A Proofs of the Main Results
A.1 Proof of Theorem 3.1

In this section, we prove the information-theoretic lower bound. In specific, we focus on the restricted
testing problem

Hy:6=(0,0,1I,«) versus. H; : 0 = (—v/2,v/2,1,a), (A1)
where
v € H(s) = {uc{0,8}%: ||uljp = s}.
Here we set 532 = 7, to ensure that (—v/2,v/2,1, ) belongs to the alternative parameter space
G(32; vx). For notational simplicity, we denote the distribution of model (—v/2,v/2,I, ) by Py,
and the product distribution of n i.i.d. samples by P7.. By the definition of the minimax risk in (2.4),
we have

SUp Ry, [Go(2), 61(3i7a)] 2 inf | PG(6 = 1) + s Ve%j(s)w =0)

We thus reduce the minimax risk to the risk of a simple-against-simple hypothesis test where the al-
ternative hypothesis corresponds to a uniform mixture of {P,,: v € H(s)}. For notational simplicity,
we define P, := 1/[H(s)| - >_yc4(s) Pv- By Neyman-Pearson Lemma, we have

R;’; [g07 g1(2§ ’Vn)] Z 1- TV(ng P%)

Using Pinsker’s inequality TV (Pg, P%,) < /D, (P}, Pg), for showing R [Go(2), G1(Z;7,)] — 1
as n goes to infinity, it suffices to show that D, (P%,,IP§) = o(1). By calculation we have

L dp? 2 dp7 2
Pl ”’PO):EpgﬂdPme)_l] }:Epgﬂdﬁf(xx)} }_1

1 dP2 dP?
- _ Epn | ——1 Y2 Vz(YX)}l
;X B
[H(s)] vivaeH(s) ° | dPgdPg
1 dP,, dP "
= E WY,X]} — 1. (A2)
HGE ZH(){ o | g 0 X)

We utilize the following lemma to obtain an upper bound for the last term of (A.2). See §B.1 for the
proof.

Lemma A.1. Forany vi,vs € H(s), we have
dp,, dP,,
Fo | 'dPy dPo

Y, X)} = cosh ((v1,v2)/2) + a?sinh ((v1,v2)/2).

By Lemma A.1, we have
DX2( T’}fL’Pg)
1 . §
- W Z [COSh(l/Q' <V1,V2>)—|—O¢231nh(1/2- (vl,v2>)} —1. (A.3)
vi,v2€H(s)

We define C := {S C [d] : |S| = s}, and let U¢ be the uniform distribution over C. Let S1, Sy ~ Ue
be two independent random sets. Then by (A.3), we have

Dy (P4, PR) = Es, s, [cosh(82/2 |81 NSal) + a2 sinh(82/2 - |81 N S[)]" — 1.

We use the next lemma, proved in §B.2, to bound the above right-hand side.

Lemma A.2. Forany xz > 0and v € [0,1], we have
cosh(z) + vsinh(z) < exp(2vx) V cosh(2x). (A4
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Proceeding with this result and letting random variable Z ~ |S; N Sy, we have
D2 (P, Pg) < Ez [exp(a®B2Z) V cosh(82Z)]" — 1
=Ey [exp(na®B*Z) V cosh(8°Z)"] — 1
=Eyz {exp(non,BzZ) vV Ey [exp(ﬂ2ZU)]} -1, (A.5)
where in the last step, we introduce a random variable U that is the summation of n independent

Rademacher random variables over {—1,1}. Then we have cosh(8%22)" = Ey[exp(32ZU)]. B
(A.5), we have

D2 (P}, Pg) < EzEy [exp(na®B2Z) Vexp(B°ZU)| — 1
= EyEz {exp(na?8%) v exp(82U)} 7 — 1

< £0{ sup B, [exp(na?3) v ep(570)) S} -1 ae)
S1eC
Now we turn to bound the expectation over Sz in (A.6). For any fixed S;, we have
S1 NS ="V,
1€EST
where V; is binary random variable that indicates whether ¢ € Ss. It is known that V3, ...V are

negative associated. Hence we have

Es, [exp(na252) v exp(ﬂzU)] 15105 }Vi

< [ Ev. [exp(na®8%) v exp(8°U)
i€S1
= {1+ s/d- [exp(na®B?) V exp(8°U) — 1] }5 . (A

Plugging (A.7) into (A.6) and expanding the polynomial term, we have

D,2(P},,Pg) < Z < > (s/d)* - By [exp(na®B?) V exp(B°U) — 1}k

- Z ( ) (s/d)* ( [exp(na?8®) —1]" - P(U < na?)

+Ey {[exp(BQU) — 1]k = agn} -P(U > na2)>,
< Tl +T2a

where 17 and 75 are defined as
S

Tyii=) (;) (s/d)" - [exp(na2p?) —1]"

k=1

L ° S k 2 k
T, = ; (k) (s/d)" -Ey {[exp(ﬁ U)-1]"|U > 0} -P(U >0).
It remains to bound 7} and 75 respectively.

Bounding 7;. Under condition s32 = v,, = o(1/a? - slogd/n), we have 82 = o(1/a? -logd/n).
Hence, for any small constant C' > 0, we have ﬁ2 <C-1/ o?. log d/n when n is sufficiently large.
Note that we assume s = o(d'/?~?) for some fixed constant § > 0. Then we have

= Z < ) (s/d)" - exp(a®Bnk) < ; [s%¢/(kd)]" - exp(a?Bnk)

< Z [s%/(kzd)]k -exp(Cklogd) = i(s%/k SdThk < i(e/k L dO20)k,
k=1

k=1 k=1
where the second step follows from the fact that () < (es/k)*. Note that C is chosen arbitrarily,
hence we can always choose C' < 4. It implies that e/k - d“~2° = o(1). We thus conclude T} = o(1).
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Bounding 75. For term 75, we observe that

T, < Z(e/k -s%/d)* By {[exp(52|U|) - 1}’“}
k=1

< (e/k-s*/d)* By [(B*|U])* + exp(B°k|U) - 1(8%|U| > 1)]

< T3+ 1Ty,

where T3 and T} are defined as

Ty:= Y Eule/k - 5*6°/d- |U])",

S

Ty =Y (e/k-s*/d)* - By [exp(B7k[U]) - 1(B*|U| > 1)] .
k=1
Note that U is summation of n i.i.d. centered sub-Gaussian random variables U; each with Orlicz -
norm equal to one. Therefore, U is also centered sub-Gaussian random variable with [|U||,, < Cv/n
for some constant C. Thus it holds that

E(UI*) < (VE-[[Ullg)* < (CVnk)*.

