
Hierarchical Clustering via Spreading Metrics

Aurko Roy1 and Sebastian Pokutta2

1College of Computing, Georgia Institute of Technology, Atlanta, GA, USA.
Email: aurko@gatech.edu

2ISyE, Georgia Institute of Technology, Atlanta, GA, USA.
Email: sebastian.pokutta@isye.gatech.edu

Abstract

We study the cost function for hierarchical clusterings introduced by [16] where
hierarchies are treated as first-class objects rather than deriving their cost from
projections into flat clusters. It was also shown in [16] that a top-down algorithm
returns a hierarchical clustering of cost at most O (αn log n) times the cost of
the optimal hierarchical clustering, where αn is the approximation ratio of the
Sparsest Cut subroutine used. Thus using the best known approximation algo-
rithm for Sparsest Cut due to Arora-Rao-Vazirani, the top-down algorithm returns
a hierarchical clustering of cost at most O

(
log3/2 n

)
times the cost of the op-

timal solution. We improve this by giving an O(log n)-approximation algorithm
for this problem. Our main technical ingredients are a combinatorial character-
ization of ultrametrics induced by this cost function, deriving an Integer Linear
Programming (ILP) formulation for this family of ultrametrics, and showing how
to iteratively round an LP relaxation of this formulation by using the idea of sphere
growing which has been extensively used in the context of graph partitioning. We
also prove that our algorithm returns an O(log n)-approximate hierarchical clus-
tering for a generalization of this cost function also studied in [16]. Experiments
show that the hierarchies found by using the ILP formulation as well as our round-
ing algorithm often have better projections into flat clusters than the standard link-
age based algorithms. We conclude with constant factor inapproximability results
for this problem: 1) no polynomial size LP or SDP can achieve a constant factor
approximation for this problem and 2) no polynomial time algorithm can achieve
a constant factor approximation under the assumption of the Small Set Expansion
hypothesis.

1 Introduction

Hierarchical clustering is an important method in cluster analysis where a data set is recursively
partitioned into clusters of successively smaller size. They are typically represented by rooted trees
where the root corresponds to the entire data set, the leaves correspond to individual data points and
the intermediate nodes correspond to a cluster of its descendant leaves. Such a hierarchy represents
several possible flat clusterings of the data at various levels of granularity; indeed every pruning of
this tree returns a possible clustering. Therefore in situations where the number of desired clusters
is not known beforehand, a hierarchical clustering scheme is often preferred to flat clustering.

The most popular algorithms for hierarchical clustering are bottoms-up agglomerative algorithms
like single linkage, average linkage and complete linkage. In terms of theoretical guarantees these
algorithms are known to correctly recover a ground truth clustering if the similarity function on
the data satisfies corresponding stability properties (see, e.g., [5]). Often, however, one wishes to

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

think of a good clustering as optimizing some kind of cost function rather than recovering a hidden
“ground truth”. This is the standard approach in the classical clustering setting where popular objec-
tives are k-means, k-median, min-sum and k-center (see Chapter 14, [23]). However as pointed out
by [16] for a lot of popular hierarchical clustering algorithms including linkage based algorithms, it
is hard to pinpoint explicitly the cost function that these algorithms are optimizing. Moreover, much
of the existing cost function based approaches towards hierarchical clustering evaluate a hierarchy
based on a cost function for flat clustering, e.g., assigning the k-means or k-median cost to a pruning
of this tree. Motivated by this, [16] introduced a cost function for hierarchical clustering where the
cost takes into account the entire structure of the tree rather than just the projections into flat cluster-
ings. This cost function is shown to recover the intuitively correct hierarchies on several synthetic
examples like planted partitions and cliques. In addition, a top-down graph partitioning algorithm
is presented that outputs a tree with cost at most O(αn log n) times the cost of the optimal tree
and where αn is the approximation guarantee of the Sparsest Cut subroutine used. Thus using the
Leighton-Rao algorithm [33, 34] or the Arora-Rao-Vazirani algorithm [3] gives an approximation
factor of O

(
log2 n

)
and O

(
log3/2 n

)
respectively.

