) ≻ 0, then {xk,yk}k≥1 converges to a saddle point of (4);

hence, {x̄k, ȳk}k≥1 converges to the same point.

Although the proof of Theorem 1.1 follows from the lines of [11], we provide the proof in the
appendix for the sake of completeness as it will be used repeatedly to derive our results.

Next we discuss how (5) can be implemented to compute an ǫ-optimal solution to (3) in a distributed
way using only O(1/ǫ) communications over the communication graph G while respecting node-
specific privacy requirements. Later, in Section 3, we consider the scenario where the topology of

the connectivity graph is time-varying, and propose a distributed algorithm that requiresO(1/ǫ1+
1
p )

communications for any p ≥ 1. Finally, in Section 4 we test the proposed algorithms for solving the
primal SVM problem in a decentralized manner. These results are shown under Assumption 1.1.

Assumption 1.1. The duality gap for (3) is zero, and a primal-dual solution to (3) exists.

A sufficient condition for this is the existence of a Slater point, i.e., there exists x̄ ∈ relint(domΦ)
such that Aix̄− bi ∈ int(Ki) for i ∈ N , where domΦ = ∩i∈N domΦi.

2 Static Network Topology

Let xi ∈ R
n denote the local decision vector of node i ∈ N . By taking advantage of the fact that G

is connected, we can reformulate (3) as the following distributed consensus optimization problem:

min
xi∈R

n, i∈N

{

∑

i∈N

Φi(xi) | xi = xj : λij , ∀(i, j) ∈ E , Aixi − bi ∈ Ki : θi, ∀i ∈ N
}

, (7)

where λij ∈ R
n and θi ∈ R

mi are the corresponding dual variables. Let x = [xi]i∈N ∈ R
n|N |. The

consensus constraints xi = xj for (i, j) ∈ E can be formulated asMx = 0, whereM ∈ R
n|E|×n|N |

is a block matrix such that M = H ⊗ In where H is the oriented edge-node incidence matrix, i.e.,
the entry H(i,j),l, corresponding to edge (i, j) ∈ E and l ∈ N , is equal to 1 if l = i, −1 if l = j,

and 0 otherwise. Note that MTM = HTH ⊗ In = Ω⊗ In, where Ω ∈ R
|N |×|N| denotes the graph

Laplacian of G, i.e., Ωii = di, Ωij = −1 if (i, j) ∈ E or (j, i) ∈ E , and equal to 0 otherwise.

For any closed convex set S , we have σ∗
S(·) = IS(·); therefore, using the fact that σ∗

Ki
= IKi

for

i ∈ N , one can obtain the following saddle point problem corresponding to (7),

min
x

max
y
L(x,y) ,

∑

i∈N

(

Φi(xi) + 〈θi, Aixi − bi〉 − σKi(θi)

)

+ 〈λ,Mx〉, (8)

where y = [θ⊤ λ⊤]⊤ for λ = [λij ](i,j)∈E ∈ R
n|E|, θ = [θi]i∈N ∈ R

m, and m ,
∑

i∈N mi.

Next, we study the distributed implementation of PDA in (5a)-(5b) to solve (8). Let Φ(x) ,
∑

i∈N Φi(xi), and h(y) ,
∑

i∈N σKi
(θi) + 〈bi, θi〉. Define the block-diagonal matrix A ,

diag([Ai]i∈N ) ∈ R
m×n|N | and T = [A⊤M⊤]⊤. Therefore, given the initial iterates x0,θ0,λ0

and parameters γ > 0, τi, κi > 0 for i ∈ N , choosing Dx and Dy as defined in Definition 1, and
setting νx = νy = 1, PDA iterations in (5a)-(5b) take the following form:

x
k+1 ← argmin

x

〈λk,Mx〉+
∑

i∈N

[

ρi(xi) + 〈∇f(xk
i ), xi〉+ 〈Aixi − bi, θ

k
i 〉+

1

2τi
‖xi − xk

i ‖2
]

, (9a)

