
A Proofs of the Main Results

A.1 Proof of Theorem 3.1

In this section, we prove the information-theoretic lower bound. In specific, we focus on the restricted

testing problem

H0 : θ = (0,0, I, α) versus. H1 : θ = (−v/2,v/2, I, α), (A.1)

where

v ∈ H(s) := {u ∈ {0, β}d : �u�0 = s}.
Here we set sβ2 = γn to ensure that (−v/2,v/2, I, α) belongs to the alternative parameter space

G(Σ; γn). For notational simplicity, we denote the distribution of model (−v/2,v/2, I, α) by Pv
and the product distribution of n i.i.d. samples by Pn

v
. By the definition of the minimax risk in (2.4),

we have

sup
Σ

R∗n [G0(Σ),G1(Σ; γn)] ≥ inf
φ



Pn
0
(φ = 1) +

1

|H(s)|
�

v∈H(s)

P
n
v
(φ = 0)



 .

We thus reduce the minimax risk to the risk of a simple-against-simple hypothesis test where the al-

ternative hypothesis corresponds to a uniform mixture of {Pv : v ∈ H(s)}. For notational simplicity,

we define PnH := 1/|H(s)| ·
�

v∈H(s) P
n
v
. By Neyman-Pearson Lemma, we have

R∗n [G0,G1(Σ; γn)] ≥ 1− TV(Pn
0
,PnH).

Using Pinsker’s inequality TV(Pn
0
,PnH) ≤

�
Dχ2(PnH,P

n
0
), for showingR∗n[G0(Σ),G1(Σ; γn)]→ 1

as n goes to infinity, it suffices to show that Dχ2(PnH,P
n
0
) = o(1). By calculation we have

Dχ2(PnH,P
n
0
) = EPn

0

��
dPnH
dPn

0

(Y,X)− 1
�2�

= EPn
0

��
dPnH
dPn

0

(Y,X)

�2�

− 1

=
1

|H(s)|2
�

v1,v2∈H(s)

EPn
0

�
dPn

v1
dPn

v2

dPn
0
dPn

0

(Y,X)

�
− 1

=
1

|H(s)|2
�

v1,v2∈H(s)

�
EP0

�
dPv1dPv2

dP0dP0
(Y,X)

��n
− 1. (A.2)

We utilize the following lemma to obtain an upper bound for the last term of (A.2). See §B.1 for the

proof.

Lemma A.1. For any v1,v2 ∈ H(s), we have

EP0

�
dPv1

dP0

dPv2

dP0
(Y,X)

�
= cosh (�v1,v2�/2) + α2 sinh (�v1,v2�/2) .

By Lemma A.1, we have

Dχ2(PnH,P
n
0
)

=
1

|H(s)|2
�

v1,v2∈H(s)

�
cosh (1/2 · �v1,v2�) + α2 sinh (1/2 · �v1,v2�)

�n − 1. (A.3)

We define C := {S ⊆ [d] : |S| = s}, and let UC be the uniform distribution over C. Let S1,S2 ∼ UC
be two independent random sets. Then by (A.3), we have

Dχ2(PnH,P
n
0
) = ES1,S2

�
cosh(β2/2 · |S1 ∩ S2|) + α2 sinh(β2/2 · |S1 ∩ S2|)

�n − 1.
We use the next lemma, proved in §B.2, to bound the above right-hand side.

Lemma A.2. For any x ≥ 0 and v ∈ [0, 1], we have
cosh(x) + v sinh(x) ≤ exp(2vx) ∨ cosh(2x). (A.4)
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Proceeding with this result and letting random variable Z ∼ |S1 ∩ S2|, we have
Dχ2(PnH,P

n
0
) ≤ EZ

�
exp(α2β2Z) ∨ cosh(β2Z)

�n − 1
= EZ

�
exp(nα2β2Z) ∨ cosh(β2Z)n

�
− 1

= EZ
�
exp(nα2β2Z) ∨ EU

�
exp(β2ZU)

��
− 1, (A.5)

where in the last step, we introduce a random variable U that is the summation of n independent

Rademacher random variables over {−1, 1}. Then we have cosh(β2Z)n = EU [exp(β
2ZU)]. By

(A.5), we have

Dχ2(PnH,P
n
0
) ≤ EZEU

�
exp(nα2β2Z) ∨ exp(β2ZU)

�
− 1

= EUEZ
�
exp(nα2β2) ∨ exp(β2U)

�Z − 1

≤ EU
�
sup
S1∈C

ES2

�
exp(nα2β2) ∨ exp(β2U)

�|S1∩S2|
�
− 1. (A.6)

Now we turn to bound the expectation over S2 in (A.6). For any fixed S1, we have
|S1 ∩ S2| =

�

i∈S1

Vi,

where Vi is binary random variable that indicates whether i ∈ S2. It is known that V1, . . . , Vd are
negative associated. Hence we have

ES2

�
exp(nα2β2) ∨ exp(β2U)

�|S1∩S2| ≤
�

i∈S1

EVi

�
exp(nα2β2) ∨ exp(β2U)

�Vi

=
�
1 + s/d ·

�
exp(nα2β2) ∨ exp(β2U)− 1

��s
. (A.7)

Plugging (A.7) into (A.6) and expanding the polynomial term, we have

Dχ2(PnH,P
n
0
) ≤

s�

k=1

�
s

k

�
· (s/d)k · EU

�
exp(nα2β2) ∨ exp(β2U)− 1

�k

=

s�

k=1

�
s

k

�
· (s/d)k ·

� �
exp(nα2β2)− 1

�k · P(U < nα2)

+ EU

��
exp(β2U)− 1

�k ��U ≥ α2n
�
· P(U ≥ nα2)

�
,

≤ T1 + T2,
where T1 and T2 are defined as

T1 :=

s�

k=1

�
s

k

�
· (s/d)k ·

�
exp(nα2β2)− 1

�k

T2 :=

s�

k=1

�
s

k

�
· (s/d)k · EU

��
exp(β2U)− 1

�k |U ≥ 0
�
· P(U ≥ 0).

It remains to bound T1 and T2 respectively.

Bounding T1. Under condition sβ2 = γn = o(1/α
2 · s log d/n), we have β2 = o(1/α2 · log d/n).

Hence, for any small constant C > 0, we have β2 ≤ C · 1/α2 · log d/n when n is sufficiently large.

Note that we assume s = o(d1/2−δ) for some fixed constant δ > 0. Then we have

T1 ≤
s�

k=1

�
s

k

�
· (s/d)k · exp(α2β2nk) ≤

s�

k=1

�
s2e/(kd)

�k · exp(α2β2nk)

≤
s�

k=1

�
s2e/(kd)

�k · exp(Ck log d) =
s�

k=1

(s2e/k · dC−1)k ≤
s�

k=1

(e/k · dC−2δ)k,

where the second step follows from the fact that
�
s
k

�
≤ (es/k)k. Note that C is chosen arbitrarily,

hence we can always choose C ≤ δ. It implies that e/k ·dC−2δ = o(1). We thus conclude T1 = o(1).
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Bounding T2. For term T2, we observe that

T2 ≤
s�

k=1

(e/k · s2/d)k · EU
��
exp(β2|U |)− 1

�k�

≤
s�

k=1

(e/k · s2/d)k · EU
�
(β2|U |)k + exp(β2k|U |) · 1(β2|U | ≥ 1)

�

≤ T3 + T4,
where T3 and T4 are defined as

T3 :=

s�

k=1

EU (e/k · s2β2/d · |U |)k,

T4 :=

s�

k=1

(e/k · s2/d)k · EU
�
exp(β2k|U |) · 1(β2|U | ≥ 1)

�
.

