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Abstract

We describe a novel optimization method for finite sums (such as empirical risk
minimization problems) building on the recently introduced SAGA method. Our
method achieves an accelerated convergence rate on strongly convex smooth prob-
lems. Our method has only one parameter (a step size), and is radically simpler
than other accelerated methods for finite sums. Additionally it can be applied
when the terms are non-smooth, yielding a method applicable in many areas where
operator splitting methods would traditionally be applied.

Introduction

A large body of recent developments in optimization have focused on minimization of convex finite
sums of the form:

f(x) =
1

n

n∑
i=1

fi(x),

a very general class of problems including the empirical risk minimization (ERM) framework as a
special case. Any function h can be written in this form by setting f1(x) = h(x) and fi = 0 for
i 6= 1, however when each fi is sufficiently regular in a way that can be made precise, it is possible to
optimize such sums more efficiently than by treating them as black box functions.

In most cases recently developed methods such as SAG [Schmidt et al., 2013] can find an ε-minimum
faster than either stochastic gradient descent or accelerated black-box approaches, both in theory and
in practice. We call this class of methods fast incremental gradient methods (FIG).

FIG methods are randomized methods similar to SGD, however unlike SGD they are able to achieve
linear convergence rates under Lipschitz-smooth and strong convexity conditions [Mairal, 2014,
Defazio et al., 2014b, Johnson and Zhang, 2013, Konečný and Richtárik, 2013]. The linear rate in the
first wave of FIG methods directly depended on the condition number L/µ of the problem, whereas
recently several methods have been developed that depend on the square-root of the condition number
[Lan and Zhou, 2015, Lin et al., 2015, Shalev-Shwartz and Zhang, 2013c, Nitanda, 2014], at least
when n is not too large. Analogous to the black-box case, these methods are known as accelerated
methods.

In this work we develop another accelerated method, which is conceptually simpler and requires
less tuning than existing accelerated methods. The method we give is a primal approach, however it
makes use of a proximal operator oracle for each fi instead of a gradient oracle, unlike other primal
approaches. The proximal operator is also used by dual methods such as some variants of SDCA
[Shalev-Shwartz and Zhang, 2013a].
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Algorithm 1
Pick some starting point x0 and step size γ. Initialize each g0i = f ′i(x

0), where f ′i(x
0) is any

gradient/subgradient at x0.
Then at step k + 1:

1. Pick index j from 1 to n uniformly at random.
2. Update x:

zkj = xk + γ

[
gkj −

1

n

n∑
i=1

gki

]
,

xk+1 = proxγj
(
zkj
)
.

3. Update the gradient table: Set gk+1
j = 1

γ

(
zkj − xk+1

)
, and leave the rest of the entries

unchanged (gk+1
i = gki for i 6= j).

1 Algorithm

Our algorithm’s main step makes use of the proximal operator for a randomly chosen fi. For
convenience, we define:

proxγi (x) = argminy

{
γfi(y) +

1

2
‖x− y‖2

}
.

This proximal operator can be computed efficiently or in closed form in many cases, see Section 4 for
details. Like SAGA, we also maintain a table of gradients gi, one for each function fi. We denote the
state of gi at the end of step k by gki . The iterate (our guess at the solution) at the end of step k is
denoted xk. The starting iterate x0 may be chosen arbitrarily.

The full algorithm is given as Algorithm 1. The sum of gradients 1
n

∑n
i=1 g

k
i can be cached and

updated efficiently at each step, and in most cases instead of storing a full vector for each gi, only a
single real value needs to be stored. This is the case for linear regression or binary classification with
logistic loss or hinge loss, in precisely the same way as for standard SAGA. A discussion of further
implementation details is given in Section 4.

With step size

γ =

√
(n− 1)2 + 4nLµ

2Ln
−

1− 1
n

2L
,

the expected convergence rate in terms of squared distance to the solution is given by:

E
∥∥xk − x∗∥∥2 ≤ (1− µγ

1 + µγ

)k
µ+ L

µ

∥∥x0 − x∗∥∥2 ,
when each fi : Rd → R is L-smooth and µ-strongly convex. See Nesterov [1998] for definitions of
these conditions. Using big-O notation, the number of steps required to reduce the distance to the
solution by a factor ε is:

k = O

((√
nL

µ
+ n

)
log

(
1

ε

))
,

as ε→ 0. This rate matches the lower bound known for this problem [Lan and Zhou, 2015] under the
gradient oracle. We conjecture that this rate is optimal under the proximal operator oracle as well.
Unlike other accelerated approaches though, we have only a single tunable parameter (the step size
γ), and the algorithm doesn’t need knowledge of L or µ except for their appearance in the step size.

