
A Extended Related Work

Initial work in learning with abstention has focused on the optimal trade-off between the error
and abstention rate [5, 6] as well as finding the optimal abstention rule based on the ROC curve
[14, 28, 25]. Another series of papers used rejection options to reduce misclassification rate, but
theoretical learning guarantees were not given [13, 24, 2, 17, 21]. More recently, El-Yaniv and Wiener
[10, 11] study the trade-off between the coverage and the accuracy of classifiers by using an approach
related to active learning.

A seemingly connected framework is that of cost-sensitive learning where the cost of misclassifying
class y

1

as class y
2

may depend on the pair (y
1

, y
2

) [12]. It would be tempting to view classification
with abstention as a special instance of cost-sensitive learning with the set of classes {�1, +1, R�},
with R� standing for abstention and where a different cost would be assigned to abstention. However,
in our problem, R� is not an intrinsic class: training or test samples bear no R� label. Instead, the
distribution over that set will depend on the algorithm. Thus, classification with abstention cannot be
cast as a special case of cost-sensitive learning. Sequential learning with a budget is also a marginally
related task where abstention functions are learned. But, unlike our approach, it is done in a two-step
process where the classifier function is fixed [29, 30]. Lastly, the option of abstaining has been
analyzed in related topics including the multi-class setting [27, 9, 3], reinforcement learning [19],
online learning [33] and active learning [4].

B Confidence-based abstention model

In this appendix, we describe two confidence-based abstention algorithms: the DHL algorithm and
the TSB algorithm.

B.1 DHL algorithm

The DHL algorithm found in [1] is based on a double hinge loss, which is a hinge-type convex
surrogate, with favorable consistency results. The optimization problem solved by the DHL algorithm
minimizes this surrogate loss along with the constraint that the norm of the classifier is bounded by
1 � c. More precisely, let H be a hypotheses sets defined in terms of PSD kernels K over X where
� is the feature mapping associated to K, then the DHL solves the following QCQP optimization
problem

min

↵,⇠,�

mX

i=1

⇠
i

+

1 � 2c

c
�
i

subject to
mX

i,j=1

↵
i

↵
j

K(x
i

, x
j

)  (1 � c)2

⇠
i

� 1 � y
i

✓
mX

i=1

↵
i

K(x
i

, x)

◆
^ ⇠

i

� 0,

�
i

� �y
i

✓
mX

i=1

↵
i

K(x
i

, x)

◆
^ �

i

� 0, i 2 [1, m].

B.2 Two-step Adaboost (TSB)

The TSB algorithm is a confidence-based algorithm that proceeds in two steps. The first step consists
of training a vanilla Adaboost algorithm which returns a classifier h. Then, given classifier h, the
second step is to search for the best threshold � that minimizes the empirical abstention loss. More
precisely, we pick the parameter � via cross-validation, by choosing the threshold that minimizes the
empirical abstention loss on the validation set. This is a natural confidence-based boosting algorithm
and since the BA algorithm is based on boosting, it provides a useful baseline for our experiments.
We implemented this algorithm using scikit-learn [23].

C Theoretical guarantees

In this appendix, we provide the proof of the theoretical guarantees presented in Section 3.2.
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Let u ! �

1

(�u) and u ! �

2

(�u) be two strictly non-increasing differentiable convex functions
upper-bounding u ! 1

u0

over R. We assume that a , b > 0, and c > 0. We will use the quantity
min(�

1

(a u), 1) and so we assume that there exists u such that �
1

(a u) < 1 and similarly, we need
to analyze min(c�

2

(u), 1) and so we assume there exists a u such that c�
2

(u) < 1. Note that if
these two assumptions did not hold, then the surrogate would not be useful. Let ��1

1

and ��1

2

be the
inverse functions, which always exist since �

1

and �
2

are strictly monotone functions. For simplicity,
we define C

�1 = 2a�0
1

�
�

�1

1

(1)

�
and C

�2 = 2cb�0
2

�
�

�1

2

(1/c)
�
.

Theorem 2. Let H and R be family of functions mapping X to R. Assume N > 1. Then, for any
� > 0, with probability at least 1 � � over the draw of a sample S of size m from D, the following
holds for all (h, r) 2 F:

R(h, r)  E
(x,y)⇠S

[L
MB

(h, r, x, y)] + C
�1Rm

(H) + (C
�1 + C

�2)Rm

(R) +

s
log

1

�

2m
.

Proof. Let L
MB,F be the family of functions defined by L

MB,F =

�
(x, y) 7!

min(L
MB

(h, r, x, y), 1), (h, r) 2 F
 

. Since min(L
MB

, 1) is bounded by one, by the general
Rademacher complexity generalization bound [16], with probability at least 1 � � over the draw of a
sample S, the following holds:

R(h, r)  E
(x,y)⇠D

[min(L
MB

(h, r, x, y), 1)]

 E
(x,y)⇠S

[min(L
MB

(h, r, x, y), 1)] + 2R
m

(L
MB,F) +

s
log

1

�

2m

 E
(x,y)⇠S

[L
MB

(h, r, x, y)] + 2R
m

(L
MB,F) +

s
log

1

�

2m
.

Since for any a, b 2 R, min

�
max(a, b), 1

�
= max

�
min(a, 1), min(b, 1)

�
, we can write

min(L
MB

(h, r, x, y), 1)

= max

⇣
min

⇣
�

1

�
a [r(x) � yh(x)]

�
, 1
⌘
, min

⇣
c�

2

�
�b r(x)

�
, 1
⌘⌘

 min

⇣
�

1

�
b [r(x) � yh(x)]

�
, 1
⌘

+ min

⇣
c�

2

�
�b r(x)

�
, 1
⌘
.