Note that U is summation of n i.i.d. centered sub-Gaussian random variables Ui each with Orlicz ψ2-
norm equal to one. Therefore,U is also centered sub-Gaussian random variable with ||U ||ψ2 ≤ C

√
n

for some constant C. Thus it holds that

E(|U |k) ≤ (
√
k · ||U ||ψ2)

k ≤ (C
√
nk)k.

Hence for term T3, we have

T3 ≤
s�

k=1

�
Ces2β2

√
n/(
√
kd)

�k
,

Under the condition sβ2 = o(
�
s log d/n), we have

Ces2β2
√
n/(
√
kd) = o

�
s
�
s log d/d

�
.

Since s = o(
√
d), we have s

√
s log d/d = o(1), which implies T3 = o(1).

To obtain an upper bound for term T4, we letW = β2U . SoW is centered sub-Gaussian with Orlicz

norm cβ2
√
n. Computing integral by parts, we have

EU

�
exp(β2k|U |) · 1(β2|U | ≥ 1)

�
= ek · P(|W | ≥ 1) +

� ∞

w=1

kewk · P(|W | ≥ w)dw. (A.8)

Using the property of sub-Gaussianity, we have P[W ≥ t] ≤ C1 exp[−C2t2/(β2
√
n)2] for some

absolute constants C1, C2 > 0. Proceeding with (A.8) and using shorthand σ = β
2
√
n, we obtain

EU

�
exp(β2k|U |) · 1(β2|U | ≥ 1)

�
≤ C1eke−C2/σ

2

+ C1k

� ∞

w=1

ewke−C2w
2/σ2dw

= C1e
ke−C2/σ

2

+ C1ke
k2σ2/(4C2)

� ∞

w=1

e−
C2
σ2 (w−

kσ2

2C2
)2
dw ≤ C1ek + C3kek

2σ2/(4C2)σ,

where C3 is a constant that depends on C1 and C2. Thus we have

T4 ≤
s�

k=1

C1
�
s2e2/(kd)

�k

� �� �
T5

+

s�

k=1

C3σk
�
s2e2/(kd) · exp(k/4 · σ2/C2)

�k

� �� �
T6

. (A.9)

Note that s2/d = o(1), we thus have T5 = o(1). Under condition sβ2 = o(
�
s log d/n), for any

small constant C > 0, when n is large enough, we have

exp(k/4 · σ2/C2) ≤ exp(Ck log d/s) ≤ exp(C log d) ≤ dC .
Plugging (A.9) into T6 and using s2 = o(d1−2δ), we have that each term in the summation is less

that

T6 ≤
s�

k=1

σk
�
e2/(kd2δ−C)

�k
�

s�

k=1

k
�
log d/s ·

�
e2/(d2δ−C)

�k
.
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Since the constant C is chosen arbitrarily, we have T6 = o(1). Accordingly, T4 = o(1) and T2 =
o(1).

Finally, combining everything together, we have Dχ2(PnH,P
n
0
) = o(1), which completes the proof.

A.2 Proof of Theorem 3.2

We begin with some basic properties of sample sets {wi}ni=1 and {ui}ni=1. We introduce the random

vectorW := X −X � to capture the distribution of samples {wi}ni=1. HereX follows the model

given in (2.1)-(2.2), andX � is an independent copy ofX . We note that the marginal distribution of

X is given by 1/2 · N (µ0,Σ) + 1/2 · N (µ1,Σ). ThusW follows a mixture distribution

W ∼ 1/2 · N (0, 2Σ) + 1/4 · N (µ1 − µ0, 2Σ) + 1/4 · N (µ0 − µ1, 2Σ). (A.10)

Moreover, conditioning on the observed label Y , the distribution ofX is given by

X|Y = 0 ∼ (1 + α)/2 · N (µ0,Σ) + (1− α)/2 · N (µ1,Σ), (A.11)

X|Y = 1 ∼ (1 + α)/2 · N (µ1,Σ) + (1− α)/2 · N (µ0,Σ). (A.12)

We introduce a random vectorU :=X(1)−X(0) that corresponds to samples {ui}ni=1. Here random
vectorsX(0) andX(1) are independent and have distributions given in (A.11), (A.12), respectively.

The distribution of U is given by

U ∼ (1+α)2/4·N (µ1−µ0, 2Σ)+(1−α2)/2·N (0, 2Σ)+(1−α)2/4·N (µ0−µ1, 2Σ). (A.13)
Now we turn to prove Theorem 3.2. It suffices to prove this result by bounding type-I and type-II

errors separately. In the end, we will show that

sup
θ∈G0(Σ)

P
n
θ(φ = 1) ≤ 4d−1 and sup

θ∈G1(Σ;γn)

P
n
θ(φ = 0) ≤ 16d−1.

Type-I error. Under the null hypothesis θ ∈ G0(Σ), (A.10) and (A.13) reduce to
W ∼ N (0, 2Σ), U ∼ N (0, 2Σ).

To bound the type-I error of function φ1, we first note that

1

n

n�

i=1

(v�Σ−1wi)
2 = v

� �ΣWv,

where we let �ΣW := 1/n ·
�n
i=1Σ

−1
wiw

�
i Σ

−1, i.e., an empirical covariance matrix of random

vector Σ−1W ∼ N (0, 2Σ−1). For any matrixA ∈ Rd×d and S ⊆ [d], we let [A]S ∈ R|S|×|S| be
the submatrix ofA, which contains the entries with row and column indices in S. By standard tail

bound of Gaussian covariance estimation (see Lemma C.2), for any fixed S ∈ [d] with |S| = s, and
any � ∈ (0, 1), when n ≥ Cs/�2 for some constant C, we have

P
n
θ

�
|||(�ΣW − 2Σ−1)S |||2 ≥ 2�|||(Σ−1)S |||2

�
≤ 2e−n. (A.14)

Note that |||(Σ−1)S |||2 ≤ |||Σ−1|||2 for all S ⊆ [d]. By taking union bound over all subsets with size s
in [d], we have

P
n
θ

�

sup
S∈[d],|S|=s

|||(�ΣW − 2Σ−1)S |||2 ≥ 2�|||Σ−1|||2

�

≤ 2
�
d

s

�
e−n

(a)

≤ 2 exp [−n+ s log(ed/s)]
(b)

≤ 2[s/(ed)]s ≤ 2d−1.

Here step (a) follows from the fact that
�
d
s

�
≤ (ed/s)s and step (b) follows from the assumption

that n ≥ 2s log(ed/s). In the last step we use the fact that function f(s) = (s/d)s is monotonically

decreasing for s ∈ [1, d/e]. We set � =
�
s log(ed/s)/n. Under condition n ≥ 2s log(ed/s), we

have � < 1. Moreover, when s ≤ C �d for sufficiently small constant C � that depends on C, we have
n ≥ Cs/�2. Therefore, such value of � leads to (A.14). Thus we conclude that

P
n
θ

�
v
� �ΣWv − 2v�Σ−1v

2v�Σ−1v
≥

�
s log(ed/s)

n
·
|||Σ−1|||2
v�Σ−1v

, for all v ∈ B2(s)

�

≤ 2d−1
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Note that |||Σ−1|||2/(v�Σ−1v) ≤ |||Σ−1|||2|||Σ|||2 = κ. Our choice of τ1 ensures the type-I error of
φ1 does not exceed 2d

−1.