Hence for term T3, we have
s k
T < - [Ces?sVin/(VRd)]
k=1

Under the condition s3% = o(y/slog d/n), we have
Ces*B*/n)(Vkd) = o ( \/slog /d)
Since s = o(v/d), we have sv/slogd/d = o(1), which implies T3 = o(1).
To obtain an upper bound for term 7Ty, we let W = B2U. So W is centered sub-Gaussian with Orlicz
norm c/3%/n. Computing integral by parts, we have
oo
Ey [exp(8°k|U]) - 1(8°|U| > 1)] = € - P(IW| > 1) + / ke - P(IW| > w)dw. (A8)
u

=1
Using the property of sub-Gaussianity, we have P[W > t] < C exp[—Cat?/(8%y/n)?] for some
absolute constants C, Co > 0. Proceeding with (A.8) and using shorthand o = 3%,/n, we obtain

By [exp(FPHU) - LIV > 1)] < Crebe /7 4 0uk [ ke Can'l gy

w=1

2 2 2 22 2 2

= CyeFe™C2/7 4 O kel o /(AC2) / e — A 38 dw < Cye* + Cske* @ /(402)0,
w=1

where C'5 is a constant that depends on C; and C5. Thus we have

Ty < 201 e*/(kd)] +ZC’3U/<: e?/(kd) - exp(k/4 - 02/02)]k. (A9)

T5 TS

Note that s /d = o(1), we thus have T5 = o(1). Under condition s32? = o(+/slogd/n), for any
small constant C' > 0, when n is large enough, we have

exp(k/4 - 0%/Cy) < exp(Cklogd/s) < exp(Clogd) < d°.

Plugging (A.9) into T and using s* = o(d'~2?), we have that each term in the summation is less
that

Ts <Y ok [e®/(kd® )] < Zk\/logd/s [e2/(d20-C)]" .
k=1
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Since the constant C' is chosen arbitrarily, we have Tg = o(1). Accordingly, Ty = o(1) and T =
o(1).

Finally, combining everything together, we have D, (P}, IP§) = o(1), which completes the proof.
A.2  Proof of Theorem 3.2

We begin with some basic properties of sample sets {w;}?_; and {u;}?_,. We introduce the random
vector W := X — X' to capture the distribution of samples {w;}?_;. Here X follows the model
given in (2.1)-(2.2), and X"’ is an independent copy of X . We note that the marginal distribution of
X is given by 1/2 - N'(po, X) + 1/2 - N(p1, X). Thus W follows a mixture distribution

W ~1/2-N(0,2%2) +1/4- N (p1 — po,2%) + 1/4 - N(po — p1,23). (A.10)
Moreover, conditioning on the observed label Y, the distribution of X is given by

XY =0~ (1+0a)/2-N(po, %) + (1 —a)/2-N(p, %), (A.11)

XY =1~ (14+a)/2-N(p,%)+ (1 —a)/2-N(po, %). (A.12)

We introduce a random vector U := X (1) — X (9) that corresponds to samples {u;}?_,. Here random
vectors X (©) and X (M) are independent and have distributions given in (A.11), (A.12), respectively.
The distribution of U is given by

U ~ (1+a)?/4-N (1 — 10, 28) +(1-a?) /2-N(0,28) + (1 - ) /4-N (o — p1,25). (A.13)
Now we turn to prove Theorem 3.2. It suffices to prove this result by bounding type-I and type-II
errors separately. In the end, we will show that

sup Pa(p=1)<4d ' and sup Py(¢p=0)<16d"".
0eG(X) 0cG1(Z5vn)
Type-I error. Under the null hypothesis 8 € Gy(3), (A.10) and (A.13) reduce to
W ~ N(0,2%), U ~ N(0,2%).
To bound the type-I error of function ¢, we first note that

1 — o~
— E V'E w2 =v Zyv,
n

i=1

where we let Sy = 1 /n- > B w,w,/ ¥ ie., an empirical covariance matrix of random
vector Z~'W ~ N (0,2% ). For any matrix A € R¥% and S C [d], we let [A]s € RISI*ISI be
the submatrix of A, which contains the entries with row and column indices in S. By standard tail
bound of Gaussian covariance estimation (see Lemma C.2), for any fixed S € [d] with |S| = s, and
any € € (0,1), when n > C's/€? for some constant C, we have

P3 [I(Ew — 22 sl > 2el(S sl < 2e7 (A.14)

Note that [[(X71)s|l2 < |72 for all S C [d]. By taking union bound over all subsets with size s
Seld],|S|=s

in [d], we have
d
g 2( )e_n
s
(a)

< 2exp[—n + slog(ed/s)] (%) 2[s/(ed)]* < 2d .

Here step (a) follows from the fact that (‘Si) < (ed/s)® and step (b) follows from the assumption
that n > 2slog(ed/s). In the last step we use the fact that function f(s) = (s/d)® is monotonically
decreasing for s € [1,d/e]. We set € = /slog(ed/s)/n. Under condition n > 2slog(ed/s), we
have € < 1. Moreover, when s < C’d for sufficiently small constant C’ that depends on C, we have
n>Cs/ €2. Therefore, such value of € leads to (A.14). Thus we conclude that

viSpv—2vIZ-ly slog(ed/s) =72
> .
2vIZ-1ly = n viy-ly

pg[ ap IS — 25 sl > 2615

Py forall v e By(s)| <2d7!
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Note that |[S7!2/(v Z7'v) < |Z7Y2]|Z]l2 = &. Our choice of 7; ensures the type-I error of
¢1 does not exceed 2d 1.