Compared to the O ((L/µ+ n) log (1/ε)) rate for SAGA and other non-accelerated FIG methods,
accelerated FIG methods are significantly faster when n is small compared to L/µ, however for
n ≥ L/µ the performance is essentially the same. All known FIG methods hit a kind of wall at
n ≈ L/µ, where they decrease the error at each step by no more than 1− 1

n . Indeed, when n ≥ L/µ
the problem is so well conditioned so as to be easy for any FIG method to solve it efficiently. This is
sometimes called the big data setting [Defazio et al., 2014b].
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Our convergence rate can also be compared to that of optimal first-order black box methods, which
have rates of the form k = O

((√
L/µ

)
log (1/ε)

)
per epoch equivalent. We are able to achieve

a
√
n speedup on a per-epoch basis, for n not too large. Of course, all of the mentioned rates are

significantly better than the O ((L/µ) log (1/ε)) rate of gradient descent.

For non-smooth but strongly convex problems, we prove a 1/ε-type rate under a standard iterate
averaging scheme. This rate does not require the use of decreasing step sizes, so our algorithm
requires less tuning than other primal approaches on non-smooth problems.

2 Relation to other approaches

Our method is most closely related to the SAGA method. To make the relation clear, we may write
our method’s main step as:

xk+1 = xk − γ

[
f ′j(x

k+1)− gkj +
1

n

n∑
i=1

gki

]
,

whereas SAGA has a step of the form:

xk+1 = xk − γ

[
f ′j(x

k)− gkj +
1

n

n∑
i=1

gki

]
.

The difference is the point at which the gradient of fj is evaluated at. The proximal operator has the
effect of evaluating the gradient at xk+1 instead of xk. While a small difference on the surface, this
change has profound effects. It allows the method to be applied directly to non-smooth problems
using fixed step sizes, a property not shared by SAGA or other primal FIG methods. Additionally, it
allows for much larger step sizes to be used, which is why the method is able to achieve an accelerated
rate.

It is also illustrative to look at how the methods behave at n = 1. SAGA degenerates into regular
gradient descent, whereas our method becomes the proximal-point method [Rockafellar, 1976]:

xk+1 = proxγf (xk).

The proximal point method has quite remarkable properties. For strongly convex problems, it
converges for any γ > 0 at a linear rate. The downside being the inherent difficulty of evaluating
the proximal operator. For the n = 2 case, if each term is an indicator function for a convex set, our
algorithm matches Dykstra’s projection algorithm if we take γ = 2 and use cyclic instead of random
steps.

Accelerated incremental gradient methods

Several acceleration schemes have been recently developed as extensions of non-accelerated FIG
methods. The earliest approach developed was the ASDCA algorithm [Shalev-Shwartz and Zhang,
2013b,c]. The general approach of applying the proximal-point method as the outer-loop of a double-
loop scheme has been dubbed the Catalyst algorithm Lin et al. [2015]. It can be applied to accelerate
any FIG method. Recently a very interesting primal-dual approach has been proposed by Lan and
Zhou [2015]. All of the prior accelerated methods are significantly more complex than the approach
we propose, and have more complex proofs.

3 Theory

3.1 Proximal operator bounds

In this section we rehash some simple bounds from proximal operator theory that we will use in
this work. Define the short-hand pγf (x) = proxγf (x), and let gγf (x) = 1

γ (x− pγf (x)), so that
pγf (x) = x− γgγf (x). Note that gγf (x) is a subgradient of f at the point pγf (x). This relation is
known as the optimality condition of the proximal operator. Note that proofs for the following two
propositions are in the supplementary material.
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Notation Description Additional relation
xk Current iterate at step k xk ∈ Rd
x∗ Solution x∗ ∈ Rd
γ Step size

pγf (x) Short-hand in results for generic f pγf (x) = proxγf (x)

proxγi (x) Proximal operator of γfi at x = argminy

{
γfi(y) + 1

2 ‖x− y‖
2
}

gki A stored subgradient of fi as seen at step k
g∗i A subgradient of fi at x∗

∑n
i=1 g

∗
i = 0

vi vi = x∗ + γg∗i x∗ = proxγi (vi)
j Chosen component index (random variable)
zkj zkj = xk + γ

[
gkj − 1

n

∑n
i=1 g

k
i

]
xk+1
j = proxγj

(
zkj
)

Table 1: Notation quick reference

Proposition 1. (Strengthening firm non-expansiveness under strong convexity) For any x, y ∈ Rd,
and any convex function f : Rd → R with strong convexity constant µ ≥ 0,

〈x− y, pγf (x)− pγf (y)〉 ≥ (1 + µγ) ‖pγf (x)− pγf (y)‖2 .