Now we turn to analyze the performance of φ2. Recall that φ1 simply selects the coordinate of

ū := 1/n ·
�n
i=1 ui that has the largest magnitude (scaled with diag(Σ)−1/2) and compare it with

τ2. It suffices to show all coordinates are well bounded around 0 under null hypothesis. Denote the
j-th coordinate of ū by ūj . Denote the j-th diagonal term of Σ by σj . We have ūj ∼ N (0, 2σj/n).
Recall that for standard normal random variable X , we have

P(|X| ≥ t) ≤ 2 exp(−t2/2) for any t ≥ 1. (A.15)

Using this property and taking union bound over j ∈ [d], we have

P
n
θ

�

sup
j∈[d]

|ūj |/
√
σj ≥ 8 log d/n

�

≤ 2d · exp(−2 log d) = 2d−1.

Accordingly, our choice of τ2 can ensure type-I error of φ2 is controlled within 2d
−1.

Type-II error. Under the alternative hypothesis θ ∈ G1(Σ; γn). Note that φ = 0 if and only if

φ1 = 0 and φ2 = 0. Thus, for any θ ∈ G1(Σ; γn), we have
P
n
θ(φ = 0) = P

n
θ(φ1 = 0 ∩ φ2 = 0) ≤ Pnθ(φ1 = 0) ∧ Pnθ(φ2 = 0). (A.16)

We assume γn ≥ Cκ[
�
s log d/n ∨ (1/α2 · s log d/n)]. It suffices to bound the type-II error by

considering these two cases: (i) when γn � κ
�
s log d/n, we show that Pn

θ
(φ1 = 0) ≤ 16d−1; (ii)

when γn � κ/α
2 · s log d/n and 16/α2 · s log d/n ≤

�
s log d/n, we show Pn

θ
[φ2 = 0] ≤ 7d−1.

Case (i). Now we consider the first case. We denote ∆µ := µ1 − µ0. Let v∗ := ∆µ/�∆µ�2.
Since v∗ ∈ B2(s), we have

sup
v∈B2(s)

v
� �ΣWv

2v�Σ−1v
≥

v
∗� �ΣWv∗

2v∗�Σ−1v∗
.

It remains to show the right hand side is larger than 1 + τ1 with high probability. Note that

v
∗� �ΣWv∗ =

1

n

n�

i=1

(v∗�Σ−1wi)
2.

We define a random variable �W := v
∗�
Σ
−1W , whose probability distribution is given by

1/2 · N (0, ν) + 1/4 · N (m, ν) + 1/4 · N (−m, ν), (A.17)

where we define m := ρ(θ)/�∆µ�2 and ν := 2ρ(θ)/�∆µ�22. Recall that ρ(θ) := ∆µ�Σ−1∆µ.
Let �wi := v

∗�
Σ
−1
wi. Due to the mixture structure (A.17), we can thus cluster { �wi}ni=1 into three

groups { �w(k)i }
nk
i=1, k ∈ {1, 2, 3}, based on the latent labels. The k-th group corresponds to the k-th

term in (A.17). Note that E(n1) = n/2,E(n2) = E(n3) = n/4. Define event E1 as
E1 := {|n1 − n/2| ≤ 1/8 · n, |n2 − n/4| ≤ 1/8 · n, |n3 − n/4| ≤ 1/8 · n} . (A.18)

By Hoeffding’s inequality, we have P(E1) ≥ 1− 6 exp(−n2/32).
From now on,we condition on event E1. By the standardχ2-tail bound (Lemma C.1), for any t ∈ (0, 1)
and k ∈ {1, 2, 3}, we have

P
n
θ

������

nk�

i=1

( �w(k)i −mk)
2 − nkν

����� ≥ nkνt

�

≤ 2e−nkt
2/8 ≤ 2e−nt

2/64, (A.19)

where m1 = 0,m2 = −m3 = m. Moreover, using tail bound of Gaussian (A.15), for t� ≥ 1/√nk
and k = 2, 3,

P
n
θ

������

nk�

i=1

�w(k)i − nkmk

����� ≥ nk
√
νt�

�

≤ 2e−nkt
�2/2 ≤ 2e−nt

�2/16. (A.20)
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Excluding the small chance events in (A.19) and (A.20), we find that

n�

i=1

�w2i =
3�

k=1

nk�

i=1

( �w(k)i −mk)
2 + 2

3�

k=2

nk�

i=1

mk �w(k)i − (n2 + n3)m
2

≥ nν(1− t) + 2
3�

k=2

nk�

i=1

mk �w(k)i − (n2 + n3)m
2

≥ nν(1− t) + (n2 + n3)m2 − 2(n2 + n3)
√
νt�m

≥ nν(1− t) + 1/4 · nm2 − 3/2 · n
√
νt�m,

where the last step follows from (A.18). Note that 2v∗�Σ−1v∗ = ν. We thus have

v
∗� �ΣWv∗

2v∗�Σ−1v∗
− 1 =

�n
i=1 �w2i

2nv∗�Σ−1v∗
− 1 ≥

m2

4ν
− t−

3mt�

2
√
ν

= 1/8 · ρ(θ)− t− 3t�/4 ·
�
2ρ(θ). (A.21)

Now we choose t = t� = 8
�
s log(ed/s)/n, which is less than one under condition n ≥

64s log(ed/s). When ρ(θ) ≥ Cκ
�
s log(ed/s)/n for sufficiently large constant C, we can have

t ≤ ρ(θ)/32 and t� ≤
√
t� ≤

�
ρ(θ)/48. Accordingly, proceeding with (A.21) gives

1/2 · v∗� �ΣWv∗/v∗�Σ−1v∗ − 1 ≥ 1/16 · ρ(θ) ≥ τ1.
Plugging the value of t, t� into the tail bounds in (A.19) (A.20) and using the probability of event E1,
we have the type-II error of φ1 is most 10d−1 + 6e−n

2/32 ≤ 16d−1.

Case (ii). Now we turn to analyze the performance of φ2. We introduce shorthands �µ :=
diag(Σ)−1/2∆µ and Λ := diag(Σ)1/2. Then it holds that

ρ(θ) = ∆µ�Σ−1∆µ = ∆µ�Λ−1ΛΣ−1ΛΛ−1∆µ ≤ ��µ�22|||ΛΣ−1Λ|||op
≤ ��µ�22|||Λ|||22|||Σ−1|||2 ≤ κ��µ�22,

where the last step follows from the fact that |||diag(Σ)|||2 ≤ |||Σ|||2. Suppose the j-th coordinate of �µ,
denoted by β, has largest magnitude. Since ��u�22 ≤ sβ2, we have β2 ≥ ρ(θ)/(sκ). Under condition

ρ(θ) ≥ γn ≥
400κs log d

α2n
,

we have

β ≥ 20
�
log d/(α2n). (A.22)

Let v∗ = sign(β) · ej . We have

sup
v∈B2(1)

�
v,Λ−1ū

�
≥

�
v
∗,Λ−1ū

�
=

�����
1

n

n�

i=1

�uij

����� ,

where we denote the j-th coordinate of Λ−1ui by �uij .
Let Uj be the j-th coordinate of U . Note that {�uij}ni=1 are i.i.d. samples of Uj/

√
σj . Recall that σj

is the j-th diagonal term of Σ. According to (A.13), Uj/
√
σj has the mixture distribution

(1 + α)2/4 · N (β, 2) + (1− α2)/2 · N (0, 2) + (1− α)2/4 · N (−β, 2). (A.23)