Now we turn to analyze the performance of ¢5. Recall that ¢; simply selects the coordinate of
@ :=1/n-Y 1 u; that has the largest magnitude (scaled with diag(X)~'/2) and compare it with
7. It suffices to show all coordinates are well bounded around 0 under null hypothesis. Denote the
j-th coordinate of @ by ;. Denote the j-th diagonal term of X by 0. We have @; ~ N (0, 20;/n).
Recall that for standard normal random variable X, we have

P(|X]| > t) < 2exp(—t?/2) forany t > 1. (A.15)

Using this property and taking union bound over j € [d], we have
Py (sup la;|/\/o; > 810gd/n> < 2d - exp(—2logd) = 2d~".
j€ld]

Accordingly, our choice of 75 can ensure type-I error of ¢- is controlled within 2d~*.

Type-II error. Under the alternative hypothesis 8 € G;(X;~, ). Note that ¢ = 0 if and only if
¢1 = 0 and ¢o = 0. Thus, for any € € G;(X;,,), we have

Po(¢ = 0) =Pg(d1 = 0N ¢z = 0) < Pg(¢1 = 0) APg(d2 = 0). (A.16)
We assume 7, > Ck[y/slogd/n V (1/a? - slogd/n)]. It suffices to bound the type-II error by
considering these two cases: (i) when 7, > k+/slogd/n, we show that P4 (¢ = 0) < 16d~'; (ii)

~

when 7, 2 r/a? - slogd/n and 16/a? - slogd/n < \/slogd/n, we show Pg[pe = 0] < 7d 1.

Case (i). Now we consider the first case. We denote Ay := pqy — po. Let v* := Ap/||Aplls.
Since v* € By(s), we have

VTﬁwv V*Tflwv*
SUD o T 1y < oy T Lyt
vEBy(s) 2V v 2ve I 31y
It remains to show the right hand side is larger than 1 4 77 with high probability. Note that

~ 1 &
* 1 * * 1T §1—1 2
by =— by i)°.
v wv - ;(v w;)
We define a random variable W := v*T £~ W, whose probability distribution is given by
1/2-N(0,v) +1/4-N(m,v) +1/4- N(—m,v), (A17)
where we define m := p(0)/||Ap||2 and v := 2p(0)/||Ap||3. Recall that p(8) := A" 1Apu.
Let w; := v*" X ~!w;. Due to the mixture structure (A.17), we can thus cluster {w; }""_, into three
groups {@Ek) o+ k € {1,2,3}, based on the latent labels. The k-th group corresponds to the k-th
term in (A.17). Note that E(n,) = n/2,E(n2) = E(n3) = n/4. Define event & as
E1:={|n1—n/2| <1/8n, Ing—n/4 <1/8-n, |ng—n/4 <1/8-n}. (A.18)
By Hoeffding’s inequality, we have P(£1) > 1 — 6 exp(—n?/32).
From now on, we condition on event £ . By the standard x2-tail bound (Lemma C.1), forany ¢ € (0, 1)
and k € {1,2, 3}, we have

Nk
PG < Z(@(k) —mp)? —npr| > nkVt> < 267 /8 < gt /64, (A.19)
i=1
where my = 0, mg = —mgs = m. Moreover, using tail bound of Gaussian (A.15), for t' > 1/,/ny
and k = 2,3,
ng
P} ( Sl — | > nkﬁt’> < 2e7m/2 < 910, (A.20)
i=1
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Excluding the small chance events in (A.19) and (A.20), we find that

n 3 3
3@ = @ )+ 23S — (4 ng)?
=1

k=11i=1 k=2 i=1
3 ng
>av(l—1)+23 3 mil” — (na + ng)m?
k=2 i=1
> nv(1 —t) + (ng 4 n3)m? — 2(ny + nz)V/vt'm
>nv(l —t)+1/4-nm? —3/2 - ny/vt'm,
where the last step follows from (A.18). Note that 2v*T ¥~ 1y* = p. We thus have

v TSpvt - S w? 1> m* . 3mt’
2v*T 3 —ly* C 2pvr T E Ly T 4 2\/v
= 1/8-p(0) —t — 3t'/4- \/2p(0). (A21)

Now we choose t = t' = 84/slog(ed/s)/n, which is less than one under condition n >
64slog(ed/s). When p(0) > Ck+/slog(ed/s)/n for sufficiently large constant C, we can have
t < p(0)/32and t' < /' < \/p(8)/48. Accordingly, proceeding with (A.21) gives

1/2 v Spvi /v TRV —1>1/16- p(0) > 7.
Plugging the value of ¢, ¢ into the tail bounds in (A.19) (A.20) and using the probability of event £,
we have the type-II error of ¢; is most 104~ + 6e=""/32 < 164,

Case (ii). Now we turn to analyze the performance of ¢3. We introduce shorthands g :=
diag(X)~?Ap and A := diag(X)'/2. Then it holds that
p(0) = Ap ST Ap = ApTATIAS T AAT Ap < ||l AZ T Aoy
< |BIZIAIZIZ 2 < wlAl3,
where the last step follows from the fact that ||diag(X)||2 < ||2]|2- Suppose the j-th coordinate of g,
denoted by 3, has largest magnitude. Since ||t||2 < s/32, we have 32 > p(0)/(sk). Under condition
400xs logd

)

we have
B > 20/logd/(a2n). (A.22)
Let v* = sign(f) - e;. We have

sup (v,A7'a) > (v¥,A7'a) =
veBs(1)

)

n

1 ZN

_ Wis

n “ t
i=1

where we denote the j-th coordinate of A~'u; by ;.