θk+1

i ← argmin
θi

σKi(θi)− 〈Ai(2x
k+1

i − xk
i )− bi, θi〉+ 1

2κi

‖θi − θki ‖2, i ∈ N (9b)

λk+1 ← argmin
λ

{

− 〈M(2xk+1 − x
k),λ〉+ 1

2γ
‖λ− λ

k‖2
}

= λ
k + γM(2xk+1 − x

k). (9c)
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Since Ki is a cone, proxκiσKi
(.) = PK◦

i
(.); hence, θk+1

i can be written in closed form as

θk+1

i = PK◦
i

(

θki + κi

(

Ai(2x
k+1

i − xk
i )− bi

))

, i ∈ N .

Using recursion in (9c), we can write λk+1 as a partial summation of primal iterates {xℓ}kℓ=0, i.e.,

λk = λ0 + γ
∑k−1

ℓ=0 M(2xℓ+1 − xℓ). Let λ0 ← γMx0, s0 ← x0, and sk , xk +
∑k

ℓ=1 x
ℓ for

k ≥ 1; hence, λk = γMsk. Using the fact that M⊤M = Ω⊗ In, we obtain

〈Mx,λk〉 = γ 〈x, (Ω⊗ In)s
k〉 = γ

∑

i∈N 〈xi,
∑

j∈Ni
(ski − skj )〉.

Thus, PDA iterations given in (9) for the static graph G can be computed in a decentralized way, via
the node-specific computations as in Algorithm DPDA-S displayed in Fig. 1 below.

Algorithm DPDA-S ( x0,θ0, γ, {τi, κi}i∈N )

Initialization: s0i ← x0
i , i ∈ N

Step k: (k ≥ 0)

1. xk+1

i ← proxτiρi

(

xk
i − τi

(

∇fi(x
k
i ) +A⊤

i θ
k
i + γ

∑

j∈Ni
(ski − skj )

))

, i ∈ N
2. sk+1

i ← xk+1

i +
∑k+1

ℓ=1
xℓ
i , i ∈ N

3. θk+1

i ← PK◦
i

(

θki + κi

(

Ai(2x
k+1

i − xk
i )− bi

)

)

, i ∈ N

Figure 1: Distributed Primal Dual Algorithm for Static G (DPDA-S)

The convergence rate for DPDA-S, given in (6), follows from Theorem 1.1 with the help of following
technical lemma which provides a sufficient condition for Q̄(A,A0) ≻ 0.

Lemma 2.1. Given {τi, κi}i∈N and γ such that γ > 0, and τi, κi > 0 for i ∈ N , let A0 = M and

A , diag([Ai]i∈N ). Then Q̄ , Q̄(A,A0) � 0 if {τi, κi}i∈N and γ are chosen such that
(

1

τi
− Li − 2γdi

)

1

κi

≥ σ2
max(Ai), ∀ i ∈ N , (10)

and Q̄ ≻ 0 if (10) holds with strict inequality, where Q̄(A,A0) is defined in Theorem 1.1.

Remark 2.1. Choosing τi = (ci + Li + 2γdi)
−1, κi = ci/σ

2
max(Ai) for any ci > 0 satisfies (10).

Next, we quantify the suboptimality and infeasibility of the DPDA-S iterate sequence.

Theorem 2.2. Suppose Assumption 1.1 holds. Let {xk,θk,λk}k≥0 be the sequence generated by

Algorithm DPDA-S, displayed in Fig. 1, initialized from an arbitrary x0 and θ0 = 0. Let step-sizes

{τi, κi}i∈N and γ be chosen satisfying (10) with strict inequality. Then {xk,θk,λk}k≥0 converges

to {x∗,θ∗,λ∗}, a saddle point of (8) such that x∗ = 1⊗ x∗ and (x∗,θ∗) is a primal-dual optimal
solution to (3); moreover, the following error bounds hold for all K ≥ 1:

‖λ∗‖ ‖M x̄
K‖+

∑

i∈N

‖θ∗i ‖ dKi(Aix̄
K
i − bi) ≤ Θ1/K, |Φ(x̄K)− Φ(x∗)| ≤ Θ1/K,

where Θ1 , 2
γ ‖λ

∗‖2− γ
2

∥

∥Mx0
∥

∥

2
+
∑

i∈N

[

1
2τi
‖x∗i − x0i ‖2 + 4

κi
‖θ∗i ‖2

]

, and x̄K , 1
K

∑K
k=1 x

k.