The function �
1

�
a u) has a non-negative increasing derivative because it is a strictly increasing

convex function. Since min

�
�

1

�
a u

�
, 1
�

= �

1

�
a u

�
for a u  �

�1

1

(1), the Lipschitz constant
of u 7! min

�
�

1

�
a u

�
, 1
�

is given by a�0
1

(�

�1

1

(1)). Similarly, u 7! min

�
c�

2

�
b u

�
, 1
�

is also
cb�0

2

(�

�1

2

(1/c))-Lipschitz. Then, by Talagrand’s lemma [18],

R
m

(L
MB,F)  a�0

1

�
�

�1

1

(1)

�
R

m

�
(x, y) 7! r(x) � yh(x) : (h, r) 2 F

�

+ c b �0
2

�
�

�1

2

(1/c)
�
R

m

�
(x, y) 7! �r(x) : (h, r) 2 F

�
. (10)

We examine each of the terms in the right-hand side of the inequality:

R
m

�
(x, y) 7! r(x) � yh(x) : (h, r) 2 F

�
= E

�


sup

(h,r)2F

1

m

mX

i=1

�
i

(r(x
i

) � y
i

h(x
i

))

�

 E
�


sup

(h,r)2F

1

m

mX

i=1

�
i

r(x
i

)

�
+ E

�


sup

(h,r)2F

1

m

mX

i=1

��
i

(y
i

h(x
i

))

�

= E
�


sup

(h,r)2F

1

m

mX

i=1

�
i

r(x
i

)

�
+ E

�


sup

(h,r)2F

1

m

mX

i=1

�
i

h(x
i

)

�

= R
m

(R) + R
m

(H),

since �y
i

�
i

and �
i

are distributed in the same way, we effectively can absorb �y
i

into the def-
inition of �

i

. Lastly, since the ↵ does not affect the Rademacher complexity, we have that
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E�


sup

(h,r)2F
1

m

P
m

i=1

�
i

h(x
i

)

�
= R

m

(H) and similarly E�


sup

(h,r)2F
1

m

P
m

i=1

�
i

r(x
i

)

�
=

R
m

(R). By a similar reasoning, we also have that

R
m

�
(x, y) 7! �r(x) : (h, r) 2 F

�
=E

�


sup

(h,r)2F

1

m

mX

i=1

�
i

r(x
i

)

�
= R

m

(R).

Combining the above, we have that the right-hand side of Inequality 10 is bounded as follows

R
m

(L
MB,F)  a �0

1

(�

�1

1

(1))R
m

(H) + (c b �0
2

�
�

�1

2

(1/c)
�

+ a �0
1

(�

�1

1

(1)))R
m

(R),

which completes the proof.

By taking �
1

(u) = �

2

(u) = exp(u), we have the following theorem since in this case, we simply
have that C

�1 = 2a and C
�2 = 2b .

Theorem 6. Let H and R be family of functions mapping X to R. Assume N > 1. Then, for any
� > 0, with probability at least 1 � � over the draw of a sample S of size m from D, the following
holds for all (h, r) 2 F:

R(h, r)  E
(x,y)⇠S

[L
MB

(h, r, x, y)] + 2aR
m

(H) + 2(a + b )R
m

(R) +

r
log 1/�

2m
.

The corollary below is a direct consequence of the above Theorem 6 and it presents margin-based
guarantees that are subsequently used to derive the BA algorithm.
Corollary 3. Assume N > 1 and fix ⇢ > 0. Then, for any � > 0, with probability at least 1 � � over
the draw of an i.i.d. sample S of size m from D, the following holds for all (h, r) 2 F:

R(h, r)  E
(x,y)⇠S

[L⇢

MB

(h, r, x, y)] +

2a

⇢
R

m

(H) +

2(a + b )

⇢
R

m

(R) +

r
log 1/�

2m
.

D Direction and step of projected coordinate descent

In this appendix, we provide the details of the projected coordinate descent, projected CD, algorithm
by first deriving the direction and then the optimal step. We give a closed form solution of the step
size for exponential loss �(u) = exp(u) and logistic loss �(u) = log

2

(1 + eu).

D.1 Direction

At each iteration t�1, the direction e
k

selected by projected CD is k = argmax

j2[1,N ]

|F 0
(↵

t�1

, e
j

)|
where the derivative is given by the following

F 0
(↵

t�1

, e
j

) =

1

m

mX

i=1

⇣
[r

j

(x
i

) � y
i

h
j

(x
i

)]�

0�r
t�1

(x
i

) � y
i

h
t�1

(x
i

)

�

� cb r
j

(x
i

)�

0��b r
t�1

(x
i

)

�⌘
+ �.

Using the definition of D(i, 1) and D(i, 2), we re-write the derivative as follows:

F 0
(↵

t�1

, e
j

) =

Z
t

m

mX

i=1

⇣
[r

j

(x
i

) � y
i

h
j

(x
i

)]D
t

(i, 1) � cb r
j

(x
i

)D
t

(i, 2)

⌘
+ �

=

Z
t

m

⇣
2Z

1,t

✏
s,j

� Z
1,t

+ Z
1,t

r
j,1

� cb Z
2,t

r
j,2

⌘
+ �.

Hence, we have that the descent direction is k = argmin

j2[1,N ]

2Z
1,t

✏
t,j

+ Z
1,t

r
j,1

� cb Z
2,t

r
j,2

.
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D.2 Step

The optimal step values ⌘ for direction e
k

is given by argmin

⌘+↵

t�1,k�0

F (↵
t�1

+⌘e
k

). The values
⌘ may be found via line search or other numerical methods, but below we derive a closed-form
solution by minimizing an upper bound of F (↵

t�1

+ ⌘e
k

).