Let U, be the j-th coordinate of U. Note that {u;; } ; are i.i.d. samples of U;/, /7. Recall that o

is the j-th diagonal term of 3. According to (A.13), U;/,/a; has the mixture distribution
(1+a)?/4-N(B,2) + (1 —a?)/2-N(0,2) + (1 — a)?/4- N (-5,2). (A.23)

We can cluster these samples into three groups {ﬂg? }ik, .k € {1, 2, 3} based on latent labels, where

k-th group corresponds to the k-th term in (A.23). Using tail bound of Gaussian (A.15), we have for
t>1landk € {1,2,3},
P (

where m; = —mg = 8, mo = 0. Therefore, with probability at least 1 — 6et"/ 2 it holds that

3
2 ¢
<ty /< ot (A.24)
n

k=1

ng

E a® _nm
ij kTTtE

i=1

> \/2nkt> < 2e_t2/2,

I -
HZ“” (m nns)ﬁ

Bl

i=1
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It remains to bound n; — n3. Note that n; — ns is a summation of n i.i.d. random variables V;
satisfying P(V; = 1) = (14+«a)?/4,P(V; = 0) = (1 —a?)/2,and P(V; = —1) = (1 — a)?/4. Then
V; has mean , variance (1 — a?)/2 <1 — a, and |V; — E(V;)| < 2. By Bernstein’s inequality, we
have that for ¢’ > 0,

t/2
P —ng — >t) < — )
(jnx = ng —an| > )—eXp{ 2(1—a)n+4t’/3}

Choosing t' = an/2, we thus have

a’n
8(1 - )+ 8a/3
where the last step follows from condition 8slogd/(a?n) < y/slog(ed/s)/n < 1. Combining
(A.24) and (A.25), we have that with high probability 1 — Get/2 — a1,

1/n - | > af/2 = 5t/v/n > 10\/logd/n — 5t/\/n > 2,
=1

where the second step follows from (A.22) and the last inequality holds by setting t = /2logd,
which gives the type-II error of ¢ is at most 7d 1.

P(lny —ng —a-n| > an/2) <exp {— } <exp(—a’n/8) <d~', (A.25)

Using (A.16) and the conclusions in the above two cases, we thus show Type-II error of ¢ is at most
16d~! and thus complete the proof.

A.3 Proof of Theorem 3.3

In this section, we prove the computational lower bound. We first show that the information-theoretic

lower bound in (3.4) is a lower bound of the computationally tractable minimax rate. To see this,
we consider the oracle * that returns sample average n ! > 1 q(yi, x;) for any query function g.
As discussed in §2.2, Bernstein’s inequality in (2.6) and uniform concentration of empirical process

imply that r* € R[{, n, T, n(Q.r)]. In addition, every test function ¢ that is based on the responses

of r* is also a function of {(y;,x;)}?_;. Thus combining (2.4) and (2.7), it holds that

R,\(Go. G /1) = R},(Go, Gh).
Therefore, by Theorem 3.1, for any ~,, satisfying

Y =0 [ slogd/n A (1/a? - slogd/n)} ,

we have lim,, o EZ [Go, G1(n); &7, r*] = 1. Here the equality holds because a test based on purely
random guess incurs risk one.

Based on this observation, to show Theorem 3.3, it the following, we assume that
'ynzo[ sQ/n/\(l/oz2~s/n)] . (A.26)

We show that under this assumption, there exists an oracle r such that the minimax testing risk is
not negligible. Similar to the derivation of the information theoretical lower bound, we also focus
on the restricted testing problem defined in (A.1). Following the same notations, we denote by P
the distribution of model (0, 0,1, «) and by P the distribution of model (—v/2,v/2,1, «) for all
v € H(s) = {u € {0,8}?: |lullo = s}. Here we assume that the SNR under H; satisfies 3%s = .
Moreover, we define P as the distribution of the random variables returned by the statistical query
model under the null hypothesis Hj and define P correspondingly. Then the minimax testing risk
R, (Go,G1; o/, r) defined in (2.7) is lower bounded by

% . S _ 1 ™ _
Sllep Rn[go(z)agl(z’,yn)ﬂd?r] > ¢E7}lr(l£¢,r) P ((b - 1) + ‘H(S” e;(g)lp) (¢ - 0)

The following lemma establishes a sufficient condition that any hypothesis test under the statistical
query model is asymptotically powerless. See [27] and [8] for a proof.
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Lemma A.3. Forany algorithm € A(T') and any query function q € Q 7, we define

Cilg) ={veHt(s): Ep [¢Y, X)] - Ep [q(Y,X)]>7(P )},

Caq) ={v e H(s) : Ep [q(V, X)] = Ep [q(Y,X)] > 7(P )}.
Here 1,(P ) is the tolerance parameter defined in (2.5) when (Y,X) ~ P . Then if T -
sup,eo,, ([C1(q)] + |Ca(q)]) /H(s)| = o(1), there exists an oracle r € R[E,n, T, n(Qr)] such that

_ 1 _
inf |Po(¢=1)+ Pv(p=0)| =1.
oetilyy [P0 =1 ¥ ey 2 PAO=0

By this lemma, we need to construct an upper bound for sup o, (|C1(g)| + [C2(g)]). In the sequel,
we achieve this goal by studying the uniform mixture of {Py.: v € C;(q)} for £ € {1, 2}. Specifically,

we define
Z P . (A.27)
€C2(q)

The following lemma, obtained from [8], estabhshes an upper bound for the x2-divergence between
]P)Cg(q) and P .

1
Pe,(q) = |Cl Z P and Pc,) = 1C2(q)]

Lemma A4. For{ € {1,2} we define
- 1 dP dP .
= — Ep, YV, X)| -1 . A2
Ci(av) arggnax{ q X, B | 3] <1 e =l >|} (A28

Then the x2-divergence between Pe,,, and P is bounded by

dP dP .
Z Ep Lup e — (Y, X)] (A.29)
'€Celq, )

D Z(PC 7IP) ) < sup
el cci(q) 1Ce(q)]

Notice that Lemma A.1 enables us to compute the right-hand side of (A.29) in closed form. For any
a € [0, 1], function h,(t) = cosh[3?/2-(s—t)] +a? sinh[3%/2- (s —t)] is monotone nonincreasing
fort € {0,...,s} and f(s) = 0. In addition, for any v € H(s) and any j € {0,..., s}, we define

Ci(v)={v € H(s): (v) Nsupp(v’)| = s —j}. (A.30)
For £ € {1,2}, any query function ¢ € Q., and any v € Cy(g), by Lemma A.1 and the definition
of C¢(gq, v) in (A.28), there exists an integer k;(q, v) that satisfies