In operator theory this property is known as (1 + µγ)-cocoerciveness of pγf .

Proposition 2. (Moreau decomposition) For any x ∈ Rd, and any convex function f : Rd → R
with Fenchel conjugate f∗ :

pγf (x) = x− γp 1
γ f

∗(x/γ). (1)

Recall our definition of gγf (x) = 1
γ (x− pγf (x)) also. After combining, the following relation thus

holds between the proximal operator of the conjugate f∗ and gγf :

p 1
γ f

∗(x/γ) =
1

γ
(x− pγf (x)) = gγf (x). (2)

Theorem 3. For any x, y ∈ Rd, and any convex L-smooth function f : Rd → R:

〈gγf (x)− gγf (y), x− y〉 ≥ γ
(

1 +
1

Lγ

)
‖gγf (x)− gγf (y)‖2 ,

Proof. We will apply cocoerciveness of the proximal operator of f∗ as it appears in the decomposition.
Note that L-smoothness of f implies 1/L-strong convexity of f∗. In particular we apply it to the
points 1

γx and 1
γ y:〈

p 1
γ f

∗(
1

γ
x)− p 1

γ f
∗(

1

γ
y),

1

γ
x− 1

γ
y

〉
≥
(

1 +
1

Lγ

)∥∥∥∥p 1
γ f

∗(
1

γ
x)− p 1

γ f
∗(

1

γ
y)

∥∥∥∥2 .
Pulling 1

γ from the right side of the inner product out, and plugging in Equation 2, gives the result.

3.2 Notation

Let x∗ be the unique minimizer (due to strong convexity) of f . In addition to the notation used in the
description of the algorithm, we also fix a set of subgradients g∗j , one for each of fj at x∗, chosen
such that

∑n
j=1 g

∗
j = 0. We also define vj = x∗ + γg∗j . Note that at the solution x∗, we want to

apply a proximal step for component j of the form:

x∗ = proxγj
(
x∗ + γg∗j

)
= proxγj (vj) .
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Lemma 4. (Technical lemma needed by main proof) Under Algorithm 1, taking the expectation over
the random choice of j, conditioning on xk and each gki , allows us to bound the following inner
product at step k:

E

〈
γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j ,

(
xk − x∗

)
+ γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j

〉

≤ γ2 1

n

n∑
i=1

∥∥gki − g∗i ∥∥2 .
The proof is in the supplementary material.

3.3 Main result

Theorem 5. (single step Lyapunov descent) We define the Lyapunov function T k of our algorithm
(Point-SAGA) at step k as:

T k =
c

n

n∑
i=1

∥∥gki − g∗i ∥∥2 +
∥∥xk − x∗∥∥2 ,

for c = 1/µL. Then using step size γ =

√
(n−1)2+4nLµ

2Ln − 1− 1
n

2L , the expectation of T k+1, over the
random choice of j, conditioning on xk and each gki , is:

E
[
T k+1

]
≤ (1− κ)T k for κ =

µγ

1 + µγ
,

when each fi : Rd → R is L-smooth and µ-strongly convex and 0 < µ < L. This is the same
Lyapunov function as used by Hofmann et al. [2015].

Proof. Term 1 of T k+1 is straight-forward to simplify:

c

n
E

n∑
i=1

∥∥gk+1
i − g∗i

∥∥2 =

(
1− 1

n

)
c

n

n∑
i=1

∥∥gki − g∗i ∥∥2 +
c

n
E
∥∥gk+1
j − g∗j

∥∥2 .
For term 2 of T k+1 we start by applying cocoerciveness (Theorem 1):

(1 + µγ)E
∥∥xk+1 − x∗

∥∥2
= (1 + µγ)E

∥∥proxγj (zkj )− proxγj (vj)
∥∥2

≤ E
〈
proxγj (zkj )− proxγj (vj), z

k
j − vj

〉
= E

〈
xk+1 − x∗ , zkj − vj

〉
.