We can cluster these samples into three groups {�u(k)ij }
nk
i=1, k ∈ {1, 2, 3} based on latent labels, where

k-th group corresponds to the k-th term in (A.23). Using tail bound of Gaussian (A.15), we have for

t ≥ 1 and k ∈ {1, 2, 3},

P
n
θ

������

nk�

i=1

�u(k)ij − nkmk

����� ≥
√
2nkt

�

≤ 2e−t
2/2,

wherem1 = −m3 = β,m2 = 0. Therefore, with probability at least 1− 6e−t
2/2, it holds that�����

1

n

n�

i=1

�uij −
(n1 − n3)β

n

����� ≤ t ·
3�

k=1

�
2nk
n2
≤
5t√
n
. (A.24)
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It remains to bound n1 − n3. Note that n1 − n3 is a summation of n i.i.d. random variables Vi
satisfying P(Vi = 1) = (1+α)

2/4, P(Vi = 0) = (1−α2)/2, and P(Vi = −1) = (1−α)2/4. Then
Vi has mean α, variance (1− α2)/2 ≤ 1− α, and |Vi − E(Vi)| ≤ 2. By Bernstein’s inequality, we
have that for t� > 0,

P (|n1 − n3 − αn| ≥ t�) ≤ exp
�
−

t�2

2(1− α)n+ 4t�/3

�
.

Choosing t� = αn/2, we thus have

P (|n1 − n3 − α · n| ≥ αn/2) ≤ exp
�
−

α2n

8(1− α) + 8α/3

�
≤ exp(−α2n/8) ≤ d−1, (A.25)

where the last step follows from condition 8s log d/(α2n) ≤
�
s log(ed/s)/n ≤ 1. Combining

(A.24) and (A.25), we have that with high probability 1− 6e−t2/2 − d−1,�����1/n ·
n�

i=1

�uij

����� ≥ αβ/2− 5t/
√
n ≥ 10

�
log d/n− 5t/

√
n ≥ τ2,

where the second step follows from (A.22) and the last inequality holds by setting t =
√
2 log d,

which gives the type-II error of φ2 is at most 7d−1.

Using (A.16) and the conclusions in the above two cases, we thus show Type-II error of φ is at most

16d−1 and thus complete the proof.

A.3 Proof of Theorem 3.3

In this section, we prove the computational lower bound. We first show that the information-theoretic

lower bound in (3.4) is a lower bound of the computationally tractable minimax rate. To see this,

we consider the oracle r∗ that returns sample average n−1
�n
i=1 q(yi,xi) for any query function q.

As discussed in §2.2, Bernstein’s inequality in (2.6) and uniform concentration of empirical process

imply that r∗ ∈ R[ξ, n, Tn, η(QA )]. In addition, every test function φ that is based on the responses

of r∗ is also a function of {(yi,xi)}ni=1. Thus combining (2.4) and (2.7), it holds that

R
∗

n(G0,G1;A , r∗) ≥ R∗n(G0,G1).
Therefore, by Theorem 3.1, for any γn satisfying

γn = o
��

s log d/n ∧ (1/α2 · s log d/n)
�
,

we have limn→∞R
∗

n[G0,G1(γn);A , r∗] = 1. Here the equality holds because a test based on purely
random guess incurs risk one.

Based on this observation, to show Theorem 3.3, it the following, we assume that

γn = o
��

s2/n ∧ (1/α2 · s/n)
�
. (A.26)

We show that under this assumption, there exists an oracle r such that the minimax testing risk is

not negligible. Similar to the derivation of the information theoretical lower bound, we also focus

on the restricted testing problem defined in (A.1). Following the same notations, we denote by P0
the distribution of model (0,0, I, α) and by P0 the distribution of model (−v/2,v/2, I, α) for all
v ∈ H(s) = {u ∈ {0, β}d : �u�0 = s}. Here we assume that the SNR under H1 satisfies β

2s = γn.

Moreover, we define P0 as the distribution of the random variables returned by the statistical query

model under the null hypothesis H0 and define P0 correspondingly. Then the minimax testing risk

R
∗

n(G0,G1;A , r) defined in (2.7) is lower bounded by

sup
Σ

R
∗

n[G0(Σ),G1(Σ; γn);A , r] ≥ inf
φ∈H(A ,r)



P0(φ = 1) +
1

|H(s)|
�

0∈H(s)

P0(φ = 0)



 .

The following lemma establishes a sufficient condition that any hypothesis test under the statistical

query model is asymptotically powerless. See [27] and [8] for a proof.
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Lemma A.3. For any algorithm A ∈ A(T ) and any query function q ∈ QA , we define

C1(q) = {v ∈ H(s) : EPv [q(Y,X)]− EPv [q(Y,X)] > τq(P0)} ,
C2(q) = {v ∈ H(s) : EPv [q(Y,X)]− EPv [q(Y,X)] > τq(P0)} .

Here τq(P0) is the tolerance parameter defined in (2.5) when (Y,X) ∼ P0. Then if T ·
supq∈QA (|C1(q)|+ |C2(q)|) /|H(s)| = o(1), there exists an oracle r ∈ R[ξ, n, T, η(QA )] such that

inf
φ∈H(A ,r)



P0(φ = 1) +
1

|H(s)|
�

v∈H(s)

Pv(φ = 0)



 = 1.

By this lemma, we need to construct an upper bound for supq∈QA (|C1(q)|+ |C2(q)|). In the sequel,

we achieve this goal by studying the uniform mixture of {Pv : v ∈ C�(q)} for � ∈ {1, 2}. Specifically,
we define

PC1(q) =
1

|C1(q)|
�

0∈C1(q)

P0 and PC2(q) =
1

|C2(q)|
�

0∈C2(q)

P0. (A.27)

The following lemma, obtained from [8], establishes an upper bound for the χ2-divergence between
PC�(q) and P0.

Lemma A.4. For � ∈ {1, 2} we define

C�(q,v) = argmax
C

�
1

|C|
�

0�∈C⊆H(s)

EP0

�
dP0
dP0

dP0�

dP0
(Y,X)

�
− 1

���� |C| = |C�(q)|

�

. (A.28)

Then the χ2-divergence between PC�(q) and P0 is bounded by

Dχ2(PC�(q),P0) ≤ sup
0∈C�(q)

1

|C�(q)|
�

0�∈C�(q,0)

EP0

�
dP0
dP0

dP0�

dP0
(Y,X)

�
− 1. (A.29)

Notice that Lemma A.1 enables us to compute the right-hand side of (A.29) in closed form. For any

α ∈ [0, 1], function hα(t) = cosh[β2/2 · (s− t)]+α2 sinh[β2/2 · (s− t)] is monotone nonincreasing

for t ∈ {0, . . . , s} and f(s) = 0. In addition, for any v ∈ H(s) and any j ∈ {0, . . . , s}, we define
Cj(v) = {v� ∈ H(s) : | supp(v) ∩ supp(v�)| = s− j} . (A.30)

For � ∈ {1, 2}, any query function q ∈ QA , and any v ∈ C�(q), by Lemma A.1 and the definition

of C�(q,v) in (A.28), there exists an integer k�(q,v) that satisfies

C�(q,v) = C0(v) ∪ C1(v) ∪ · · · ∪ Ck�(q,0)−1(v) ∪ C
�
�(q,v), (A.31)

where C��(q,v) = C�(q,v) \
�k�(q,0)−1
j=0 Cj(v) has cardinality

|C��(q,v)| = |C�(q)| −
k�(q,0)−1�

j=0

|Cj(v)| < |Ck�(q,0)(v)|. (A.32)

Thus we can sandwich the cardinality of C�(q,v) by
k�(q,0)�

j=0

|Cj(v)| > |C�(q,v)| ≥
k�(q,0)−1�

j=0

|Cj(v)|. (A.33)

Combining Lemmas A.1 and A.4, we further have

1 +Dχ2(PC�(q),P0) ≤
�k�(q,0)−1
i=0 hα(j) · |Cj(v)|+ hα[k�(q,v)] · |C��(q,v)|�k�(q,0)−1

j=0 |Cj(v)|+ |C��(q,v)|
, for all v ∈ C�(q).

