
A Details on Synthetic Data Generation

Here, we provide details on the generation of synthetic cascades. The cascades are generated
according to the CIC, DIC and DLT models. For the CIC model, we use an exponential delay
distribution on each edge whose parameters are drawn independently and uniformly from [0, 1]. The
observation window length is ⌧ = 1.0. For the DIC model, the activation probability for each edge is
chosen independently and uniformly from [0, 0.4]. For the DLT model, we follow [10] and set the
edge weight wuv as 1/dv where dv is the in-degree of node v. For each model, we generate 8192

cascades as training data. The seed sets are sampled uniformly at random with sizes drawn from a
power law distribution with parameter 2.5. The generated cascades have average sizes of 10.8, 12.8
and 13.0 in the CIC, DIC and DLT models, respectively. We then create incomplete cascades by
varying the retention rate between 0.1 and 0.9. To sidestep the computational cost of running Monte
Carlo simulations, we estimate the ground truth influence of the test seed sets using the method
proposed in [3], with the true model parameters.

B Proofs for Section 3

B.1 Proof of Theorem 1

Here, we flesh out the proof sketch from Section 3 for the DIC model. For the transformed graph
ˆG, we consider only the influence functions of the n nodes in the added layer V 0. Recall that

we write ˆ

F (S) = [

ˆF
1

0
(S), . . . , ˆFn0

(S)] for the influence function of those nodes. Let ˆ

F

⇤ be the
ground truth influence function for the same nodes, and F

⇤ the ground truth influence function for G.
Let M(G) and M(

ˆG) be the class of influence functions of G and ˆG. For functions ˆ

F , we write
cerrsq[ ˆF ] = ES,A

h
1

n

P
v02V 0(�A(v0)� ˆFv0

(S))2
i
. Notice that the ground truth functions minimize

the expected squared error, i.e., ˆ

F

⇤ 2 argmin
ˆF2M(

ˆG)

cerrsq[ ˆF ] and F

⇤ 2 argminF2M(G)

errsq[F ].
We will show that errsq[F ]� errsq[F

⇤
] can be made arbitrary small.

We first prove a variation of Theorem 2 from [16] for learning ˆ

F , by verifying that all the supporting
lemmas still apply. The modified Theorem 2 from [16] is the following:

Theorem 5. Assume that the learning algorithm observes M =

˜

⌦(✏̂�2n3m) training cascades

ˆC = {(Si, A0
i)} under the DIC model. Then, with probability at least 1� �, we have

cerr

sq

[

ˆ

F ]� cerr

sq

[

ˆ

F

⇤
]  ✏̂. (3)

Proof. While the cascades in ˆC are incomplete on V , they are complete on V 0. We use this complete-
ness of the cascades as follows. Consider the restricted class of the DIC model on the transformed
graph ˆG in which only the m activation probabilities w between nodes in V are learnable, while the
edges (v, v0) have a fixed weight of r. Define the log-likelihood for a cascade (S,A0

) as

L(S,A0|w) =

X

v02V 0

�A0
i

(v0) log( ˆFw
v0 (S)) + (1� �A0

i

(v0)) log(1� ˆFw
v0 (S)).

The algorithm outputs an influence function ˆ

F based on the solution of the following optimization
problem:

w

⇤ 2 argmaxw2[�,1��]m

MX

i=1

L(Si, A
0
i|w).

As the function ˆ

F is learned from the DIC model, Lemma 3 in [16] carries thorough to establish the
Lipschitz continuity of DIC influence functions.

Lemma 6 (Lipschitz continuity of DIC influence). Fix S ✓ V and v0 2 V 0
. For any w,w0 2 Rm

with ||w �w

0||
1

 ✏, we have | ˆFw
v0 (S)� ˆFw0

v0 (S)|  ✏.

Moreover, such instances (on 2n nodes) still only have m parameters, and the L1 covering number
bound in Lemma 8 from [16] applies without any changes.
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Lemma 7 (Covering number of DIC influence functions). The L1 covering number of the restricted

class of the DIC influence functions on the transformed graph for radius ✏ is O((m/✏)m).

Establishing the sample complexity bound on the log-likelihood objective (Lemma 4 in [16]) requires
that all function values be bounded away from 0 and 1 (Lemma 9 in [16]). We assume that r < 1, as
Lemma 4 in [16] directly holds when there are no missing data at all. Let � > 0 be the bound on the
edge activation probabilities in G from our Theorem 1; that is, �  wuv  1� � for all u, v 2 V .
Due to the layered structure of ˆG, we have that r · �n  ˆFv0

(S)  r · (1� �n
).8 Therefore, Lemma

4 in [16] carries thorough with the same sample complexity of ˜O(✏̂�2n3m):

Lemma 8 (Sample complexity guarantee on the log-likelihood objective). Fix ✏, � 2 (0, 1) and

M = ⌦(n2

ln(1/�)2m ln(m/✏̂)+nm ln(1/�)+ln(1/�)
✏̂2 ) =

˜

⌦(✏̂�2n3m). With probability at least 1 � �
(over the draws of the training cascades),

max

w2[�,1��]m
ES,A0


1

n
L(S,A0|w)

�
� ES,A0


1

n
L(S,A0|w⇤

)

�
 ✏.