Since � is convex and since for all i 2 [1, m]

�y
i

h
k

(x
i

) + r
k

(x
i

) =

1 + y
i

h
k

(x
i

) � r
k

(x
i

)

2

· (�1) +

1 � y
i

h
k

(x
i

) + r
k

(x
i

)

2

· (1),

we have that the following holds for all ⌘ 2 R
�

�
r
t�1

(x
i

) � y
i

h
t�1

(x
i

) � ⌘y
i

h
k

(x
i

) + ⌘r
k

(x
i

)

�

 1 + y
i

h
k

(x
i

) � r
k

(x
i

)

2

�

�
r
t�1

(x
i

) � y
i

h
t�1

(x
i

) � ⌘
�

+

1 � y
i

h
k

(x
i

) + r
k

(x
i

)

2

�

�
r
t�1

(x
i

) � y
i

h
t�1

(x
i

) + ⌘
�
.

Similarly, we have that �b r
k

(x
i

) =

�b r

k

(x

i

)

2

· (1) +

b r

k

(x

i

)

2

· (�1)

�

�
�b r

t�1

(x
i

) � b ⌘r
k

(x
i

)

�

 �b r
k

(x
i

)

2

�

�
�b r

t�1

(x
i

) + ⌘
�

+

b r
k

(x
i

)

2

�

�
�b r

t�1

(x
i

) � ⌘
�

Thus, we can upper-bound F as follows:

F (↵
t�1

+ ⌘e
k

)  1

m

mX

i=1

1 + y
i

h
k

(x
i

) � r
k

(x
i

)

2

�

�
r
t�1

(x
i

) � y
i

h
t�1

(x
i

) � ⌘
�

+

1

m

mX

i=1

1 � y
i

h
k

(x
i

) + r
k

(x
i

)

2

�

�
r
t�1

(x
i

) � y
i

h
t�1

(x
i

) + ⌘
�

+

1

m

mX

i=1

�b r
k

(x
i

)

2

c�
�
�b r

t�1

(x
i

) + ⌘
�

+

1

m

mX

i=1

b r
k

(x
i

)

2

c�
�
�b r

t�1

(x
i

) � ⌘
�

+

NX

j=1

↵
t�1

� + �⌘

We define J(⌘) to be the right-hand side of the inequality above. We will select ⌘ as the solution of
min

⌘+↵

t�1,k�0

J(⌘), which is a convex optimization problem since J is convex.

D.2.1 Exponential loss

When �(u) = exp(u), the J function is given by

J(⌘) =

1

m

mX

i=1

1 + y
i

h
k

(x
i

) � r
k

(x
i

)

2

ert�1(xi

)�y

i

h
t�1(xi

)e�⌘

+

1

m

mX

i=1

1 � y
i

h
k

(x
i

) + r
k

(x
i

)

2

ert�1(xi

)�y

i

h
t�1(xi

)e⌘

+

1

m

mX

i=1

�b r
k

(x
i

)

2

ce�b r
t�1(xi

)e⌘

+

1

m

mX

i=1

b r
k

(x
i

)

2

ce�b r
t�1(xi

)e�⌘

+

NX

j=1

↵
t�1

� + �⌘.
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Since ert�1(xi

)�y

i

h
t�1(xi

)

= �

0�r
t�1

(x
i

) � y
i

h
t�1

(x
i

)

�
= Z

t

D
t

(i, 1) and e�b r
t�1(xi

)

=

�

0��b r
t�1

(x
i

)

�
= Z

t

D
t

(i, 2), it implies that

J(⌘) =

Z
t

m

⇣
(1 � ✏

t,k

� r
k,1

2

)Z
1,t

e�⌘

+ (✏
t,k

+

r
k,1

2

)Z
1,t

e⌘

+

�b r
k,2

2

cZ
2,t

e⌘ +

b r
k,2

2

cZ
2,t

e�⌘

⌘
+

NX

j=1

↵
t�1

� + �⌘.

For simplicity below, we define A = Z
1,t

(1 � ✏
t,k

� r

k,1

2

) + cZ
2,t

b r

k,2

2

and Z = Z
1,t

(✏
t,k

+

r

k,1

2

) +

cZ
2,t

�b r

k,2

2

so that J can be written as

J(⌘) =

Z
t

m

⇣
Ae�⌘

+ Ze⌘
⌘

+

NX

j=1

↵
t�1

� + �⌘.

Introducing a Lagrange variable � � 0, the optimization problem then becomes

L(⌘, �) = J(⌘) � �(⌘ + ↵
t�1,k

) with r
⌘

L(⌘, �) = J 0
(⌘) � �.

By the KKT conditions, at the solution (⌘⇤, �⇤
), J 0

(⌘⇤
) = �⇤ and �⇤

(⌘⇤
+ ↵

t�1,k

) = 0. Thus, we
can fall in one of the two following cases:

1. (�⇤ > 0) , (J 0
(⌘⇤

) > 0) and ⌘⇤
= �↵

t�1,k

2. �⇤
= 0 and ⌘⇤ is a solution of the equation J(⌘⇤

) = 0

The first case can be written as
Z
t

m

⇣
� Ae↵t�1,k

+ Ze�↵

t�1,k

⌘
+ � > 0 , Ae↵t�1,k � Ze�↵

t�1,k <
m

Z
t

�.

For the second case we have to solve J 0
(⌘) = 0 which can be written as e2⌘

+

m�

Z

t

Z

e⌘ � A

Z

. The
solution is given by

e⌘ = � m�

2Z
t

Z
+

r⇣ m�

2Z
t

Z

⌘
2

+

A

Z
, ⌘ = log

h
� m�

2Z
t

Z
+

r⇣ m�

2Z
t

Z

⌘
2

+

A

Z

i
.