3 Dynamic Network Topology

In this section we develop a distributed primal-dual algorithm for solving (3) when the com-

munication network topology is time-varying. We assume a compact domain, i.e., let Di ,

maxxi,x′

i∈dom ρi
‖x− x′‖ and B , maxi∈N Di <∞. Let C be the set of consensus decisions:

C , {x ∈ R
n|N| : xi = x̄, ∀i ∈ N for some x̄ ∈ R

n
s.t. ‖x̄‖ ≤ B},

then one can reformulate (3) in a decentralized way as follows:

min
x

max
y
L(x,y) ,

∑

i∈N

(

Φi(xi) + 〈θi, Aixi − bi〉 − σKi(θi)
)

+ 〈λ, x〉 − σC(λ), (11)

where y = [θ⊤λ⊤]⊤ such that λ ∈ R
n|N |, θ = [θi]i∈N ∈ R

m, and m ,
∑

i∈N mi.
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Next, we consider the implementation of PDA in (5) to solve (11). Let Φ(x) ,
∑

i∈N Φi(xi), and

h(y) , σC(λ)+
∑

i∈N σKi
(θi)+〈bi, θi〉. Define the block-diagonal matrixA , diag([Ai]i∈N ) ∈

R
m×n|N | and T = [A⊤ In|N |]⊤. Therefore, given the initial iterates x0,θ0,λ0 and parameters γ >

0, τi, κi > 0 for i ∈ N , choosing Dx and Dy as defined in Definition 1, and setting νx = νy = 1,

PDA iterations given in (5) take the following form: Starting from µ0 = λ0, compute for i ∈ N
xk+1

i ← argmin
x

ρi(xi) + 〈∇f(xk
i ), xi〉+ 〈Aixi − bi, θ

k
i 〉+ 〈xi, µ

k
i 〉+

1

2τi
‖xi − xk

i ‖22, (12a)

θk+1

i ← argmin
θi

σKi(θi)− 〈Ai(2x
k+1

i − xk
i )− bi, θi〉+ 1

2κi

‖θi − θki ‖22, (12b)

λ
k+1 ← argmin

µ

σC(µ)− 〈2xk+1 − x
k,µ〉+ 1

2γ
‖µ− µ

k‖22, µ
k+1 ← λ

k+1. (12c)

Using extended Moreau decomposition for proximal operators, λk+1 can be written as

λ
k+1 = argmin

µ

σC(µ) +
1

2γ
‖µ− (µk + γ(2xk+1 − x

k))‖2 = proxγσC
(µk + γ(2xk+1 − x

k))

= µ
k + γ(2xk+1 − x

k)− γ PC

( 1

γ
µ

k + 2xk+1 − x
k
)

. (13)

Let 1 ∈ R
|N | be the vector all ones, B0 , {x ∈ R

n : ‖x‖ ≤ B}. Note PB0
(x) = xmin{1, B

‖x‖}.
For any x = [xi]i∈N ∈ R

n|N |, PC(x) can be computed as

PC(x) = 1⊗ p(x), where p(x) , argmin
ξ∈B0

∑

i∈N

‖ξ − xi‖2 = argmin
ξ∈B0

‖ξ − 1

|N |
∑

i∈N

xi‖2. (14)

Let B , {x : ‖xi‖ ≤ B, i ∈ N} = Πi∈NB0. Hence, we can write PC(x) = PB ((W ⊗ In)x)

where W , 1
|N |11

⊤ ∈ R
|N |×|N|. Equivalently,

PC(x) = PB (1⊗ p̃(x)) , where p̃(x) , 1

|N|

∑

i∈N xi. (15)