As all the lemmas used in the proof of Theorem 2 from [16] remain true, we have proved our
Theorem 5, with the guarantee that errsq[ ˆF ]� errsq[ ˆF

⇤
]  ✏̂.

Finally, we recall that according to Equation (1), Fv(S) =

1

r · ˆFv0
(S) and F ⇤

v (S) =

1

r · ˆF ⇤
v0(S),

giving us that

errsq[F ]� errsq[F
⇤
]

(⇤)
=

1

n

X

v2V

ES

⇥
(Fv(S)� F ⇤

v (S))
2

⇤

Equation (1)
=

1

n

X

v02 ˆV

ES


(

1

r
ˆFv0

(S)� 1

r
ˆF ⇤
v0(S))2

�

(⇤)
=

cerrsq[ ˆF ]� cerrsq[ ˆF
⇤
]

r2
Equation (3)

 ✏̂

r2

(The steps labeled (*) are applications of Equation (4) from [16].) Now, by taking ✏̂ = " · r2, with
˜O(

n3m
"2r4 ) incomplete cascades, we obtain that errsq[F ]� errsq[F

⇤
]  ".

B.2 Proof of Theorem 2

We will show that the analogue of Theorem 5 for the DLT model also holds. We do so by following the
same sequence of steps as in Appendix B.1 and verifying that all the steps in the proof of Theorem 2 in
[16] still hold. The main difference is that a new proof is needed for establishing Lipschitz continuity
of the DLT influence function with respect to the L

1

norm (the analogue of Lemma 3 in [16]). We
begin by establishing this lemma.
Lemma 9 (Lipschitz continuity). Fix S ✓ V and u 2 V . For any w,w0 2 Rm

with ||w�w

0||
1

 ",

we have that |Fw
u (S)� Fw0

u (S)|  ".

Proof. As shown in [10], the influence functions under the DLT model can be also characterized
via the reachability under a distribution over live-edge graphs. Specifically, the distribution is as
follows [10, Theorem 2.5]: for each node v, pick at most one of its incoming edges at random,
selecting the edge from z 2 N(v) with probability wzv and selecting no incoming edge with
probability 1�

P
z2N(v) wzv . For each node v, let the random variable Xv be the incoming neighbor

chosen for v, with Xv =? if v has no incoming edge. For simplicity of notation, we define
w?v = 1�

P
z2N(v) wzv . Define X = (Xv)v2V , and write X for the set of all such vectors X . For

8As in the proof of Lemma 4 in [16], we assume that there exists a path in the graph ˆG from a node in S to
node v0; the cases where this assumption fails can be handled easily.
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any node v, we write X�v for the set of all vectors with edges (or ?) for all nodes except v. And for
a vector X 2 X�v, we write X[v 7! z] for the vector in which all entries agree with those in X ,
except for the entry for v which is now z.

Let RX(v, S) be the indicator function of whether node v is reachable from the seed set S in the
graph (V,X), where we interpret X as the set of all edges (Xv, v) with Xv 6=?. Claim 2.6 of [10]
implies that

Fw
u (S) =

X

X

Y

v2V

wX
v

vRX(u, S).

We fix an edge (y, y0) and take the partial derivative of Fw
u (S) with respect to wyy0 :

����
@Fw

u (S)

@wyy0

���� =

������
@

@wyy0

0

@
X

z2N(y)[{?}

wzy

X

X2X�y

Y

v2V \{y}

wX
v

v ·RX[y 7!z](u, S)

1

A

������

=

������

X

X2X�y

Y

v2V \{y}

wX
v

v ·RX[y 7!y0
]

(u, S)�
X

X2X�y

Y

v2V \{y}

wX
v

v ·RX[y 7!?]

(u, S)

������



������

X

X2X�y

Y

v2V \{y}

wX
v

v

������
= 1.

Therefore, ||rwFw
u (S)||1  1, implying Lipschitz continuity.

Next, we bound the values of the influence functions away from 0 and 1. Because each edge weight
wzv 2 [�, 1��] by assumption, and we further assumed that w?v = 1�

P
z2N(v) wzv 2 [�, 1��],

it follows directly (as in the proof for the DIC model) that r · �n  ˆFv0
(S)  r · (1 � �n

). This
establishes the analogue of Lemma 9 in [16], and we can therefore apply Lemma 4 in [16], obtaining
a sample complexity of ˜O(✏̂�2n3m) under the DLT model. As all the used lemmas remain true, the
results of Theorem 5 also hold for the DLT model. Finally, exploiting the same relation between
F (S) and ˆ

F (S) as in the proof of Theorem 1 leads to the conclusion of Theorem 2.

C Proof of Theorem 4

Let M =

˜

⌦(

logC
✏4r2 ), and let F ˜�,�

v (S) be the influence functions obtained in Theorem 4. We will show
that for any single node v, with probability at least 1� �/n,

ES

h
(F

˜�,�
v (S)� F ⇤

v (S))
2

i
 ".