Noting that A = Z
1,t

� Z, the above can be simplified to

⌘ = log

h
� m�

2Z
t

Z
+

r⇣ m�

2Z
t

Z

⌘
2

+

Z
1,t

Z
� 1

i
. (11)

D.2.2 Logistic loss

For the logistic loss, we have that for any u 2 R,�(�u) = log

2

(1+e�u

) and �0
(�u) =

1

log 2(1+e

u

)

.
We have the following upper bound

�(�u � v) � �(�u) = log

2

⇣
1 + e�u

+ e�u�v � e�u

1 + e�u

⌘
= log

2

⇣
1 +

e�v � 1

e�u

+ 1

⌘

 e�v � 1

log 2(1 + eu)

= �

0
(�u)(e�v � 1),

which allows us to write

F (↵
t�1

+ ⌘e
k

) � F (↵
t�1

)  1

m

mX

i=1

�

0
(r

t�1

(x
i

) � y
i

h
t�1

(x
i

))(e�⌘y

i

h

k

(x

i

)+⌘r

k

(x

i

) � 1)

+ c�0
(�b r

t�1

(x
i

))(e�b ⌘r

k

(x

i

) � 1) + �⌘.

From here, we can use a very similar reasoning as the exponential loss which results in a similar
expression for the step size.
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E Convergence analysis of algorithm

In the section, we prove the convergence of the projected CD algorithm for F (↵) =

1

m

P
m

i=1

�

�
r
t

(x
i

) � y
i

h
t

(x
i

)

�
+ c�

�
�b r

t

(x
i

)) + �
P

N

j=1

↵
j

.

Theorem 4. Assume that � is twice differentiable and that �00
(u) > 0 for all u 2 R. Then, the

projected CD algorithm applied to F converges to the solution ↵⇤ of the optimization problem
max↵�0

F (↵). If additionally � is strongly convex over the path of the iterates ↵
t

then there exists
⌧ > 0 and ⌫ > 0 such that for all t > ⌧ ,

F (↵
t+1

) � F (↵⇤
)  (1 � 1

⌫
)(F (↵

t

) � F (↵⇤
)). (12)

Proof. Let H be the matrix in R2m⇥N defined by H
(i,1),j

= y
i

h
j

(x
i

) � r
j

(x
i

) and H
(i,2),j

=

b r
j

(x
i

) for all i 2 [1, m] and for all j 2 [1, N ], and let e
(i,1)

and e
(i,2)

be unit vectors in R2m. Then
for any ↵, we have that eT

i,1

H↵ =

P
N

j=1

↵
j

(y
i

h
j

(x
i

) � r
j

(x
i

)) and eT
i,2

H↵ = b
P

N

j=1

↵
j

r
j

(x
i

).
Thus, we can write for any ↵ 2 RN ,

F (↵) = G(H↵) + ⇤

T↵, (13)

where ⇤ = (⇤

1

, . . . ,⇤
N

)

T and where G is the function defined by

G(u) =

1

m

mX

i=1

�(�eT
i,1

u) + c�(�eT
i,2

u) =

1

m

mX

i=1

�(�u
i,1

) + c�(�u
i,2

) (14)

for all u 2 R2m with u
i,1

its (i, 1)th coordinate and u
i,2

its (i, 2)th coordinate. Since � is differ-
entiable, the function G is differentiable and r2G(u) is a diagonal matrix with diagonal entries
1

m

�

00
(�u

i,1

) > 0 or c

m

�

00
(�u

i,2

) > 0 for all i 2 [1, m]. Thus, r2G(H↵) is positive definite for
all ↵. The conditions of Theorem 2.1 of [20] are therefore satisfied for the optimization problem

min

↵�0

G(H↵) + ⇤

T↵, (15)

thereby guaranteeing the convergence of the projected CD method applied to F . If additionally F is
strongly convex over the sequence of ↵

t

s, the by the result of [20][page 26], the Inequality 12 holds
for the projected coordinate method that we are using which selects the best direction at each round,
as with the Gauss-Southwell method.

F Calibration

In this section, we show that L
SB

(h, r, x, y) = ea (r(x)�yh(x))

+ce�b r(x) is a calibrated loss whenever
b

a

= 2

q
1�c

c

. Below, let L := L
SB

(h, r, x, y) and define ⌘(x) = P(Y = +1|X = x).

Theorem 1. For a > 0 and b > 0, the inf

(h,r)

E
(x,y)

[L(h, r, x, y)] is attained at (h⇤
L

, r⇤
L

) such that

sign(h⇤
) = sign(h⇤

L

) and sign(r⇤) = sign(r⇤
L

) if and only if b

a

= 2

q
1�c

c

.

Proof. Conditioning on the label y, we can write the generalization error for the L(h, r, x, y) as
follows

E
(x,y)

[L(h, r, x, y)] = E
x

[⌘(x) (�h(x), r(x)) + (1 � ⌘(x)) (h(x), r(x))],

where  (�h(x), r(x)) = ea (r(x)�h(x))

+ ce�b r(x). For simplicity, we also let L
 

(h(x), r(x)) =

⌘(x) (�h(x), r(x))+(1�⌘(x)) (h(x), r(x)). Since the infimum is over all measurable functions
(h(x), r(x)), we have that inf

(h,r)

E
x

L
 

(h(x), r(x)) = E
x

inf

(h(x),r(x))

L
 

(h(x), r(x)). Thus, we
need to find the optimal (u, v) for a fixed x that minimizes L

 

(u, v) over all measurable functions,
which is a convex optimization problem. When ⌘(x) = 0, the sign of the minimizers of L

 

(u, v)

are u⇤ < 0 and v⇤ > 0 while when ⌘(x) = 1, the the sign of the minimizers are u⇤ > 0 and v⇤ > 0,
which matches the sign of h⇤ and r⇤ in both cases respectively. Now for ⌘(x) 2]0, 1[, we take the
derivative of L

 

(u, v) with respect to u

@L (u,v)

@u

= �⌘(x)a ea (v�u)

+ (1 � ⌘(x))a ea (u+v).
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Setting it to zero and solving for u, we have that u⇤
=

1

2a

log(

⌘(x)

1�⌘(x)

). We can now see that u⇤ > 0

if ⌘(x) > 1

2

and u⇤  0 if ⌘(x)  1

2

. Recalling that h⇤
= ⌘(x) � 1

2

, we can conclude that the sign
of u⇤ matches the sign of h⇤.