Cu(q, )ZCO( )Ucl(V)U"'Ucmq —1(V) UChlq, v), (A.31)
where C)(q,v) = Ce(q, v )\U ~"C;(v) has cardinality
ke(q, )—1
Coa V)l =1Ca)l = > 1) < [Crya (V). (A32)
Jj=0

Thus we can sandwich the cardinality of C¢(q, v) by

ke(q, ) B ke(q, )—1
S >Colav) = D [l (A.33)
j=0 7=0

Combining Lemmas A.1 and A.4, we further have

SOk ) g () - |c< o+ halkel@, V1 IG@ ] ¢ ey,
Skl e ()] + (€. v))

L+ Dy (P P ) <

(A.34)
Moreover, by (A.34) and the monotonicity of &, (t) we obtain
ke(q, )— .
S hald) - 165 (V)
T . (A.35)
Yo G (V)]

L+ Dy (Pey(q), P ) <
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By the definition of C;(v) in (A.30), the cardinality of C;(v) does not depend on the choice of

v € H(s) and we have |C;(v)| = (,,) (d;S). Thus for any j € {0,...,s — 1} we have
CMI/IGO = (s 1) - (d—s— /G + D2 = (d—25)/s%  (A36)

Under the assumption that s2/d = o(1), the right-hand side of (A.36) is lower bounded by ( =

d/(2s%) when d and s are sufficiently large. Then we have |C;(v)| < ¢?7%|Cs(v)] for j € {0,...,s}.
By the definition of k;(q, v) in (A. 31) and (A.32), for any ¢ € Q,, we further obtain

ke(q, ke(q, ) .
ICe(q)] < Z Civ) <IC(v) > ¢
§j=0

s ke )
< T=¢!
where the last inequality follows from the fact that (=% = 252 /d = o(1).
Moreover, for any two positive sequences {a;}5_, and {b;}7_, satisfying a;/a;—1 > b;/b;—1 > 1
for all ¢ € [s], since h,,(¢) is nonincreasing, for any k € [s], we have

< 2¢ bRl ljgy(s)), (A37)

Y (@ibj = ajbi) - [ha(i) = ha()] < 0. (A.38)
0<i<j<k
Further simplifying the terms in (A.38), we have
k . k ,
i iha = biha
Zl:o][ca (4)] < Zz_o][c (4)] . (A.39)
Dimo i D i—o i

In what follows, we upper bound k¢(q, v) for £ € {1,2} and v € Cy(q). We employ the shorthand
ke = ke(g, v) to simplify the notations. Combining (A.29), (A.35), and (A.39) with a; = |C;(v)| and
bj = ¢7, we have

Y5 (hali)
)DHIE)
B Zkz 1 ¢I {cosh [52/2 (s —j)] + ? sinh [62/2 (s —j)]}
- S
55" ¢ cosh [B2(s — )] 35" ¢ exp [a282(s — )]

Zkﬁ 1 C] \/ Zkl 1 CJ .

Here the second inequality follows from Lemma A.2. We bound the two terms in (A.40) separately.

Note that for notational simplicity, we denote for any ¢ € {0,..., s}, we define

f(t) = cosh [52(3 — t)] , g(t) =exp [a262(s — t)] .
Note that both h(¢) and ¢(¢) are monotone non-increasing, and thus f(t) > f(s) = 1 and g(t) >
g(s) = 1. Moreover, by calculation, we have f(j —1)/f(j) > cosh($3?) forall j € {1,...,s}. Thus
we have

1+ Dy (Fe,(q), P ) <

<

(A.40)

£(G) < fke—1) - [cosh(8%)]™ 777" forall j € {0,... ky — 1}.
Then we have .
DTS/ Sl Shlwwe—ﬁl
ity ¢ ity ¢
Sohes! [cosh(82)/¢)™ o
St ¢ ke—it)

1-— [Cosh(ﬁz)/d e 1-¢!
1— (ke "1— (¢ Tcosh(8?)

< flke—1)-

= f(ke—1)- (A.41)
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Since cosh(3?) > 1, by (A.41) we have
Yjte Ceosh [B(s—f)] _  1-¢

2
Z?Z)l ¢i ~ 1— ¢ 'cosh(B?) cosh [ﬂ S 1)] ' (A42)
In addition, since g(j — 1)/g(j) = exp(a?$?), similar to (A.41) we have
Yot ¢ exp [a2B%(s — j)] 1-¢ ! 2 42
iy ¢ ST Cegezgy Pl Tk Dl A8

Combining (A.42) and (A.43), we obtain that
1+ sz (Pcz(q), P )

0o 6kt 1] [ e (2864 ]|
1 — (=1 cosh(5?) 1— ¢ Lexp(a?p?)
Moreover, we use the following lemma obtained from [27] to establish a lower bound for
Dy2(Pe,(q), P ).

Lemma A.5. For any query function q and ¢ € {1,2}, we have
Dy2(Pe,(g), P ) 2 log(T/&)/n.

We denote /log(T'/€)/n by 7 for simplicity of notations. Combining (A.44), Lemma A.5 and
inequality cosh(z) < exp(x2/2), at least one of the two inequality holds

(L +7%) - [1= ¢ eosh(8?/2)] /(1 — (1) <exp [8Y/2- (s — ke +1)7] (A.45)
(1472 [1 = lexp(@®B?)] /(1 — (1) <exp [a?B%(s — ke +1)]. (A.46)
If (A.45) holds, taking the logarithm of the both sides, we have

4 _ 2 2y 1-¢!
B%/2-(s—ke+ 1) >log(l+7°) —log [1 — C—lcosh(BQ)] ) (A47)
Whereas if (A.46) is true, it holds that
1-¢7!
a252(s —ke+1)>log(l+ 7'2) — log {1 i eXp(OzzﬁQ)} . (A.48)

In addition, by Taylor expansion and the fact that [cosh(3%/2) + exp(a?3?)]/¢ = o(1), we have