Although x-step and θ-step of the PDA implementation in (12) can be computed locally at each

node, computing λk+1 requires communication among the nodes. Indeed, evaluating the average
operator p̃(.) is not a simple operation in a decentralized computational setting which only allows
for communication among neighbors. In order to overcome this issue, we will approximate p̃(.)
operator using multi-consensus steps, and analyze the resulting iterations as an inexact primal-dual
algorithm. In [20], this idea has been exploited within a distributed primal algorithm for uncon-
strained consensus optimization problems. We define the consensus step as one time exchanging
local variables among neighboring nodes – the details of this operation will be discussed shortly.
Since the connectivity network is dynamic, let Gt = (N , Et) be the connectivity network at the time
t-th consensus step is realized for t ∈ Z+. We adopt the information exchange model in [21].

Assumption 3.1. Let V t ∈ R
|N |×|N| be the weight matrix corresponding to Gt = (N , Et) at the

time of t-th consensus step and N t
i , {j ∈ N : (i, j) ∈ Et or (j, i) ∈ Et}. Suppose for all

t ∈ Z+: (i) V t is doubly stochastic; (ii) there exists ζ ∈ (0, 1) such that for i ∈ N , V t
ij ≥ ζ if

j ∈ N t
i , and V t

ij = 0 if j /∈ N t
i ; (iii) G∞ = (N , E∞) is connected where E∞ , {(i, j) ∈ N ×N :

(i, j) ∈ E t for infinitely many t ∈ Z+}, and there exists Z ∋ T ◦ > 1 such that if (i, j) ∈ E∞, then

(i, j) ∈ Et ∪ Et+1 ∪ ... ∪ Et+T◦−1 for all t ≥ 1.

Lemma 3.1. [21] Let Assumption 3.1 holds, and W t,s = V tV t−1...V s+1 for t ≥ s + 1. Given
s ≥ 0 the entries of W t,s converges to 1

N as t→∞ with a geometric rate, i.e., for all i, j ∈ N , one

has
∣

∣W t,s
ij − 1

N

∣

∣ ≤ Γαt−s, where Γ , 2(1+ζ−T̄ )/(1−ζ T̄ ), α , (1−ζ T̄ )1/T̄ , and T̄ , (N−1)T ◦.

Consider the k-th iteration of PDA as shown in (12). Instead of computing λk+1 exactly according

to (13), we propose to approximate λk+1 with the help of Lemma 3.1 and set µk+1 to this approx-
imation. In particular, let tk be the total number of consensus steps done before k-th iteration of
PDA, and let qk ≥ 1 be the number of consensus steps within iteration k. For x = [xi]i∈N , define

Rk(x) , PB

(

(W tk+qk,tk ⊗ In) x
)

(16)

to approximate PC(x) in (13). Note that Rk(·) can be computed in a distributed fashion requiring
qk communications with the neighbors for each node. Indeed,

Rk(x) = [Rk
i (x)]i∈N such that Rk

i (x) , PB0

(

∑

j∈N

W
tk+qk,tk
ij xj

)

. (17)
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Moreover, the approximation error, Rk(x) − PC(x), for any x can be bounded as in (18) due to
non-expansivity of PB and using Lemma 3.1. From (15), we get for all i ∈ N ,

‖Rk
i (x)− PB0

(

p̃(x)
)

‖ = ‖PB0

(

∑

j∈N

W
tk+qk,tk
ij xj

)

− PB0

(

1

N

∑

j∈N

xj

)

‖

≤ ‖
∑

j∈N

(

W
tk+qk,tk
ij − 1

N

)

xj‖ ≤
√
N Γαqk ‖x‖ . (18)

Thus, (15) implies that ‖Rk(x) − PC(x)‖ ≤ N Γαqk ‖x‖. Next, to obtain an inexact variant of
(12), we replace the exact computation in (12c) with the inexact iteration rule:

µ
k+1 ← µ

k + γ(2xk+1 − x
k)− γRk

(

1

γ
µ

k + 2xk+1 − x
k
)

. (19)

Thus, PDA iterations given in (12) can be computed inexactly, but in decentralized way for dynamic
connectivity, via the node-specific computations as in Algorithm DPDA-D displayed in Fig. 2 below.