We now take the derivative of L
 

(u⇤, v) with respect to v

@L (u

⇤
,v)

@v

= ⌘(x)ea (v�u

⇤
)

+ (1 � ⌘(x))ea (v+u

⇤
)

+ c(�b )e�b v.

Setting it equal to zero and using the fact that ⌘(x)e�a u

⇤
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⇤
= 2

p
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we have that
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⇣
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2a

q
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⌘(x)(1�⌘(x))

⌘
.

Now, we know that the Bayes classifiers (h⇤, r⇤) satisfy h⇤
= ⌘(x) � 1

2

and r⇤ = |h⇤| � 1

2

+ c so
that the following holds
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)

2

=

1

4

� (r⇤ +

1

2

� c)2.

Thus, we can replace ⌘(x)(1 � ⌘(x)) in the definition of v⇤ to arrive at this equation
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We now analyze when v⇤ > 0 which is equivalent to
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Since
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� (r⇤ +
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� c)2 for r⇤ > 0 and using the fact that c(1 � c) =
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� c)2, we need that cb
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�
p

c(1 � c) . By similar reasoning for v⇤  0 , we need that
cb

2a


p

c(1 � c). Thus, we can conclude that the sign of v⇤ matches the sign of r⇤ if and only if
cb

2a

=

p
c(1 � c).

G Abstention stumps

Under the assumptions of Section 4.3, the derivative of F can be simplified as follows

F 0
(↵
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, e
j

) =

Z
t
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i
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⌘
+ � (16)

From the definition of D(i, 1) and the assumptions on h(x) and r(x), the following holds
mX
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D
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i
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Solving for
P
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h
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(x
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D
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(i, 1) and plugging it in Equation 16, we can simplify the derivative
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Thus, the optimal descent direction is k = argmin

j2[1,N ]

2Z
1,t

✏
t,j

+ 2Z
1,t

r
j,1

� cb Z
2,t

r
j,2

Below, we provide the proof of the lemma that was needed to decouple the optimization problem for
the abstention stumps.
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Lemma 5. The optimization problem without the constraint (✓
1

< ✓
2

) can be decomposed as
follows:
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Proof. For simplicity below, let  =
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and observe that the following identity
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H Alternative surrogate, LMB

In this section, we derive the boosting algorithm for the surrogate loss

L
MB

(h, r, x, y) = max

⇣
�

1

�
a [r(x) � yh(x)]

�
, c�

2

�
�b r(x)

�⌘
. (17)

By a similar reasoning as Section 4, the objective function F (↵) of our optimization problem is given
by the following
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Z
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where Z
t

is the normalization factor given by Z
t

=

P
m

i=1

w
t�1

(i).

We then apply projected coordinate descent to this objective function. Notice that our objective F
is differentiable everywhere except when u

t

(i) = v
t

(i). A true maximum descent algorithm would
choose the element of the subgradient that is closest to 0 as the descent direction. However, since this
event is rare in our case, we arbitrarily a pick descent direction that is an element of the subgradient.
For simplicity below, we will use the symbol F 0

(↵
t�1

, e
j

) to denote the directional derivative with
the added condition that for the non-differentiable point, we choose the direction that is an element of
the subgradient.

H.0.3 Direction and step
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The step can simply be found via line search or other numerical methods.

H.1 Abstention stumps

We focus in on a special case where the base classifiers have a specific form defined as follows: h(x)

takes values in {�1, 0, 1} and r(x) take values in {0, 1}. We also have the added the condition that
for each sample point x, only one of the two components of (h(x), r(x)) is non-zero. Under this
setting, Equation 19 can be simplified as follows. The derivative of F is given by
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which can be rewritten as
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From the assumptions on h(x) and r(x), the relation below holds:
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Table 1: For each data set, we report the sample size and the number of features.
Data Sets Sample Size Feature
australian 690 14
cod 369 8
skin 400 3
banknote 1,372 4
haberman 306 3
pima 768 8

Plugging this into equation 20, we have that
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This in turn implies that our weak learning algorithm is given by the following:
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The following lemma allows us to decouple the optimization problem into two optimization problems
with respect to ✓

1

and ✓
2

that can be solved in linear time.
Lemma 7. The optimization problem without the constraint (✓
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follows:
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which completes the proof.

I Data sets

Table 1 shows the sample size and number of features for each data set used in our experiments.
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J Experiments

In this appendix, we report the results of several experiments by presenting different tables in order to
compare the three algorithms studied in this paper: TSB, DHL, and BA. In each table, we provide the
average and standard deviation on the test set for the hyper parameter configurations that admitted the
smallest abstention loss on the validation set. Overall, these results reveal that BA yields a significant
improvement in practice for all the data sets across different values of cost c.

Table 2 gives the average abstention loss on the test set for TSB, DHL, and BA algorithms. Across
almost all the different values of cost c, the BA algorithm attains the smallest abstention loss
compared with the TSB and DHL algorithms. On some datasets, the TSB performs better than the
DHL algorithm, but on other datasets, its performance largely deteriorates. We also see that the
effects of changing the cost c of rejection for some datasets is much stronger than for other datasets.
For example, the pima dataset has a large change in abstention loss as c increases while for banknote
dataset the difference in abstention loss is very small. These changes reflect the changes in the
fraction of points rejected by the algorithms, see Table 3. Note that this effect also depends on the
algorithm as seen in the cod dataset where BA algorithm’s abstention loss changes only slightly while
for the other two algorithms the difference is much higher as c increases.