The theorem then follows by taking a union bound over all n nodes.

Recall that M� is the function class of all truncated influence functions. We write

RM (M�) := ES
i

⇠P,(✏
i

)

i

⇠Uniform({�1,1}M

)

"
sup

F2M
�

1

M

MX

i=1

✏i · Fv(Si)

#

for its Rademacher complexity, where the ✏i’s are i.i.d. Rademacher (symmetric Bernoulli) random
variables. By Lemma 12 in [3], there exists a truncated influence function F

ˆ�,�
v 2 M� with

K = O(

C2

"2 log

Cn
"� ) features such that ES⇠P

h
(F

ˆ�,�
v (S)� F ⇤

v (S))
2

i
 2"2 + 2�2 with probability

at least 1� �
2n .

Using the log likelihood function `(t, y) = y log t+ (1� y) log(1� t) as defined in Section 4, we
write the log loss of the influence function Fv as errlog[Fv] = ES,A [�`(Fv(S), A)]. By Lemma 2 in
[17], with probability at least 1� �

2n ,

errlog[F
˜�,�
v ]  min

f2M
�

errlog[f ] +
4

� · rRM (M�) +

r
log(2n/�)

2M
.
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Because F
ˆ�,�
v 2 M�, we can bound that minf2M

�

errlog[f ]  errlog[F
ˆ�,�
v (S)] on the right-hand

side. Subtracting errlog [F ⇤
v ] from both sides, we obtain

errlog[F
˜�,�
v ]� errlog[F

⇤
v ]  errlog[F

ˆ�,�
v ]� errlog[F

⇤
v ] +

4

� · rRM (M�) +

r
log(2n/�)

2M
. (4)

The square and log errors can be related to each other as in the proof of Theorem 2 in [16], as follows:

ES

h
(F

˜�,�
v (S)� F ⇤

v (S))
2

i
 1

2

(errlog[F
˜�,�
v ]� errlog[F

⇤
v ]).

Hence, in order to obtain a bound on ES

h
(F

˜�,�
v (S)� F ⇤

v (S))
2

i
, it suffices to upper-bound the

right-hand side of (4). The term errlog[F
ˆ�,�
v ]� errlog[F ⇤

v ] can be bounded as in the proof of Lemma 2
in [3], using Lemma 11 and Lemma 16 from [3]: Assume that F ˆ�,�

v uses K = ⌦(

C2

✏̂2 log

Cn
✏̂ˆ�

) features.
Then, with probability at least 1� ˆ�, we have

errlog[F
ˆ�,�
v ]� errlog[F

⇤
v ]  ✏̂2 + �2

�
(1 + log

1

�
). (5)

Next, we bound the Rademacher complexity of the function class M�:
Lemma 10. The Rademacher complexity RM (M�) for the function class M� with at most K

features is at most

q
2 log(1+K)

M .

Proof. Recall that we use basis functions �i(S) := min{1,�>
S rTi

}. Let W = {�i|i = 1, . . . ,K} [
{ }, where is the constant function with value 1. By definition, we have M� ✓ conv(W),
where conv(W) denotes the convex hull. Therefore, RM (M�)  RM (conv(W)) = RM (W).

Since |�i(S)|  1, by Massart’s finite lemma9, we have RM (W) 
q

2 log(1+K)

M , completing the
proof.

To finish the proof of Theorem 4, let ✏ be the desired accuracy. Define ˆ� =

�
2n and ✏̂ = � =

✏
c0 log 1

✏

,
where c0 is a sufficiently large constant. Then, the right-hand side of (5) is upper-bounded by
✏̂ · (1 + log

1

✏̂ ) 
✏
2

.

With M = ⌦(

logK
✏4r2 ), we have 4

�·rRM (M�)  ✏
4

. Whenever M = ⌦(

log

n

�

✏2 ), we also get

that
q

log(n/�)
2M  ✏

4

. Taking M as the maximum of the above three, which is satisfied when
M =

˜

⌦(

logC
✏4r2 ), we can substitute all of the bounds into the right-hand side of (4) and obtain that

ES

h
(F

˜�,�
v (S)� F ⇤

v (S))
2

i
 ✏ with probability at least 1� �

n . Now, taking a union bound over all
nodes v concludes the proof.

Discussion. Notice that when the retention rate is 1, our Theorem 4 significantly improves the
sample complexity bound compared to Du et al. [3]. The sample complexity in [3] is ˜O(

C2

✏3 ), while
our theorem implies a sample complexity of ˜O(

logC
✏4 ) under complete observations. The improvement

is derived from bounding the Rademacher complexity of the function class M� instead of the L
2,1

dimension. The Rademacher bound leads to a logarithmic dependence of the sample complexity on
the number of features K, whereas the L

2,1 bound results in a polynomial dependence.

9Massart’s finite lemma states the following: Let F be a finite set of functions, such that
supf2F

1

n

Pn
i=1

f(Xi)
2  C2 for any variables values X

1

, . . . , Xn. Then, the Rademacher complexity

of F is upper bounded by Rn(F) 
q

2C2
log |F|
n .
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