1-¢! ¢ !cosh(B?) —1 -
o [1 — ¢! cosh(BQ)] - log{l T3 _[C—l coSh(/BQ)} } =0(¢18Y), (A.49)
1—C—1 Cfl ex (a2ﬂ2)71 B
o [1 - C‘leXp(aQBQ)] B log{l " I—E_fexp(oﬂ,b@))} } =0(¢T 1B, (AS0)

Since v, = 532, by (A.26) we have (a?3?) vV * = o(logd/n). Hence, by (A.49) and (A.50), the
second terms on the right-hand sides of (A.47) and (A.48) are asymptotically negligible compared
with log(1 + 72). Therefore, by (A.47) and (A.48), for £ € {1,2}, at least one of the following two
arguments hold:

ke(q,v) < s+ 1—/log(1+72)/8%, ke(q,v) < s+ 1—log(1+7%)/(20%5%).
Equivalently, we have
ke(q,v) < {s +1—+/log(1+ 72)/54] V [s+1—1log(l+71%)/(228%)] . (A51)

Recall that 7 = +/log(T/£)/n where & = o(1). For any constant > 0, we set T' = O(d"). By
combining Lemmas A.3 and A.4, (A.37), and (A.51), we further obtain

T SUPgcg,, (||2Ez))| +[C2(g)]) < AT - exp {710g<. {\/W* 1} } A
AT -exp {—log (- [log(1 + 7%)/(2° %) — 1]} . (A.52)

Under the assumption of the theorem, there is a sufficiently small constant § > 0 such that s2 /d'~% =
O(1). Thus we have ¢ = d/(2s?) = Q(d%). By inequality log(1 4 x) > /2, it holds that log(1 +
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72) > 72/2 = log(T/€)/(2n). Under the condition in (A.26) , we have
log(T'/€) \ ,1log(T'/€) _ log(1/€) \ log(1/€)
. A.53

2n34 \/ 4na? 32 o 2n /34 \/ 40232 e ( )
Hence if n is sufficiently large, the left-hand side in (A.53) is greater than an absolute constant C'
satisfiying 6(C' — 1) > 7. Then by (A.52) we have
subyca, (1€ (a)] + ICa())

[H(s)]

Combining (A.54) and Lemma A.3, we conclude that RZ(QO, G1;,r) — 1if (A.26) holds. This
concludes the proof of Theorem 3.3.

A.4 Proof of Theorem 3.4

T = 0[4d"¢ €=V = O[4d"d~°C D] = o(1). (A.54)

To ease notation, we denote the joint distribution of (Y, X') by Pg where the model parameter is
given by 6 = (uo, 1, X, «). In addition, we let Ay = py — po. Thus Ap = 0 for all 8 € Go(X)
and Ap € B(s) for all @ € G1(2;7,). In what follows, we bound the type-I and type-II errors of ¢
respectively.

Type-I error. For any 8 € Gy(X), by the definition of ¢, the type-I error is bounded by

Po(p =1) <Po(hy = 1) +Po(pp = 1).
For test function ¢, since marginally, X ~ 1/2-N(pg, ) +1/2-N (1, X), forany 8 € Go(X)U
G1(3; 7). for any j € [d], we have

2
Epe (X3 /05 — 1) — [Epe(X;/1/75)]

= 1/4- (o — paj)* /o5 = 1/4-(Ap)j /o, (A.55)
Here ju0; and 111 ; denote the j-th entries of po and g1, and (Ap); is the j-th entry of Ap. In
addition, by the definition of ¢; in (3.13) we have

|[B200,(Y, X)) = [Br (X,/ /37|

2

< 2[Eeo (X;/v/T))] - [Bro (X;/v/75) — Broq; (Y, X)| + [Ero (X;/1/T5) — Erpq; (Y, X[
Since X/ /75 —q;(Y, X) = X;/,/7;-1{|X;/\/7;| > R-+/logd}, by Cauchy-Schwarz inequality
we have

2 2

|Epe (X;/\/05) — Ereq; (Y, X)|™ < Epo(X; /0;) - Po(|X;//a5] > R-+/logd).  (A.56)
Since |20 |oo V [|[41]l00 < Co and {X;/,/7;}L ; are sub-Gaussian random variables, for any ¢ > 0,
there exists a constant C'; such that

Po(|X;//T5] > t) < 2exp(—Cit?). (A.57)
Thus setting ¢ = R - v/log d for some sufficiently large R, by (A.56) and (A.57) we obtain
[Eey (X,/y/5) — Erpq; (Y. X)| < Cad ™
for some constant Cs. Thus we have
|[Erga; (Y, X)) = (B, (X;/ 7)) | £2C0 - Cad ™ + C3a2 1/16- (Ap)3/oy. (ASH)
In addition, since X7 /o; — 1 — q;(Y, X) = (X7 /o; — 1) - 1{|X;/\/7;] > R -+/logd}, for g;
defined in (3.14), we similarly we obtain
(e, (Y. X) — B, (X2 /0; — 1)| < 1/16 - (Ap)? /0. (A59)
Combining (A.58) and (A.59) we have
Ero; (Y, X) — [Ep,q; (Y, X)]> > 1/8 - (Ap)?/o; forall j € [d].
Taking supremum over j € [d], we have

sup { B, (Y, X) = [Ezoq;(V, X } = 1/8 - sup [(Aw)?/o;] (A.60)
jeldl Jeld]
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Note that the test function ¢ involves 4d queries functions. Thus, for any 8 € Go(2) U G1(Z;7x),
under Py the tolerance parameters for ¢; and g; are given by

74, < Ry/logd - \/[log(4d/&)]/n, 77, < R*logd - /[log(4d/€)]/n, forall j € [d]. (A.61)

Under the assumption that

sup ()3 /o5 = 2 [log” d - og(d/€)/ (o) Alogd - log(@]) ]

we have

Tq, V 7g, < R*logd - /[log(4d/€)]/n
< (1/0). {s;& (/o) v s |<Au>j/¢07|} , (A62)

where the absolute constant C is the same as in (3.16). Note that we denote R* log d - y/log(4d/€) /n
by 71. Hence by (A.62), for any 8 € Gy(X), the type-I error of ¢, is bounded by