Table 3 shows the fraction of points that are rejected on the test set. For all three algorithms, the
fraction of points rejected decreases as the cost c of rejection increases. Moreover, the fraction of
points rejected is much higher for some datasets. For most values of c, the DHL algorithm appears
to reject less frequently, but its abstention loss is also higher. For haberman, australian, and pima

datasets, the TSB algorithm rejection rates is quite high, which reinforces our claim that DHL and
BA algorithms are better algorithms. Finally, Table 4, presents the classification loss on non-rejected
points for different values of c. As c increases, we see that more points are classified incorrectly,
which is in accordance with the previous table since it shows that we are also rejecting less points.
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Table 2: Average abstention loss along with the standard deviations on the test set for the TSB
Algorithm, DHL Algorithm and BA Algorithm

skin skin skin cod cod cod

Cost TSB DHL BA TSB DHL BA
0.05 0.0482 ± 0.0156 0.024 ± 0.016 0.0258 ± 0.0157 0.0384 ± 0.00926 0.044 ± 0.034 0.0386 ± 0.0152
0.1 0.059 ± 0.0345 0.061 ± 0.031 0.0373 ± 0.0166 0.0784 ± 0.0176 0.077 ± 0.028 0.0624 ± 0.00367
0.15 0.0822 ± 0.0141 0.091 ± 0.031 0.0595 ± 0.0174 0.0807 ± 0.0138 0.123 ± 0.030 0.0593 ± 0.0279
0.2 0.052 ± 0.0262 0.128 ± 0.036 0.04 ± 0.0185 0.0903 ± 0.0245 0.175 ± 0.031 0.0654 ± 0.0274
0.25 0.0667 ± 0.0304 0.158 ± 0.041 0.0425 ± 0.0174 0.0831 ± 0.00896 0.204 ± 0.026 0.0676 ± 0.0304
0.3 0.037 ± 0.0226 0.177 ± 0.044 0.0403 ± 0.0162 0.117 ± 0.0151 0.230 ± 0.022 0.0659 ± 0.0285
0.35 0.0593 ± 0.0272 0.204 ± 0.056 0.0477 ± 0.0144 0.11 ± 0.0182 0.259 ± 0.029 0.0581 ± 0.0313
0.4 0.0907 ± 0.0125 0.231 ± 0.067 0.0567 ± 0.0181 0.106 ± 0.0271 0.273 ± 0.026 0.0692 ± 0.0372
0.45 0.0693 ± 0.033 0.215 ± 0.066 0.0525 ± 0.0186 0.12 ± 0.0246 0.276 ± 0.025 0.065 ± 0.0364

haberman haberman haberman pima pima pima

Cost TSB DHL BA TSB DHL BA
0.05 0.05 ± 0.0 0.050 ± 0.000 0.05 ± 0.0 0.0512 ± 0.00247 0.068 ± 0.039 0.05 ± 0.0
0.1 0.103 ± 0.00581 0.143 ± 0.027 0.1 ± 0.0 0.106 ± 0.00787 0.176 ± 0.009 0.1 ± 0.0
0.15 0.15 ± 0.000968 0.213 ± 0.037 0.173 ± 0.0458 0.146 ± 0.00567 0.218 ± 0.023 0.157 ± 0.0221
0.2 0.204 ± 0.0101 0.233 ± 0.036 0.214 ± 0.0256 0.195 ± 0.00489 0.238 ± 0.021 0.172 ± 0.00859
0.25 0.25 ± 0.0 0.256 ± 0.027 0.234 ± 0.0238 0.235 ± 0.00669 0.241 ± 0.025 0.19 ± 0.0211
0.3 0.303 ± 0.0147 0.264 ± 0.019 0.244 ± 0.0196 0.285 ± 0.00428 0.247 ± 0.026 0.201 ± 0.0114
0.35 0.34 ± 0.0123 0.261 ± 0.024 0.265 ± 0.0325 0.327 ± 0.00874 0.250 ± 0.027 0.22 ± 0.016
0.4 0.383 ± 0.0192 0.262 ± 0.028 0.272 ± 0.033 0.374 ± 0.0079 0.255 ± 0.028 0.234 ± 0.0134
0.45 0.441 ± 0.0235 0.258 ± 0.022 0.275 ± 0.0301 0.422 ± 0.0114 0.260 ± 0.034 0.249 ± 0.0171

australian australian australian banknote banknote banknote

Cost TSB DHL BA TSB DHL BA
0.05 0.0499 ± 0.000145 0.112 ± 0.033 0.0564 ± 0.0117 0.000873 ± 0.00139 0.091 ± 0.059 0.00247 ± 0.00195
0.1 0.0867 ± 0.00455 0.120 ± 0.024 0.0777 ± 0.016 0.00284 ± 0.00299 0.082 ± 0.070 0.00705 ± 0.00632
0.15 0.13 ± 0.00615 0.128 ± 0.025 0.093 ± 0.0155 0.00411 ± 0.00108 0.081 ± 0.076 0.0044 ± 0.00411
0.2 0.168 ± 0.00612 0.130 ± 0.036 0.111 ± 0.0215 0.00131 ± 0.00197 0.049 ± 0.020 0.00611 ± 0.00509
0.25 0.209 ± 0.00898 0.134 ± 0.038 0.12 ± 0.0171 0.000727 ± 0.00068 0.061 ± 0.022 0.00636 ± 0.00381
0.3 0.244 ± 0.0126 0.137 ± 0.038 0.137 ± 0.0252 0.00371 ± 0.00239 0.083 ± 0.025 0.00735 ± 0.00397
0.35 0.294 ± 0.0141 0.141 ± 0.039 0.144 ± 0.0263 0.0096 ± 0.00426 0.087 ± 0.052 0.00833 ± 0.00465
0.4 0.335 ± 0.0254 0.148 ± 0.042 0.151 ± 0.0273 0.00422 ± 0.00281 0.119 ± 0.028 0.00785 ± 0.00492
0.45 0.365 ± 0.0223 0.150 ± 0.046 0.145 ± 0.0337 0.00447 ± 0.0038 0.136 ± 0.027 0.00738 ± 0.00399
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Table 3: Average fraction of points rejected along with the standard deviations on the test set for the
TSB Algorithm, DHL Algorithm and BA Algorithm