In this work we give a polynomial time algorithm to recover a hierarchical clustering of cost at
most O(log n) times the cost of the optimal clustering according to this cost function. We also
analyze a generalization of this cost function studied by [16] and show that our algorithm still gives
an O(log n) approximation in this setting. We do this by viewing the cost function in terms of the
ultrametric it induces on the data, writing a convex relaxation for it and concluding by analyzing
a popular rounding scheme used in graph partitioning algorithms. We also implement the integer
program, its LP relaxation, and the rounding algorithm and test it on some synthetic and real world
data sets to compare the cost of the rounded solutions to the true optimum as well as to compare its
performance to other hierarchical clustering algorithms used in practice. Our experiments suggest
that the hierarchies found by this algorithm are often better than the ones found by linkage based
algorithms as well as the k-means algorithm in terms of the error of the best pruning of the tree
compared to the ground truth.

1.1 Related Work

The immediate precursor to this work is [16] where the cost function for evaluating a hierarchical
clustering was introduced. Prior to this there has been a long line of research on hierarchical cluster-
ing in the context of phylogenetics and taxonomy (see, e.g., [31, 44, 22]). Several authors have also
given theoretical justifications for the success of the popular linkage based algorithms for hierarchi-
cal clustering (see, e.g. [30, 46, 1]). In terms of cost functions, one approach has been to evaluate
a hierarchy in terms of the k-means or k-median cost that it induces (see [17]). The cost function
and the top-down algorithm in [16] can also be seen as a theoretical justification for several graph
partitioning heuristics that are used in practice.

Besides this prior work on hierarchical clustering we are also motivated by the long line of work
in the classical clustering setting where a popular strategy is to study convex relaxations of these
problems and to round an optimal fractional solution into an integral one with the aim of getting
a good approximation to the cost function. A long line of work (see, e.g., [13, 29, 28, 15]) has
employed this approach on LP relaxations for the k-median problem, including [35] which gives the
best known approximation factor of 1 +

√
3 + ε. Similarly, a few authors have studied LP and SDP

relaxations for the k-means problem (see, e.g., [39, 38, 4]), while one of the best known algorithms
for kernel k-means and spectral clustering is due to [42] which approximates the nonnegative matrix
factorization (NMF) problem by LPs.

LP relaxations for hierarchical clustering have also been studied in [2] where the objective is to
fit a tree metric to a data set given pairwise dissimilarities. While the LP relaxation and rounding
algorithm in [2] is similar in flavor, the result is incomparable to ours (see Section 7 for a discussion).
Another work that is indirectly related to our approach is [18] where the authors study an ILP
to obtain a closest ultrametric to arbitrary functions on a discrete set. Our approach is to give a
combinatorial characterization of the ultrametrics induced by the cost function of [16] which allows
us to use the tools from [18] to model the problem as an ILP. The natural LP relaxation of this ILP
turns out to be closely related to LP relaxations considered before for several graph partitioning
problems (see, e.g., [33, 34, 19, 32]) and we use a rounding technique studied in this context to
round this LP relaxation.

2

Recently, we became aware of independent work by [12] obtaining similar results for hierarchical
clustering. In particular [12] improve the approximation factor to O

(√
log n

)
by showing how to

round a spreading metric SDP relaxation for this cost function. The analysis of this rounding pro-
cedure also enabled them to show that the top-down heuristic of [16] actually returns an O(

√
log n)

approximate clustering rather than an O
(

log3/2 n
)

approximate clustering. They also analyzed a
very similar LP relaxation using the divide-and-conquer approximation algorithms using spreading
metrics paradigm of [20] together with a result of [7] to show an O(log n) approximation. Finally,
they also gave similar constant factor inapproximability results for this problem.