(A.34)

Moreover, by (A.34) and the monotonicity of hα(t) we obtain

1 +Dχ2(PC�(q),P0) ≤
�k�(q,0)−1
i=0 hα(j) · |Cj(v)|
�k�(q,0)−1
j=0 |Cj(v)|

. (A.35)

17



By the definition of Cj(v) in (A.30), the cardinality of Cj(v) does not depend on the choice of

v ∈ H(s) and we have |Cj(v)| =
�
s
s−j

��
d−s
j

�
. Thus for any j ∈ {0, . . . , s− 1} we have

|Cj+1(v)|/|Cj(v)| = (s− j) · (d− s− j)/(j + 1)2 ≥ (d− 2s)/s2. (A.36)

Under the assumption that s2/d = o(1), the right-hand side of (A.36) is lower bounded by ζ =
d/(2s2) when d and s are sufficiently large. Then we have |Cj(v)| ≤ ζj−s|Cs(v)| for j ∈ {0, . . . , s}.
By the definition of k�(q,v) in (A.31) and (A.32), for any q ∈ QA , we further obtain

|C�(q)| ≤
k�(q,0)�

j=0

|Cj(v)| ≤ |Cs(v)|
k�(q,0)�

j=0

ζj−s

≤
ζ−[s−k�(q,0)]|H(s)|

1− ζ−1
≤ 2ζ−[s−k�(q,0)]|H(s)|, (A.37)

where the last inequality follows from the fact that ζ−1 = 2s2/d = o(1).

Moreover, for any two positive sequences {ai}si=0 and {bi}si=0 satisfying ai/ai−1 ≥ bi/bi−1 > 1
for all i ∈ [s], since hα(t) is nonincreasing, for any k ∈ [s], we have�

0≤i<j≤k

(aibj − ajbi) · [hα(i)− hα(j)] ≤ 0. (A.38)

Further simplifying the terms in (A.38), we have
�k
i=0[aihα(i)]�k

i=0 ai
≤

�k
i=0[bihα(i)]�k

i=0 bi
. (A.39)

In what follows, we upper bound k�(q,v) for � ∈ {1, 2} and v ∈ C�(q). We employ the shorthand

k� = k�(q,v) to simplify the notations. Combining (A.29), (A.35), and (A.39) with aj = |Cj(v)| and
bj = ζ

j , we have

1 +Dχ2(PC�(q),P0) ≤
�k�−1
j=0 ζ

jhα(j)
�k�−1
j=0 ζ

j

=

�k�−1
j=0 ζ

j
�
cosh

�
β2/2 · (s− j)

�
+ α2 sinh

�
β2/2 · (s− j)

��

�k�−1
j=0 ζ

j

≤

��k�−1
j=0 ζ

j cosh
�
β2(s− j)

�

�k�−1
j=0 ζ

j

�
�

��k�−1
j=0 ζ

j exp
�
α2β2(s− j)

�

�k�−1
j=0 ζ

j

�

. (A.40)

Here the second inequality follows from Lemma A.2. We bound the two terms in (A.40) separately.

Note that for notational simplicity, we denote for any t ∈ {0, . . . , s}, we define
f(t) = cosh

�
β2(s− t)

�
, g(t) = exp

�
α2β2(s− t)

�
.

Note that both h(t) and g(t) are monotone non-increasing, and thus f(t) ≥ f(s) = 1 and g(t) ≥
g(s) = 1. Moreover, by calculation, we have f(j−1)/f(j) ≥ cosh(β2) for all j ∈ {1, . . . , s}. Thus
we have

f(j) ≤ f(k� − 1) ·
�
cosh(β2)

�k�−j−1
, for all j ∈ {0, . . . , k� − 1}.

Then we have
�k�−1
j=0 ζ

jf(j)
�k�−1
j=0 ζ

j
≤ f(k� − 1) ·

�k�−1
j=0 ζ

j
�
cosh(β2)

�k�−j+1
�k�−1
j=0 ζ

j

≤ f(k� − 1) ·
�k�−1
j=0

�
cosh(β2)/ζ

�k�−j+1
�k�−1
j=0 ζ

−(k�−j+1)

= f(k� − 1) ·
1−

�
cosh(β2)/ζ

�k�

1− ζ−k�
·

1− ζ−1

1− ζ−1 cosh(β2)
. (A.41)
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Since cosh(β2) > 1, by (A.41) we have
�k�−1
j=0 ζ

j cosh
�
β2(s− j)

�

�k�−1
j=0 ζ

j
≤

1− ζ−1

1− ζ−1 cosh(β2)
· cosh

�
β2(s− k� + 1)

�
. (A.42)

In addition, since g(j − 1)/g(j) = exp(α2β2), similar to (A.41) we have
�k�−1
j=0 ζ

j exp
�
α2β2(s− j)

�

�k�−1
j=0 ζ

j
≤

1− ζ−1

1− ζ−1 exp(α2β2)
· exp

�
α2β2(s− k� + 1)

�
(A.43)

Combining (A.42) and (A.43), we obtain that

1 +Dχ2(PC�(q),P0)

≤

�
(1− ζ−1) cosh

�
β2(s− k� + 1)

�

1− ζ−1 cosh(β2)

�
�

�
(1− ζ−1) exp

�
α2β2(s− k� + 1)

�

1− ζ−1 exp(α2β2)

�

. (A.44)

Moreover, we use the following lemma obtained from [27] to establish a lower bound for

Dχ2(PC�(q),P0).

Lemma A.5. For any query function q and � ∈ {1, 2}, we have
Dχ2(PC�(q),P0) ≥ log(T/ξ)/n.

We denote
�
log(T/ξ)/n by τ for simplicity of notations. Combining (A.44), Lemma A.5 and

inequality cosh(x) ≤ exp(x2/2), at least one of the two inequality holds

(1 + τ2) ·
�
1− ζ−1 cosh(β2/2)

�
/(1− ζ−1) ≤ exp

�
β4/2 · (s− k� + 1)2

�
, (A.45)

(1 + τ2) ·
�
1− ζ−1 exp(α2β2)

�
/(1− ζ−1) ≤ exp

�
α2β2(s− k� + 1)

�
. (A.46)

If (A.45) holds, taking the logarithm of the both sides, we have

β4/2 · (s− k� + 1)2 ≥ log(1 + τ2)− log
�

1− ζ−1

1− ζ−1 cosh(β2)

�
. (A.47)

Whereas if (A.46) is true, it holds that

α2β2(s− k� + 1) ≥ log(1 + τ2)− log
�

1− ζ−1

1− ζ−1 exp(α2β2)

�
. (A.48)

In addition, by Taylor expansion and the fact that [cosh(β2/2) + exp(α2β2)]/ζ = o(1), we have

log

�
1− ζ−1

1− ζ−1 cosh(β2)

�
= log

�
1 +

ζ−1
�
cosh(β2)− 1

�

1− ζ−1 cosh(β2)

�
= O(ζ−1β4), (A.49)

log

�
1− ζ−1

1− ζ−1 exp(α2β2)

�
= log

�
1 +

ζ−1
�
exp(α2β2)− 1

�

1− ζ−1 exp(α2β2))

�
= O(ζ−1α2β2). (A.50)

Since γn = sβ2, by (A.26) we have (α2β2) ∨ β4 = o(log d/n). Hence, by (A.49) and (A.50), the

second terms on the right-hand sides of (A.47) and (A.48) are asymptotically negligible compared

with log(1 + τ2). Therefore, by (A.47) and (A.48), for � ∈ {1, 2}, at least one of the following two
arguments hold:

k�(q,v) ≤ s+ 1−
�
log(1 + τ2)/β4, k�(q,v) ≤ s+ 1− log(1 + τ2)/(2α2β2).