Algorithm DPDA-D ( x0,θ0, γ, {τi, κi}i∈N , {qk}k≥0 )

Initialization: µ0
i ← 0, i ∈ N

Step k: (k ≥ 0)

1. xk+1

i ← proxτiρi

(

xk
i − τi

(

∇fi(x
k
i ) +A⊤

i θ
k
i + µk

i

))

, ri ← 1

γ
µk
i + 2xk+1

i − xk
i i ∈ N

2. θk+1

i ← PK◦
i

(

θki + κi

(

Ai(2x
k+1

i − xk
i )− bi

)

)

, i ∈ N
3. For ℓ = 1, . . . , qk
4. ri ←

∑

j∈N
tk+ℓ

i
∪{i}

V
tk+ℓ

ij rj , i ∈ N
5. End For

6. µk+1

i ← µk
i + γ(2xk+1

i − xk
i )− γPB0

(

ri
)

, i ∈ N

Figure 2: Distributed Primal Dual Algorithm for Dynamic Gt (DPDA-D)

Next, we define the proximal error sequence {ek}k≥1 as in (20), which will be used later for ana-
lyzing the convergence of Algorithm DPDA-D displayed in Fig. 2.

e
k+1

, PC

(

1

γ
µ

k + 2xk+1 − x
k
)

−Rk
(

1

γ
µ

k + 2xk+1 − x
k
)

; (20)

hence, µk = λk + γek for k ≥ 1 when (12c) is replaced with (19). In the rest, we assume µ0 = 0.
The following observation will also be useful to prove error bounds for DPDA-D iterate sequence.

For each i ∈ N , the definition ofRk
i in (17) implies thatRk

i (x) ∈ B0 for all x; hence, from (19),

‖µk+1

i ‖ ≤ ‖µk
i + γ(2xk+1

i − xk
i )‖+ γ‖Rk

i

(

1

γ
µk + 2xk+1 − x

k
)

‖ ≤ ‖µk
i ‖+ 4γB.

Thus, we trivially get the following bound on
∥

∥µk
∥

∥:

‖µk‖ ≤ 4γ
√
N B k. (21)

Moreover, for any µ and λ we have that

σC(µ) = sup
x∈C

〈λ,x〉+ 〈µ− λ,x〉 ≤ σC(λ) +
√
N B ‖µ− λ‖. (22)

Theorem 3.2. Suppose Assumption 1.1 holds. Starting from µ0 = 0, θ0 = 0, and an arbitrary

x0, let {xk,θk,µk}k≥0 be the iterate sequence generated using Algorithm DPDA-D, displayed in

Fig. 2, using qk =
p√
k consensus steps at the k-th iteration for all k ≥ 1 for some rational p ≥ 1.

Let primal-dual step-sizes {τi, κi}i∈N and γ be chosen such that the following holds:
( 1

τi
− Li − γ

) 1

κi

> σ2
max(Ai), ∀ i ∈ N . (23)

Then {xk,θk,µk}k≥0 converges to {x∗,θ∗,λ∗}, a saddle point of (11) such that x∗ = 1 ⊗ x∗

and (x∗,θ∗) is a primal-dual optimal solution to (3). Moreover, the following bounds hold for all
K ≥ 1:

‖λ∗‖ dC̃(x̄K) +
∑

i∈N

‖θ∗i ‖ dKi(Aix̄
K
i − bi) ≤ Θ2 +Θ3(K)

K
, |Φ(x̄K)− Φ(x∗)| ≤ Θ2 +Θ3(K)

K
,

where x̄K , 1
K

∑K
k=1 x

k, Θ2 , 2‖λ∗‖
(

1
γ ‖λ

∗‖+
∥

∥x0 − x∗∥
∥

)

+
∑

i∈N

[

1
τi
‖x∗i−x0i ‖2+ 4

κi
‖θ∗i ‖2

]

,

and Θ3(K) , 8N2B2Γ
∑K

k=1 α
qk
[

2γk2 +
(

γ + ‖λ∗‖√
NB

)

k
]

