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Appendix

Proof of Lemma 3.1. Define q = r−1; p = r−1
r−2 . Note that u is non-negative, by Holder’s inequality

we have
Pnu

2 ≤ (Pnu)
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(Pnu
r)

1/q

which implies
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) 1
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r

) 1
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If we rewrite this inequality as y ≤ h1/pk1/q , then

Ey ≤ E[h1/pk1/q] ≤ (Eh)1/p(Ek)1/q. (0.1)

Since Zi’s are independently identically distributed, we have

E sup
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n
≤ E

1

n

n∑
i=1

sup
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ur(Zi) = E sup
u∈K(g0)
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This implies
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ur(Z1)
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. (0.2)

On the other hand, using the notation P̄n = Pn − P , we have
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u∈K(g0)
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(0.3)
Combining (0.1), (0.2) and (0.3), we deduce that
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Proof of Lemma 3.2. Using Young’s inequality with p = 1
ν , q = p/(p− 1) = 1/(1− ν), we have

axν = (caxν).

(
1

c

)
≤ 1

p
(caxν)p +

1

q

1

cq
.

We deduce that x ≤ αxν + b ≤ ν(ca)1/νx+ (1− ν)c−1/(1−ν) + b.
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If we choose c such that ν(ca)1/ν = 1/2, or equivalently, c = (2ν)−νa−1, then

1

c1/(1−ν)
= (2ν)ν/(1−ν)a1/(1−ν).

We deduce that x ≤ Ca1/(1−ν) + 2b.

Proof of Lemma 3.3. Define Γ(x) = x2/r − (1− β)x + βC. The minimum value of Γ(x) will be
attained at x0 = r (1− β) /2 ≤ r with

Γ(x0) = −r
4

(1− β)
2

+ βC.

We note that if β < 1 − 2
√
C/r, then x0 ≥ 1 and Γ(x0) < 0. To ensure A(l, r, β, C, α) < 0 for

l = x0, we need

y =

[
β
(

1− α

2

)
− 1

2

]
x0 + βC = −r

4
[1− β(2− α)] [1− β] + βC < 0.

If α ≥ 1, it is clear that
y ≤ −r

4
(1− β)2 + βC = Γ(x0) < 0.

If α ≤ 1, we have y ≤ −r[1− β(2− α)]2/4 + βC; and y < 0 if β < (1− 2
√
C/r)/(2− α).

Proof of Lemma 3.6. We have

E(`(f)− `(f∗))2 ≤ E`(f)2 + E`(f∗)2

≤ 2E`(f)2 ≤ 2[E`(f)r]1/(r−1)[E`(f)](r−2)/(r−1)

≤ 2W r/(r−1)[E`(f)](r−2)/(r−1)

≤ 2W r/(r−1)
( α
M
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[E(`(f)− `(f∗))](r−2)/(r−1) .

Proof of Lemma 3.7. Since R(f) has a unique minimizer at f∗, there exists α > 0 such that

Uα := {f ∈ F : R(f) ≤ α

α−K
R(f∗)} ⊂ U.

where M is the constant defined in Lemma 3.6. Inside Uα, we have

E(`(f)− `(f∗)) = R(f)−R(f∗) ≥ cdm(f, g) ≥ c

Lm/2
(
E(`(f)− `(f∗))2

)m/2
. (0.4)

By Lemma 3.6 and (0.4), multi-scale Bernstein’s condition holds for γ = ((r−2)/(r−1), 2/m).

Proof of Corollary 3.1. Recall that R(f) is strongly convex and f∗ is its unique minimizer, we have

R(f) +R(f∗)

2
≥ R

(
f + g

2

)
+ cd2(f, g) ≥ R(f∗) + cd2(f, g)

which implies that

E(`(f)− `(f∗)) = R(f)−R(f∗) ≥ 2cd2(f, g) ≥ 2c

L
E(`(f)− `(f∗))2.

This proves the Bernstein’s condition.
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