Equivalently, we have

k�(q,v) ≤
�
s+ 1−

�
log(1 + τ2)/β4

�
∨
�
s+ 1− log(1 + τ2)/(2α2β2)

�
. (A.51)

Recall that τ =
�
log(T/ξ)/n where ξ = o(1). For any constant η > 0, we set T = O(dη). By

combining Lemmas A.3 and A.4, (A.37), and (A.51), we further obtain

T ·
supq∈QA (|C1(q)|+ |C2(q)|)

|H(s)|
≤ 4T · exp

�
− log ζ ·

��
log(1 + τ2)/β4 − 1

��
∧

4T · exp
�
− log ζ ·

�
log(1 + τ2)/(2α2β2)− 1

��
. (A.52)

Under the assumption of the theorem, there is a sufficiently small constant δ > 0 such that s2/d1−δ =
O(1). Thus we have ζ = d/(2s2) = Ω(dδ). By inequality log(1 + x) ≥ x/2, it holds that log(1 +
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τ2) ≥ τ2/2 = log(T/ξ)/(2n). Under the condition in (A.26) , we have

log(T/ξ)

2nβ4

� log(T/ξ)

4nα2β2
>
log(1/ξ)

2nβ4

� log(1/ξ)

4α2β2
→∞. (A.53)

Hence if n is sufficiently large, the left-hand side in (A.53) is greater than an absolute constant C
satisfiying δ(C − 1) > η. Then by (A.52) we have

T ·
supq∈QA (|C1(q)|+ |C2(q)|)

|H(s)|
= O[4dηζ−(C−1)] = O[4dηd−δ(C−1)] = o(1). (A.54)

Combining (A.54) and Lemma A.3, we conclude that R
∗

n(G0,G1;A , r) → 1 if (A.26) holds. This
concludes the proof of Theorem 3.3.

A.4 Proof of Theorem 3.4

To ease notation, we denote the joint distribution of (Y,X) by Pθ where the model parameter is

given by θ = (µ0,µ1,Σ, α). In addition, we let ∆µ = µ1 − µ0. Thus ∆µ = 0 for all θ ∈ G0(Σ)
and∆µ ∈ B(s) for all θ ∈ G1(Σ; γn). In what follows, we bound the type-I and type-II errors of φ
respectively.

Type-I error. For any θ ∈ G0(Σ), by the definition of φ, the type-I error is bounded by
Pθ(φ = 1) ≤ Pθ(φ1 = 1) + Pθ(φ2 = 1).

For test function φ1, since marginally,X ∼ 1/2 ·N (µ0,Σ)+1/2 ·N (µ1,Σ), for any θ ∈ G0(Σ)∪
G1(Σ; γn), for any j ∈ [d], we have

EPθ (X
2
j /σj − 1)−

�
EPθ (Xj/

√
σj)

�2

= 1/4 · (µ0,j − µ1,j)2/σj = 1/4 · (∆µ)2j/σj , (A.55)

Here µ0,j and µ1,j denote the j-th entries of µ0 and µ1, and (∆µ)j is the j-th entry of ∆µ. In
addition, by the definition of qj in (3.13) we have���

�
EPθqj(Y,X)

�2 −
�
EPθ (Xj/

√
σj)

�2���

≤ 2
��EPθ (Xj/

√
σj)

�� ·
��EPθ (Xj/

√
σj)− EPθqj(Y,X)

��+
��EPθ (Xj/

√
σj)− EPθqj(Y,X)

��2.
SinceXj/

√
σj−qj(Y,X) = Xj/

√
σj ·1{|Xj/

√
σj | > R ·

√
log d}, by Cauchy-Schwarz inequality

we have��EPθ (Xj/
√
σj)− EPθqj(Y,X)

��2 ≤ EPθ (X2j /σj) · Pθ
�
|Xj/

√
σj | > R ·

�
log d

�
. (A.56)

Since �µ0�∞ ∨ �µ1�∞ ≤ C0 and {Xj/
√
σj}di=1 are sub-Gaussian random variables, for any t > 0,

there exists a constant C1 such that

Pθ

�
|Xj/

√
σj | > t

�
≤ 2 exp(−C1t2). (A.57)

Thus setting t = R ·
√
log d for some sufficiently large R, by (A.56) and (A.57) we obtain��EPθ (Xj/

√
σj)− EPθqj(Y,X)

�� ≤ C2d−1

for some constant C2. Thus we have���
�
EPθqj(Y,X)

�2 −
�
EPθ (Xj/

√
σj)

�2��� ≤ 2C0 · C2d−1 + C22d−2 ≤ 1/16 · (∆µ)2j/σj . (A.58)

In addition, since X2j /σj − 1 − �qj(Y,X) = (X2j /σj − 1) · 1{|Xj/
√
σj | > R ·

√
log d}, for �qj

defined in (3.14), we similarly we obtain��EPθ �qj(Y,X)− EPθ (X2j /σj − 1)
�� ≤ 1/16 · (∆µ)2j/σj . (A.59)

Combining (A.58) and (A.59) we have

EPθ �qj(Y,X)− [EPθqj(Y,X)]
2 ≥ 1/8 · (∆µ)2j/σj for all j ∈ [d].

Taking supremum over j ∈ [d], we have

sup
j∈[d]

�
EPθ �qj(Y,X)− [EPθqj(Y,X)]

2
�
≥ 1/8 · sup

j∈[d]

�
(∆µ)2j/σj

�
. (A.60)
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Note that the test function φ involves 4d queries functions. Thus, for any θ ∈ G0(Σ) ∪ G1(Σ; γn),
under Pθ the tolerance parameters for qj and �qj are given by
τqj ≤ R

�
log d ·

�
[log(4d/ξ)]/n, τ�qj ≤ R2 log d ·

�
[log(4d/ξ)]/n, for all j ∈ [d]. (A.61)

Under the assumption that

sup
j∈[d]

(∆µ)2j/σj = Ω
�
log2 d · log(d/ξ)/(α2n) ∧ log d ·

�
log(d/ξ)/n

�
,

we have

τqj ∨ τ�qj ≤ R2 log d ·
�
[log(4d/ξ)]/n

≤ (1/C) ·

�

sup
j∈[d]

[(∆µ)2j/σj ] ∨ α · sup
j∈[d]

|(∆µ)j/
√
σj |

�

, (A.62)

where the absolute constant C is the same as in (3.16). Note that we denoteR2 log d ·
�
log(4d/ξ)/n

by τ1. Hence by (A.62), for any θ ∈ G0(Σ), the type-I error of φ1 is bounded by

Pθ

�

sup
j∈[d]

(Z�qj − Z2qj ) ≥ Cτ1

�

= Pθ

��
j∈[d]

�
(Z�qj − Z2qj )−

�
EPθ �qj(Y,X)− [EPθqj(Y,X)]2

�
≥ Cτ1

��

≤ Pθ
��

j∈[d]

�
Z�qj − EPθ �qj(Y,X) ≥ τ1

��
+ Pθ

��
j∈[d]

�
Z2qj − [EPθqj(Y,X)]

2 ≥ (C − 1)τ1
��

.