Pg | sup (Zz — Zg )>C7y

jeld) T
=Po (Uje {(Za, = Z2) — {Bro@i(Y, X) = [Brpq; (V. X))} = C71 })

<Po (User 127 = B 0B X) 2 71}) + Fo (Uyeia {2, — Beoas (V. X0 2 (€ - )7 ).
For the first term, we have

Po (Ujera 125 — B .3(V, X) 2 71})

<Po (Ujew {175 —E GV X)| 2 75} ) <€ (A.63)
Note that under the null hypothesis 8 € Go(X), we have Ep,q;(Y, X) = po;/,/0;. Under the
assumption that ||eo]|eo V [[41]]cc < Co, When n is sufficiently large such that
71 < 3(C -1)"1Co/ /75,
by Zgj — [Epyq; (Y, X)]? > (C — 1)71 we have
|Zq; — Eroq; (Y, X)| > (C = 1)71 - \/7;/(3C0). (A.64)

Thus we can set absolute constant C sufficiently large such that | 7, — Ep,q;(Y, X)| > 71. Thus by
(A.64) we have

Po(Userq {22, — [Eroas (Y, X)I* = (C— )71 })
< Po (Ujera {120, — Broas(V, X)| 2 7, }) <€ (A.65)

Combining (A.63) and (A.65), we can bound the type-I error of ¢, by 2¢. For the type-I error of
¢4, we define Z = (2Y — 1) - X. Under the data-generating model defined in (2.1) and (2.2), the
distribution of Z is given by

Z~ 2N (e, ) + NfTa/\/(ul, )+ 1TTQN(MO,E) + LN D),
Then by definition, for all 8 € Gy (), we have
Ep, [v ' diag(X)"1/2Z] =0, forall v € By(1). (A.66)
In addition, for any € € G1(3;,,), by the distribution of Z, for all v € By(1), we have
Ep, [v ' diag(2)™V/2Z] = /2 - v diag(Z) "2 Ap. (A.67)

Moreover, by definition we have
v'diag(2)~2Z -7 (Y, X) = v'diag(2)"/2Z - 1{|v " diag(2)"'/2Z| < R\/logd}.
By setting the constant R sufficiently large, for any for any 6 € Gy(X) U G1(3; 7, ), we have
[Ezoq (Y, X) — Ep, (v'diag(2)""/?2Z)| < a/4-|(Ap);/ /7.
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Combining (A.66) and (A.67) we obtain that
Er,d (V. X) < a/d- |(Aw);/ 7| forall 6 € Go(S);
Epoq (Y, X)>a/4-|(Ap);/\/o;| forall 8 € Gi(X,7,).
Thus, taking the supremum over By (1) yields

sup Ep,q (Y, X)>a/4-sup |(Ap);/\/o;] forall 8 € G(X,v,). (A.68)
€B2(1) j€ld]
In addition, since we have 4d queries, by Definition 2.2, the tolerance parameters for g ’s are bouded

by

rq < Ry/logd - \/[log(4d/€)]/n, forall v € By(1).
Note that we denote 7o = R+/logd - \/[log(4d/£)]/n. Similar to (A.62), we have
3 <71 <(1/C)- {sup[(Au)?/aj] V sup a|(Au)j/\/Fj} . (A.69)
jeld] jEld]
Hence by (A.69), for any 8 € Gy(X), the type-I error of ¢, is bounded by

P ( sup Zz = 271) =Py (U ey 1Zs —E L@ (Y. X)) >71})
€B2(1)

<P (U s %0 —E @ VX)) > }) <. (A.70)
Combining (A.63), (A.65), and (A.70), we have

ﬁ9(¢ = 1) < 3¢, for all 0c go(E)

Type-II error. Now we consider 8 € G;(X;~,,). Note that = 0 if ¢; = 0 and ¢, = 0. Thus, for
any 6 € G1(X;7,), we have

Po(¢ = 0) =Po(d; = 0N ¢y = 0) < Po(¢y = 0) APo(¢y = 0).
Recall that we denote Ap = pq — po. Similar to the proof of Theorem 3.2, we consider two cases
of the condition

sup (Ap)?/o; = Q [log(d/€)/ (@ - n) A /Iog(d[€) /]
Jj€ld]

Case (i). We show that the type-II error of ¢, is negligible under the assumption that
up (40305 = |log(dfE)
€

J
Let j* = argmax; ¢4 (Ap)3 /0. Then by (A.62), when we have

1+C7 < (Ap)}. Joj- +1—=CT =E ,g;-(Y, X) — [E ,q;-(Y, X)]> - CT. (A.71)
Thus combining (A.58), (A.59), and (A.71), we have

Po {sup (Zy; — quj) < C?l}
jeld]

< By {Zy; — 22 < Er,- (V. X) — [Brpq- (V. X)* — 071}

< Po [Er, 35+ (Y, X) = Zg,. > T1] + Po {[Brpqy- (¥, X)2 = 22 > (C= )71 }. (A7)
Moreover, by (A.62) the first term on the right-hand side of (A.72) can be further bounded by
Po [E ,q;-(Y, X) — Zg,. > 71
< Po {Epyq;- (Y, X) — Zg.. > 75, }

<Po (Ujera {17 —E (V. X 2 73,}) <& (A73)
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Similarly, for the second term on the right-hand side of (A.72), by (A.62) and (A.64)we have
Po{[E ,q (Y, X))~ Z% > (C - )71}

< Po (Ujera {120 — B (V. X)) 2 7, }) <€ (A74)

Therefore, combining (A.73) and (A.74), we conclude that the type-II error of 62 is no more than 2¢.

Case (ii). Now we assume study the type-II error of ¢, under the assumption that

A;I;](Au)ﬁ/% = Q [log(d/€)/(a* - n)] .