Now we add and subtract xk :

= E
〈
xk+1 − xk + xk − x∗ , zkj − vj

〉
= E

〈
xk − x∗ , zkj − vj

〉
+ E

〈
xk+1 − xk , zkj − vj

〉
=

∥∥xk − x∗∥∥2 + E
〈
xk+1 − xk , zkj − vj

〉
,

where we have pulled out the quadratic term by using E[zkj − vj ] = xk − x∗ (we can take the
expectation since the left hand side of the inner product doesn’t depend on j). We now expand
E
〈
xk+1 − xk , zkj − vj

〉
further:

E
〈
xk+1 − xk , zkj − vj

〉
= E

〈
xk+1 − γg∗j + γg∗j − xk , zkj − vj

〉
= E

〈
xk − γgk+1

j + γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j + γg∗j − xk,

(
xk − x∗

)
+ γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j

〉
. (3)
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We further split the left side of the inner product to give two separate inner products:

= E

〈
γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j ,

(
xk − x∗

)
+ γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j

〉

+ E

〈
γg∗j − γgk+1

j ,
(
xk − x∗

)
+ γ

[
gkj −

1

n

n∑
i=1

gki

]
− γg∗j

〉
. (4)

The first inner product in Equation 4 is the quantity we bounded in Lemma 4 by
γ2 1

n

∑n
i=1

∥∥gki − g∗i ∥∥2. The second inner product in Equation 4, can be simplified using Theo-
rem 3 (note the right side of the inner product is equal to zkj − vj):

−γE
〈
gk+1
j − g∗j , zkj − vj

〉
≤ −γ2

(
1 +

1

Lγ

)
E
∥∥gk+1
j − g∗j

∥∥2 .
Combing these gives the following bound on (1 + µγ)E

∥∥xk+1 − x∗
∥∥2:

(1+µγ)E
∥∥xk+1 − x∗

∥∥2 ≤ ∥∥xk − x∗∥∥2+γ2
1

n

n∑
i=1

∥∥gki − g∗i ∥∥2−γ2(1 +
1

Lγ

)
E
∥∥gk+1
j − g∗j

∥∥2 .
Define α = 1

1+µγ = 1− κ, where κ = µγ
1+µγ . Now we multiply the above inequality through by α

and combine with the rest of the Lyapunov function, giving:

E
[
T k+1

]
≤ T k +

(
αγ2 − c

n

) 1

n

n∑
i

∥∥gki − g∗i ∥∥2
+
( c
n
− αγ2 − αγ

L

)
E
∥∥gk+1
j − g∗j

∥∥2 − κE ∥∥xk − x∗∥∥2 .
We want an α convergence rate, so we pull out the required terms:

E
[
T k+1

]
≤ αT k +

(
αγ2 + κc− c

n

) 1

n

n∑
i

∥∥gki − g∗i ∥∥2
+
( c
n
− αγ2 − αγ

L

)
E
∥∥gk+1
j − g∗j

∥∥2 .
Now to complete the proof we note that c = 1/µL and γ =

√
(n−1)2+4nLµ

2Ln − 1− 1
n

2L ensure that both
terms inside the round brackets are non-positive, giving ET k+1 ≤ αT k. These constants were found
by equating the equations in the brackets to zero, and solving with respect to the two unknowns, γ
and c. It is easy to verify that γ is always positive, as a consequence of the condition number L/µ
always being at least 1.

Corollary 6. (Smooth case) Chaining Theorem 5 gives a convergence rate for Point-SAGA at step k
under the constants given in Theorem 5 of:

E
∥∥xk − x∗∥∥2 ≤ (1− κ)

k µ+ L

µ

∥∥x0 − x∗∥∥2 ,
if each fi : Rd → R is L-smooth and µ-strongly convex.