For the first term, we have

Pθ

��
j∈[d]

�
Z�qj − EPθ �qj(Y,X) ≥ τ1

��

≤ Pθ
��

j∈[d]

���Z�qj − EPθ �qj(Y,X)
�� ≥ τ�qj

��
≤ ξ. (A.63)

Note that under the null hypothesis θ ∈ G0(Σ), we have EPθqj(Y,X) = µ0,j/
√
σj . Under the

assumption that �µ0�∞ ∨ �µ1�∞ ≤ C0, when n is sufficiently large such that

τ1 ≤ 3(C − 1)−1C0/
√
σj ,

by Z2qj − [EPθqj(Y,X)]
2 ≥ (C − 1)τ1 we have
|Zqj − EPθqj(Y,X)| ≥ (C − 1)τ1 ·

√
σj/(3C0). (A.64)

Thus we can set absolute constant C sufficiently large such that |Zqj −EPθqj(Y,X)| ≥ τ1. Thus by
(A.64) we have

Pθ

��
j∈[d]

�
Z2qj − [EPθqj(Y,X)]

2 ≥ (C − 1)τ1
��

≤ Pθ
��

j∈[d]

���Zqj − EPθqj(Y,X)
�� ≥ τqj

��
≤ ξ. (A.65)

Combining (A.63) and (A.65), we can bound the type-I error of φ1 by 2ξ. For the type-I error of

φ2, we define Z = (2Y − 1) ·X . Under the data-generating model defined in (2.1) and (2.2), the

distribution of Z is given by

Z ∼
1 + α

4
N (−µ0,Σ) +

1 + α

4
N (µ1,Σ) +

1− α
4
N (µ0,Σ) +

1− α
4
N (−µ1,Σ).

Then by definition, for all θ ∈ G0(Σ), we have
EPθ [v

�diag(Σ)−1/2Z] = 0, for all v ∈ B2(1). (A.66)

In addition, for any θ ∈ G1(Σ; γn), by the distribution of Z, for all v ∈ B2(1), we have
EPθ [v

�diag(Σ)−1/2Z] = α/2 · v�diag(Σ)−1/2∆µ. (A.67)

Moreover, by definition we have

v
�diag(Σ)−1/2Z − q

0
(Y,X) = v

�diag(Σ)−1/2Z · 1
�
|v�diag(Σ)−1/2Z| ≤ R

�
log d

�
.

By setting the constant R sufficiently large, for any for any θ ∈ G0(Σ) ∪ G1(Σ; γn), we have��EPθq0(Y,X)− EPθ (v�diag(Σ)−1/2Z)
�� ≤ α/4 · |(∆µ)j/

√
σj |.
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Combining (A.66) and (A.67) we obtain that

EPθq0(Y,X) ≤ α/4 · |(∆µ)j/
√
σj | for all θ ∈ G0(Σ);

EPθq0(Y,X) ≥ α/4 · |(∆µ)j/
√
σj | for all θ ∈ G1(Σ, γn).

Thus, taking the supremum over B2(1) yields
sup

0∈B2(1)

EPθq0(Y,X) ≥ α/4 · sup
j∈[d]

|(∆µ)j/
√
σj | for all θ ∈ G1(Σ, γn). (A.68)

In addition, since we have 4d queries, by Definition 2.2, the tolerance parameters for q
0
’s are bouded

by

τq
v
≤ R

�
log d ·

�
[log(4d/ξ)]/n, for all v ∈ B2(1).

Note that we denote τ2 = R
√
log d ·

�
[log(4d/ξ)]/n. Similar to (A.62), we have

τq
v
≤ τ1 ≤ (1/C) ·

�

sup
j∈[d]

[(∆µ)2j/σj ] ∨ sup
j∈[d]

α|(∆µ)j/
√
σj |

�

. (A.69)

Hence by (A.69), for any θ ∈ G0(Σ), the type-I error of φ2 is bounded by

Pθ

�

sup
0∈B2(1)

Zq
v
≥ 2τ1

�

= Pθ

��
0∈B2(1)

�
Zq

v
− EPθ [q0(Y,X)] > τ1

��

≤ Pθ
��

0∈B2(1)

���Zq
v
− EPθ [q0(Y,X)]

�� ≥ τq
v

��
≤ ξ. (A.70)

Combining (A.63), (A.65), and (A.70), we have

Pθ(φ = 1) ≤ 3ξ, for all θ ∈ G0(Σ).

Type-II error. Now we consider θ ∈ G1(Σ; γn). Note that φ = 0 if φ1 = 0 and φ2 = 0. Thus, for
any θ ∈ G1(Σ; γn), we have

Pθ(φ = 0) = Pθ(φ1 = 0 ∩ φ2 = 0) ≤ Pθ(φ1 = 0) ∧ Pθ(φ2 = 0).
Recall that we denote ∆µ = µ1 − µ0. Similar to the proof of Theorem 3.2, we consider two cases

of the condition

sup
j∈[d]

(∆µ)2j/σj = Ω
�
log(d/ξ)/(α2 · n) ∧

�
log(d/ξ)/n

�
.

Case (i). We show that the type-II error of φ1 is negligible under the assumption that

sup
j∈[d]

(∆µ)2j/σj = Ω
��
log(d/ξ)/n

�
.

Let j∗ = argmaxj∈[d](∆µ)
2
j/σj . Then by (A.62), when we have

1 + Cτ ≤ (∆µ)2j∗/σj∗ + 1− Cτ = EPθ �qj∗(Y,X)− [EPθqj∗(Y,X)]2 − Cτ. (A.71)

Thus combining (A.58), (A.59), and (A.71), we have

Pθ

�
sup
j∈[d]

(Zqj − Z2�qj ) < Cτ1
�

≤ Pθ
�
Z�q∗

j
− Z2qj < EPθ �qj∗(Y,X)− [EPθqj∗(Y,X)]

2 − Cτ1
�

≤ Pθ
�
EPθ �qj∗(Y,X)− Z�qj∗ > τ1

�
+ Pθ

�
[EPθqj∗(Y,X)]

2 − Z2q∗
j
> (C − 1)τ1

�
. (A.72)

Moreover, by (A.62) the first term on the right-hand side of (A.72) can be further bounded by

Pθ

�
EPθ �qj∗(Y,X)− Z�qj∗ > τ1

�

≤ Pθ
�
EPθ �qj∗(Y,X)− Z�qj∗ ≥ τ�qj∗

�

≤ Pθ
��

j∈[d]

�
|Z�qj − EPθ �qj(Y,X)]| ≥ τ�qj

��
≤ ξ. (A.73)
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Similarly, for the second term on the right-hand side of (A.72), by (A.62) and (A.64)we have

Pθ

�
[EPθqj∗(Y,X)]

2 − Z2q∗
j
> (C − 1)τ1

�

≤ Pθ
��

j∈[d]

���Zqj − EPθ �qj(Y,X)]
�� ≥ τqj

��
≤ ξ. (A.74)

Therefore, combining (A.73) and (A.74), we conclude that the type-II error of φ2 is no more than 2ξ.