Let j* = argmax;c(q(Ap)?/o; and v* = argmax cp,q)E ,7 (Y, X). Then by (A.62) and
(A.68), when C' > 4 we have

272 S Oz/2 . Su[p]\(Au)j/‘/aj\ — 272 =E eq *(Y,X) — 272. (A75)

JjEld
Then by (A.69) and (A.75) the type-II error of ¢, is bounded by
Po| sup Zg, <272 | <Pg| sup Zg < Ep,qy.(Y,X) — 27>
€B2(1) vEBL(1)
<Py [Z,. <E ,q,-(V,X) - 272]

<Po (U ep) {|%0, —E o7 (V. X))| 27, }) <& (A76)

Thus by (A.76), the type-II error of ¢, is no more than €. Then together with Case (i), we have
Po(¢) < 2¢ for all @ € G1(X; vy,). Therefore the total risk of ¢ is bounded by

R,(¢)= sup Po(p=1)+ sup Pg(¢p=0)<5¢.
0cGo( ) 0cG1( ;vn)

B Proofs for Technical Lemmas
In this section, we prove the technical lemmas which appear in the proofs of the main results.
B.1 Proof of Lemma A.1

Under Py, X and Y are independent with X ~ N (0,1I) and Y is uniform over {0, 1}. We denote by
f(x; ) the density of M (g, I) and by po(y,x) the density of Pg. Then for any y € {0,1} and x €
R?, we have po(y,x) = 1/2 - f(x;0). In addition, for any v € H(s), we denote the density of
P, by py(y, x). By the definition of the statistical model, we have

pv(1,x) = (1+a)/d- f(x;v/2)+ (1 —a)/4- f(x;—v/2),
po(0,%) = (1 —)/4- f(x;v/2) + (1 + a)/4- f(x;—v/2).
Thus for any y € {0, 1} and x € R%, we have
o= b [LY2 S/ | oCyot) 1009/ _ gty

F YT | Tfmo) T fwo) 2 [0 F(x0)

(B.1)
Note that by definition, for any u € R, we have
9(x; k) = f(x: )/ f(x;0) = exp(p " x = 1/2 - | ulf3).
Thus (B.1) is reduced to

%(y, x) = [g9(x,v/2) + g(x; =v/2)] /2 + a(2y — 1) - [g(x,Vv/2) — g(x;—Vv/2)] /2. (B.2)
For any vi, vy € H(s), by (B.2) we have
Py, dP,,

° | qPy dPq

=E , {[9(X,v1/2) + 9(X;—v1/2)] - [9(X,v2/2) + g(X; —v2/2)] /4}

+a® B o {[g(X,v1/2) = g(X;—v1/2)] - [9(X,v2/2) — 9(X;—v2/2)] /4},  (B.3)

(¥, X)
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where we use the independence of Y and X under Pg. In what follows, we calculate the two terms
on the right-hand side of (B.3), respectively. Let n; and 72 be two independent Rademacher random
variables over {—1, 1}. Then for £ € {1, 2}, we have

[9(X,ve/2) + 9(X5=ve/2)] /2 = By, [9(X,meve/2)], (B.4)
[9(X,ve/2) = 9(X;5=ve/2)] /2 = By, [0 - 9(X,meve/2)] . (B.5)
Then by (B.4) and (B.5) we have
E o {l9(X,v1/2) + 9(X; =v1/2)] - [9(X,v2/2) + g(X; —v2/2)] /4}
=E Ey, . [9(X5mV1/2) - (X5 m2v2/2)]
=Ep B o exp [ X (mvi +102v2)/2 = 1/8- ([vall3 + [|v2]13)] - (B.6)
Using the moment-generating function of X, by (B.6) we have
E o {[9(X,v1/2) + 9(X; —v1/2)] - [9(X,v2/2) + g(X; —v2/2)] /4}
=Ep 0, [exp(1/2 MMy - v, Vo) = cosh(1/2 - <v1,vQ>)] .
Similarly, for (B.5) we have
E o {[9(X,v1/2) = g(X;5—v1/2)] - [9(X, v2/2) — g(X; —v2/2)] /4}
=K Eym, [mn2 - 9(X5mv1/2) - g(X;m2v2/2)]
=K, [7717)2 ~exp(1/2-mmns - VIVQ)] = sinh(1/2 - (vq, va)).
Thus we conclude the proof of Lemma A.1.

B.2 Proof of Lemma A.2

It is straightforward to verify (A.4) holds when = = 0. We focus on region x > 0. It is then sufficient
to prove the result for these two cases below.
Case 1: 'We consider the case v < 1/(2x) - log[cosh(2z)]. Then we need to prove
cosh(z) 4+ vsinh(z) < cosh(2x). (B.7)
Using the bound of v, it remains to show the function
f(z) = 1/(2z) - log[cosh(2z)] - sinh(z) + cosh(x) — cosh(2z) < 0.
holds for all x > 0. It’s easy to verify f(x) is monotonically decreasing over (0, 0] and
lim, o f(x) = 0. We thus finish proving (B.7).
Case 2: We consider the case v > 1/(2z) - log[cosh(2z)]. We would like to show
cosh(z) + vsinh(z) < exp(2vx). (B.8)
Let us define g(v) := exp(2vz) — cosh(x) — vsinh(x). We have that for any = > 0,
g (v) = 2z exp(2vx) — sinh(z) > 2z cosh(2x) — sinh(z) > 0.
Hence, g(v) is a monotonically increasing function. We thus have
9(v) = g{1/(2x) - log[cosh(2z)]}
= cosh(2x) — cosh(z) — 1/(2x) - log[cosh(2x)] - sinh(x) = — f(z) > 0.
We thus finish proving (B.8).

C Supporting Lemmas

In this section we list the supporting lemmas that establish two concentration inequalities for Gaussian
random variables.

Lemma C.1 (x?-tail bound, [16]). Let X,...,X,, be n i.id. standard normal random variables.

Forallt € (0,1),
1 n
Pl|=) XZ2-1
( nz '

i=1
Lemma C.2 (Gaussian covariance estimation, [25]). Suppose {X;}"_, are n i.i.d. Gaussian random
vectors in RY and X; ~ N(0,X). For every e € (0,1), andt > 1, if n > C(t/e)d for some

> t) < 2exp(—nt?/8).
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constant C, then with probability at least 1 — 2e~t°m,
1% — X2 < €22,

where & :=1/n - XX
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