skin skin skin cod cod cod

Cost TSB DHL BA TSB DHL BA
0.05 0.497 ± 0.207 0.180 ± 0.044 0.317 ± 0.111 0.605 ± 0.0523 0.170 ± 0.045 0.557 ± 0.0972
0.1 0.0567 ± 0.0226 0.158 ± 0.047 0.173 ± 0.0374 0.189 ± 0.074 0.146 ± 0.049 0.543 ± 0.0785
0.15 0.237 ± 0.13 0.125 ± 0.032 0.13 ± 0.0476 0.376 ± 0.0563 0.132 ± 0.039 0.197 ± 0.0488
0.2 0.0267 ± 0.0271 0.100 ± 0.025 0.0667 ± 0.0279 0.168 ± 0.0236 0.065 ± 0.026 0.0568 ± 0.0447
0.25 0.0267 ± 0.0271 0.092 ± 0.033 0.0633 ± 0.0287 0.127 ± 0.0202 0.038 ± 0.018 0.0432 ± 0.0313
0.3 0.0233 ± 0.0309 0.090 ± 0.051 0.0567 ± 0.0226 0.146 ± 0.0335 0.027 ± 0.021 0.0486 ± 0.0303
0.35 0.0267 ± 0.0309 0.075 ± 0.051 0.06 ± 0.0309 0.168 ± 0.0303 0.014 ± 0.010 0.027 ± 0.0242
0.4 0.06 ± 0.0501 0.032 ± 0.011 0.05 ± 0.035 0.151 ± 0.0405 0.000 ± 0.000 0.0378 ± 0.0262
0.45 0.08 ± 0.0323 0.005 ± 0.007 0.05 ± 0.035 0.159 ± 0.0563 0.000 ± 0.000 0.0243 ± 0.0262

haberman haberman haberman pima pima pima

Cost TSB DHL BA TSB DHL BA
0.05 1.0 ± 0.0 1.000 ± 0.000 1.0 ± 0.0 0.999 ± 0.0026 0.884 ± 0.258 1.0 ± 0.0
0.1 0.997 ± 0.00645 0.738 ± 0.183 1.0 ± 0.0 0.927 ± 0.0311 0.304 ± 0.072 1.0 ± 0.0
0.15 0.997 ± 0.00645 0.348 ± 0.123 0.852 ± 0.297 0.925 ± 0.0408 0.143 ± 0.031 0.321 ± 0.0364
0.2 0.939 ± 0.0313 0.148 ± 0.053 0.216 ± 0.0546 0.901 ± 0.043 0.078 ± 0.024 0.33 ± 0.0405
0.25 1.0 ± 0.0 0.039 ± 0.015 0.187 ± 0.0582 0.894 ± 0.038 0.055 ± 0.007 0.249 ± 0.0359
0.3 0.935 ± 0.0177 0.016 ± 0.028 0.255 ± 0.131 0.923 ± 0.0258 0.039 ± 0.015 0.262 ± 0.0343
0.35 0.945 ± 0.0718 0.007 ± 0.015 0.0581 ± 0.06 0.93 ± 0.023 0.038 ± 0.024 0.238 ± 0.0416
0.4 0.9 ± 0.0664 0.007 ± 0.009 0.0516 ± 0.064 0.918 ± 0.0292 0.034 ± 0.014 0.23 ± 0.0404
0.45 0.923 ± 0.0373 0.013 ± 0.014 0.0516 ± 0.064 0.919 ± 0.0369 0.026 ± 0.009 0.219 ± 0.0414

australian australian australian banknote banknote banknote

Cost TSB DHL BA TSB DHL BA
0.05 0.999 ± 0.0029 0.151 ± 0.037 0.346 ± 0.0416 0.00291 ± 0.00356 0.799 ± 0.119 0.00582 ± 0.00493
0.1 0.809 ± 0.0566 0.068 ± 0.017 0.328 ± 0.0452 0.00655 ± 0.00424 0.075 ± 0.021 0.00509 ± 0.00291
0.15 0.772 ± 0.0745 0.049 ± 0.019 0.262 ± 0.0436 0.0225 ± 0.00842 0.060 ± 0.006 0.00509 ± 0.00291
0.2 0.765 ± 0.0597 0.036 ± 0.013 0.177 ± 0.027 0.00291 ± 0.00356 0.072 ± 0.014 0.00509 ± 0.00291
0.25 0.794 ± 0.0245 0.030 ± 0.006 0.142 ± 0.046 0.00291 ± 0.00272 0.066 ± 0.016 0.00509 ± 0.00291
0.3 0.793 ± 0.0469 0.030 ± 0.008 0.142 ± 0.0254 0.00509 ± 0.00291 0.058 ± 0.017 0.00509 ± 0.00291
0.35 0.816 ± 0.036 0.025 ± 0.011 0.114 ± 0.0312 0.0233 ± 0.0109 0.041 ± 0.025 0.00509 ± 0.00291
0.4 0.801 ± 0.0899 0.010 ± 0.006 0.0145 ± 0.0152 0.00509 ± 0.00436 0.048 ± 0.005 0.00509 ± 0.00291
0.45 0.801 ± 0.0551 0.004 ± 0.006 0.0812 ± 0.0288 0.00509 ± 0.00291 0.052 ± 0.012 0.00509 ± 0.00291
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Table 4: Average classification error on non-rejected points along with the standard deviation for the
TSB Algorithm, DHL Algorithm and BA Algorithm