Theorem 7. (Non-smooth case) Suppose each fi : Rd → R is µ-strongly convex,
∥∥g0i − g∗i ∥∥ ≤ B

and
∥∥x0 − x∗∥∥ ≤ R. Then after k iterations of Point-SAGA with step size γ = R/B

√
n:

E
∥∥x̄k − x∗∥∥2 ≤ 2

√
n (1 + µ (R/B

√
n))

µk
RB,

where x̄k = 1
kE
∑k
t=1 x

t. The proof of this theorem is included in the supplementary material.
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4 Implementation

Care must be taken for efficient implementation, particularly in the sparse gradient case. We discuss
the key points below. A fast Cython implementation is available on the author’s website incorporating
these techniques.
Proximal operators For the most common binary classification and regression methods, imple-

menting the proximal operator is straight-forward. We include details of the computation
of the proximal operators for the hinge, square and logistic losses in the supplementary
material. The logistic loss does not have a closed form proximal operator, however it may
be computed very efficiently in practice using Newton’s method on a 1D subproblem. For
problems of a non-trivial dimensionality the cost of the dot products in the main step is
much greater than the cost of the proximal operator evaluation. We also detail how to handle
a quadratic regularizer within each term’s prox operator, which has a closed form in terms
of the unregularized prox operator.

Initialization Instead of setting g0i = f ′i(x
0) before commencing the algorithm, we recommend

using g0i = 0 instead. This avoids the cost of a initial pass over the data. In practical effect
this is similar to the SDCA initialization of each dual variable to 0.

5 Experiments

We tested our algorithm which we call Point-SAGA against SAGA [Defazio et al., 2014a], SDCA
[Shalev-Shwartz and Zhang, 2013a], Pegasos/SGD [Shalev-Shwartz et al., 2011] and the catalyst
acceleration scheme [Lin et al., 2015]. SDCA was chosen as the inner algorithm for the catalyst
scheme as it doesn’t require a step-size, making it the most practical of the variants. Catalyst applied
to SDCA is essentially the same algorithm as proposed in Shalev-Shwartz and Zhang [2013c]. A
single inner epoch was used for each SDCA invocation. Accelerated MISO as well as the primal-dual
FIG method [Lan and Zhou, 2015] were excluded as we wanted to test on sparse problems and
they are not designed to take advantage of sparsity. The step-size parameter for each method (κ for
catalyst-SDCA) was chosen using a grid search of powers of 2. The step size that gives the lowest
error at the final epoch is used for each method.

We selected a set of commonly used datasets from the LIBSVM repository [Chang and Lin, 2011].
The pre-scaled versions were used when available. Logistic regression with L2 regularization was
applied to each problem. The L2 regularization constant for each problem was set by hand to ensure
f was not in the big data regime n ≥ L/µ; as noted above, all the methods perform essentially the
same when n ≥ L/µ. The constant used is noted beneath each plot. Open source code to exactly
replicate the experimental results is available at https://github.com/adefazio/point-saga.

Algorithm scaling with respect to n The key property that distinguishes accelerated FIG methods
from their non-accelerated counterparts is their performance scaling with respect to the dataset size.
For large datasets on well-conditioned problems we expect from the theory to see little difference
between the methods. To this end, we ran experiments including versions of the datasets subsampled
randomly without replacement in 10% and 5% increments, in order to show the scaling with n
empirically. The same amount of regularization was used for each subset.

Figure 1 shows the function value sub-optimality for each dataset-subset combination. We see that
in general accelerated methods dominate the performance of their non-accelerated counter-parts.
Both SDCA and SAGA are much slower on some datasets comparatively than others. For example,
SDCA is very slow on the 5 and 10% COVTYPE datasets, whereas both SAGA and SDCA are much
slower than the accelerated methods on the AUSTRALIAN dataset. These differences reflect known
properties of the two methods. SAGA is able to adapt to inherent strong convexity while SDCA can
be faster on very well-conditioned problems.

There is no clear winner between the two accelerated methods, each gives excellent results on each
problem. The Pegasos (stochastic gradient descent) algorithm with its slower than linear rate is a
clear loser on each problem, almost appearing as an almost horizontal line on the log scale of these
plots.

Non-smooth problems We also tested the RCV1 dataset on the hinge loss. In general we did not
expect an accelerated rate for this problem, and indeed we observe that Point-SAGA is roughly as
fast as SDCA across the different dataset sizes.
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(a) COVTYPE µ = 2× 10−6 : 5%, 10%, 100% subsets
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(b) AUSTRALIAN µ = 10−4: 5%, 10%, 100% subsets
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(c) MUSHROOMS µ = 10−4: 5%, 10%, 100% subsets
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(d) RCV1 with hinge loss, µ = 5× 10−5: 5%, 10%, 100% subsets0 5 10 15 20
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Figure 1: Experimental results
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