. Moreover, supK∈Z+
Θ3(K) < ∞;

hence, 1
KΘ3(K) = O( 1

K ).
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Remark 3.1. Note that the suboptimality, infeasibility and consensus violation at theK-th iteration
is O(Θ3(K)/K), where Θ3(K) denotes the error accumulation due to approximation errors, and

Θ3(K) can be bounded above for all K ≥ 1 as Θ3(K) ≤ R
∑K

k=1 α
qkk2 for some constant

R > 0. Since
∑∞

k=1 α
p√
kk2 < ∞ for any p ≥ 1, if one chooses qk =

p√
k for k ≥ 1, then the

total number of communications per node until the end of K-th iteration can be bounded above by
∑K

k=1 qk = O(K1+1/p). For large p, qk grow slowly, it makes the method more practical at the cost

of longer convergence time due to increase in O(1) constant. Note that qk = (log(k))2 also works
and it grows very slowly. We assume agents know qk as a function of k at the beginning, hence,
synchronicity can be achieved by simply counting local communications with each neighbor.

4 Numerical Section

We tested DPDA-S and DPDA-D on a primal linear SVM problem where the data is distributed
among the computing nodes in N . For the static case, communication network G = (N , E) is a
connected graph that is generated by randomly adding edges to a spanning tree, generated uniformly
at random, until a desired algebraic connectivity is achieved. For the dynamic case, for each consen-

sus round t ≥ 1, Gt is generated as in the static case, and V t , I− 1
cΩ

t, where Ωt is the Laplacian

of Gt, and the constant c > dtmax. We ran DPDA-S and DPDA-D on the line and complete graphs as
well to see the topology effect – for the dynamic case when the topology is line, each Gt is a random

line graph. Let S , {1, 2, .., s} and D , {(xℓ, yℓ) ∈ R
n × {−1,+1} : ℓ ∈ S} be a set of feature

vector and label pairs. Suppose S is partitioned into Stest and Strain, i.e., the index sets for the
test and training data; let {Si}i∈N be a partition of Strain among the nodes N . Let w = [wi]i∈N ,

b = [bi]i∈N , and ξ ∈ R
|Strain| such that wi ∈ R

n and bi ∈ R for i ∈ N .

Consider the following distributed SVM problem:

min
w,b,ξ

{

1

2

∑

i∈N

‖wi‖2 + C |N |
∑

i∈N

∑

ℓ∈Si

ξℓ :
yℓ(w

T
i xℓ + bi) ≥ 1− ξℓ, ξℓ ≥ 0, ℓ ∈ Si, i ∈ N ,

wi = wj , bi = bj (i, j) ∈ E
}

Similar to [3], {xℓ}ℓ∈S is generated from two-dimensional multivariate Gaussian distribution with
covariance matrix Σ = [1, 0; 0, 2] and with mean vector either m1 = [−1,−1]T or m2 = [1, 1]T

with equal probability. The experiment was performed for C = 2, |N | = 10, s = 900 such

that |Stest| = 600, |Si| = 30 for i ∈ N , i.e., |Strain| = 300, and qk =
√
k. We ran DPDA-S

and DPDA-D on line, random, and complete graphs, where the random graph is generated such
that the algebraic connectivity is approximately 4. Relative suboptimality and relative consensus

violation, i.e., max(i,j)∈E ‖[w⊤
i bi]

⊤ − [w⊤
j bj ]

⊤‖/
∥

∥

∥
[w∗⊤b∗]

∥

∥

∥
, and absolute feasibility violation are

plotted against iteration counter in Fig. 3, where [w∗⊤b∗] denotes the optimal solution to the central
problem. As expected, the convergence is slower when the connectivity of the graph is weaker.
Furthermore, visual comparison between DPDA-S, local SVMs (for two nodes) and centralized
SVM for the same training and test data sets is given in Fig. 4 and Fig. 5 in the appendix.

Figure 3: Static (top) and Dynamic (bottom) network topologies: line, random, and complete graphs
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