skin skin skin cod cod cod

Cost TSB DHL BA TSB DHL BA
0.05 0.0233 ± 0.0249 0.015 ± 0.016 0.01 ± 0.0133 0.00811 ± 0.0108 0.035 ± 0.034 0.0108 ± 0.0132
0.1 0.0533 ± 0.0356 0.045 ± 0.033 0.02 ± 0.0163 0.0595 ± 0.0202 0.062 ± 0.030 0.00811 ± 0.00662
0.15 0.0467 ± 0.0306 0.073 ± 0.031 0.04 ± 0.0133 0.0243 ± 0.0132 0.103 ± 0.031 0.0297 ± 0.0216
0.2 0.0467 ± 0.0245 0.108 ± 0.034 0.0267 ± 0.0226 0.0568 ± 0.0248 0.162 ± 0.030 0.0541 ± 0.0256
0.25 0.06 ± 0.0327 0.135 ± 0.037 0.0267 ± 0.0226 0.0514 ± 0.0101 0.195 ± 0.026 0.0568 ± 0.0262
0.3 0.03 ± 0.0194 0.150 ± 0.035 0.0233 ± 0.0226 0.073 ± 0.0108 0.222 ± 0.023 0.0514 ± 0.0232
0.35 0.05 ± 0.0279 0.178 ± 0.045 0.0267 ± 0.0226 0.0514 ± 0.0232 0.254 ± 0.028 0.0486 ± 0.0265
0.4 0.0667 ± 0.0279 0.218 ± 0.063 0.0367 ± 0.0267 0.0459 ± 0.0251 0.273 ± 0.026 0.0541 ± 0.0308
0.45 0.0333 ± 0.0279 0.212 ± 0.068 0.03 ± 0.0245 0.0486 ± 0.0369 0.276 ± 0.025 0.0541 ± 0.032

haberman haberman haberman pima pima pima

Cost TSB DHL BA TSB DHL BA
0.05 0.0 ± 0.0 0.000 ± 0.000 0.0 ± 0.0 0.0013 ± 0.0026 0.023 ± 0.052 0.0 ± 0.0
0.1 0.00323 ± 0.00645 0.069 ± 0.042 0.0 ± 0.0 0.013 ± 0.0109 0.145 ± 0.016 0.0 ± 0.0
0.15 0.0 ± 0.0 0.161 ± 0.054 0.0452 ± 0.0903 0.00779 ± 0.00486 0.196 ± 0.026 0.109 ± 0.0267
0.2 0.0161 ± 0.0144 0.203 ± 0.041 0.171 ± 0.0332 0.0143 ± 0.00954 0.222 ± 0.023 0.106 ± 0.0106
0.25 0.0 ± 0.0 0.246 ± 0.026 0.187 ± 0.0347 0.0117 ± 0.00757 0.227 ± 0.025 0.127 ± 0.0286
0.3 0.0226 ± 0.0194 0.259 ± 0.021 0.168 ± 0.0416 0.00779 ± 0.00636 0.235 ± 0.023 0.122 ± 0.0161
0.35 0.00968 ± 0.0129 0.259 ± 0.027 0.245 ± 0.0524 0.0013 ± 0.0026 0.236 ± 0.024 0.136 ± 0.025
0.4 0.0226 ± 0.0219 0.259 ± 0.027 0.252 ± 0.0573 0.00649 ± 0.0101 0.242 ± 0.029 0.142 ± 0.0199
0.45 0.0258 ± 0.0079 0.252 ± 0.025 0.252 ± 0.0573 0.00779 ± 0.00636 0.248 ± 0.036 0.151 ± 0.0226

australian australian australian banknote banknote banknote

Cost TSB DHL BA TSB DHL BA
0.05 0.0 ± 0.0 0.104 ± 0.033 0.0391 ± 0.00983 0.000727 ± 0.00145 0.051 ± 0.061 0.00218 ± 0.00178
0.1 0.0058 ± 0.00542 0.113 ± 0.023 0.0449 ± 0.0141 0.00218 ± 0.00291 0.074 ± 0.070 0.00655 ± 0.00626
0.15 0.0145 ± 0.00648 0.120 ± 0.023 0.0536 ± 0.0126 0.000727 ± 0.00145 0.072 ± 0.076 0.00364 ± 0.00398
0.2 0.0145 ± 0.0102 0.123 ± 0.037 0.0754 ± 0.0208 0.000727 ± 0.00145 0.034 ± 0.017 0.00509 ± 0.00493
0.25 0.0101 ± 0.0058 0.126 ± 0.037 0.0841 ± 0.0087 0.0 ± 0.0 0.045 ± 0.018 0.00509 ± 0.00371
0.3 0.0058 ± 0.0029 0.128 ± 0.036 0.0942 ± 0.02 0.00218 ± 0.00291 0.066 ± 0.021 0.00582 ± 0.00371
0.35 0.0087 ± 0.0029 0.132 ± 0.036 0.104 ± 0.0187 0.00145 ± 0.00178 0.072 ± 0.044 0.00655 ± 0.00424
0.4 0.0145 ± 0.0112 0.143 ± 0.041 0.145 ± 0.0271 0.00218 ± 0.00178 0.100 ± 0.028 0.00582 ± 0.00436
0.45 0.00435 ± 0.0058 0.148 ± 0.044 0.109 ± 0.0314 0.00218 ± 0.00291 0.112 ± 0.024 0.00509 ± 0.00371
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