Case (ii). Now we assume study the type-II error of φ2 under the assumption that

sup
j∈[d]

(∆µ)2j/σj = Ω
�
log(d/ξ)/(α2 · n)

�
.

Let j∗ = argmaxj∈[d](∆µ)
2
j/σj and v∗ = argmax

0∈B2(1) EPθq0(Y,X). Then by (A.62) and

(A.68), when C > 4 we have

2τ2 ≤ α/2 · sup
j∈[d]

|(∆µ)j/
√
σj | − 2τ2 = EPθq0∗(Y,X)− 2τ2. (A.75)

Then by (A.69) and (A.75) the type-II error of φ2 is bounded by

Pθ

�

sup
0∈B2(1)

Zq
v
< 2τ2

�

≤ Pθ

�

sup
v∈B2(1)

Zq
v
< EPθqv∗(Y,X)− 2τ2

�

≤ Pθ
�
Zq

v∗
< EPθqv∗(Y,X)− 2τ2

�

≤ Pθ
��

0∈B2(1)

���Zq
v
− EPθ [q0(Y,X)]

�� ≥ τq
v

��
≤ ξ. (A.76)

Thus by (A.76), the type-II error of φ2 is no more than ξ. Then together with Case (i), we have

Pθ(φ) ≤ 2ξ for all θ ∈ G1(Σ; γn). Therefore the total risk of φ is bounded by

Rn(φ) = sup
θ∈G0(0)

Pθ(φ = 1) + sup
θ∈G1(0 ;γn)

Pθ(φ = 0) ≤ 5ξ.

B Proofs for Technical Lemmas

In this section, we prove the technical lemmas which appear in the proofs of the main results.

B.1 Proof of Lemma A.1

Under P0,X and Y are independent withX ∼ N (0, I) and Y is uniform over {0, 1}. We denote by

f(x;µ) the density of N (µ, I) and by p0(y,x) the density of P0. Then for any y ∈ {0, 1} and x ∈
R
d, we have p0(y,x) = 1/2 · f(x;0). In addition, for any v ∈ H(s), we denote the density of

Pv by pv(y,x). By the definition of the statistical model, we have

pv(1,x) = (1 + α)/4 · f(x;v/2) + (1− α)/4 · f(x;−v/2),
pv(0,x) = (1− α)/4 · f(x;v/2) + (1 + α)/4 · f(x;−v/2).

Thus for any y ∈ {0, 1} and x ∈ Rd, we have
dPv

dP0
(y,x) =

1

2
·
�
f(x;v/2)

f(x;0)
+
f(x;−v/2)
f(x;0)

�
+
α(2y − 1)

2
·
�
f(x;v/2)

f(x;0)
−
f(x;−v/2)
f(x;0)

�
.

(B.1)

Note that by definition, for any µ ∈ Rd, we have
g(x;µ) := f(x;µ)/f(x;0) = exp(µ�x− 1/2 · �µ�22).

Thus (B.1) is reduced to

dPv

dP0
(y,x) = [g(x,v/2) + g(x;−v/2)] /2 + α(2y − 1) · [g(x,v/2)− g(x;−v/2)] /2. (B.2)

For any v1,v2 ∈ H(s), by (B.2) we have

EP0

�
dPv1

dP0

dPv2

dP0
(Y,X)

�

= EP0 {[g(X,v1/2) + g(X;−v1/2)] · [g(X,v2/2) + g(X;−v2/2)] /4}
+ α2 · EP0 {[g(X,v1/2)− g(X;−v1/2)] · [g(X,v2/2)− g(X;−v2/2)] /4} , (B.3)
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where we use the independence of Y andX under P0. In what follows, we calculate the two terms

on the right-hand side of (B.3), respectively. Let η1 and η2 be two independent Rademacher random

variables over {−1, 1}. Then for � ∈ {1, 2}, we have
[g(X,v�/2) + g(X;−v�/2)] /2 = Eη� [g(X, η�v�/2)] , (B.4)

[g(X,v�/2)− g(X;−v�/2)] /2 = Eη� [η� · g(X, η�v�/2)] . (B.5)

Then by (B.4) and (B.5) we have

EP0 {[g(X,v1/2) + g(X;−v1/2)] · [g(X,v2/2) + g(X;−v2/2)] /4}
= EP0Eη1,η2 [g(X; η1v1/2) · g(X; η2v2/2)]
= Eη1,η2EP0 exp

�
X�(η1v1 + η2v2)/2− 1/8 · (�v1�22 + �v2�22)

�
. (B.6)

Using the moment-generating function ofX , by (B.6) we have

EP0 {[g(X,v1/2) + g(X;−v1/2)] · [g(X,v2/2) + g(X;−v2/2)] /4}
= Eη1,η2

�
exp(1/2 · η1η2 · v�1 v2) = cosh(1/2 · �v1,v2�)

�
.

Similarly, for (B.5) we have

EP0 {[g(X,v1/2)− g(X;−v1/2)] · [g(X,v2/2)− g(X;−v2/2)] /4}
= EP0Eη1,η2 [η1η2 · g(X; η1v1/2) · g(X; η2v2/2)]
= Eη1,η2

�
η1η2 · exp(1/2 · η1η2 · v�1 v2)

�
= sinh(1/2 · �v1,v2�).

Thus we conclude the proof of Lemma A.1.

B.2 Proof of Lemma A.2

It is straightforward to verify (A.4) holds when x = 0. We focus on region x > 0. It is then sufficient
to prove the result for these two cases below.

Case 1: We consider the case v ≤ 1/(2x) · log[cosh(2x)]. Then we need to prove

cosh(x) + v sinh(x) ≤ cosh(2x). (B.7)

Using the bound of v, it remains to show the function

f(x) = 1/(2x) · log[cosh(2x)] · sinh(x) + cosh(x)− cosh(2x) ≤ 0.
holds for all x > 0. It’s easy to verify f(x) is monotonically decreasing over (0,∞] and
limx→0 f(x) = 0. We thus finish proving (B.7).

Case 2: We consider the case v ≥ 1/(2x) · log[cosh(2x)]. We would like to show

cosh(x) + v sinh(x) ≤ exp(2vx). (B.8)

Let us define g(v) := exp(2vx)− cosh(x)− v sinh(x). We have that for any x ≥ 0,
g�(v) = 2x exp(2vx)− sinh(x) ≥ 2x cosh(2x)− sinh(x) ≥ 0.

Hence, g(v) is a monotonically increasing function. We thus have

g(v) ≥ g {1/(2x) · log[cosh(2x)]}
= cosh(2x)− cosh(x)− 1/(2x) · log[cosh(2x)] · sinh(x) = −f(x) ≥ 0.

We thus finish proving (B.8).

C Supporting Lemmas

In this section we list the supporting lemmas that establish two concentration inequalities for Gaussian

random variables.

Lemma C.1 (χ2-tail bound, [16]). Let X1, . . . , Xn be n i.i.d. standard normal random variables.

For all t ∈ (0, 1),

P

������
1

n

n�

i=1

X2i − 1

����� ≥ t

�

≤ 2 exp(−nt2/8).

Lemma C.2 (Gaussian covariance estimation, [25]). Suppose {Xi}ni=1 are n i.i.d. Gaussian random

vectors in Rd and X1 ∼ N (0,Σ). For every � ∈ (0, 1), and t ≥ 1, if n ≥ C(t/�)2d for some
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constant C, then with probability at least 1− 2e−t2n,
|||�Σ−Σ|||2 ≤ �|||Σ|||2,

where �Σ := 1/n ·
�n
i=1XiX

�
i .
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