1.2 Contribution

While studying convex relaxations of optimization problems is fairly natural, for the cost function
introduced in [16] however, it is not immediately clear how one would go about writing such a
relaxation. Our first contribution is to give a combinatorial characterization of the family of ultra-
metrics induced by this cost function on hierarchies. Inspired by the approach in [18] where the
authors study an integer linear program for finding the closest ultrametric, we are able to formulate
the problem of finding the minimum cost hierarchical clustering as an integer linear program. Inter-
estingly and perhaps unsurprisingly, the specific family of ultrametrics induced by this cost function
give rise to linear constraints studied before in the context of finding balanced separators in weighted
graphs. We then show how to round an optimal fractional solution using the sphere growing tech-
nique first introduced in [33] (see also [25, 19, 14]) to recover a tree of cost at most O(log n) times
the optimal tree for this cost function. The generalization of this cost function involves scaling every
pairwise distances by an arbitrary strictly increasing function f satisfying f(0) = 0. We modify
the integer linear program for this general case and show that the rounding algorithm still finds a
hierarchical clustering of cost at most O(log n) times the optimal clustering in this setting. We also
show a constant factor inapproximability result for this problem for any polynomial sized LP and
SDP relaxations and under the assumption of the Small Set Expansion hypothesis. We conclude with
an experimental study of the integer linear program and the rounding algorithm on some synthetic
and real world data sets to show that the approximation algorithm often recovers clusters close to
the true optimum (according to this cost function) and that its projections into flat clusters often has
a better error rate than the linkage based algorithms and the k-means algorithm.

2 Preliminaries

A similarity based clustering problem consists of a dataset V of n points and a similarity function
κ : V × V → R≥0 such that κ(i, j) is a measure of the similarity between i and j for any i, j ∈ V .
We will assume that the similarity function is symmetric i.e., κ(i, j) = κ(j, i) for every i, j ∈ V .
Note that we do not make any assumptions about the points in V coming from an underlying metric
space. For a given instance of a clustering problem we have an associated weighted complete graph
Kn with vertex set V and weight function given by κ. A hierarchical clustering of V is a tree T
with a designated root r and with the elements of V as its leaves, i.e., leaves(T) = V . For any set
S ⊆ V we denote the lowest common ancestor of S in T by lca(S). For pairs of points i, j ∈ V
we will abuse the notation for the sake of simplicity and denote lca({i, j}) simply by lca(i, j). For
a node v of T we denote the subtree of T rooted at v by T [v]. The following cost function was
introduced by [16] to measure the quality of the hierarchical clustering T

cost(T) :=
∑

{i,j}∈E(Kn)

κ(i, j) |leaves(T [lca(i, j)])| . (1)

The intuition behind this cost function is as follows. Let T be a hierarchical clustering with desig-
nated root r so that r represents the whole data set V . Since leaves(T) = V , every internal node
v ∈ T represents a cluster of its descendant leaves, with the leaves themselves representing single-
ton clusters of V . Starting from r and going down the tree, every distinct pair of points i, j ∈ V will
be eventually separated at the leaves. If κ(i, j) is large, i.e., i and j are very similar to each other
then we would like them to be separated as far down the tree as possible if T is a good clustering of
V . This is enforced in the cost function (1): if κ(i, j) is large then the number of leaves of lca(i, j)
should be small i.e., lca(i, j) should be far from the root r of T . Such a cost function is not unique
however; see Section 7 for some other cost functions of a similar flavor.

3

Note that while requiring κ to be non-negative might seem like an artificial restriction, cost func-
tion (1) breaks down when all the κ(i, j) < 0, since in this case the trivial clustering r, T ∗ where
T ∗ is the star graph with V as its leaves is always the minimizer. Therefore in the rest of this work
we will assume that κ ≥ 0. This is not a restriction compared to [16], since the Sparsest Cut algo-
rithm used as a subroutine also requires this assumption. Let us now briefly recall the notion of an
ultrametric.

Definition 1 (Ultrametric). An ultrametric on a setX of points is a distance function d : X×X → R
satisfying the following properties for every x, y, z ∈ X

1. Nonnegativity: d(x, y) ≥ 0 with d(x, y) = 0 iff x = y

2. Symmetry: d(x, y) = d(y, x)

3. Strong triangle inequality: d(x, y) ≤ max{d(y, z), d(z, x)}

Under the cost function (1), one can interpret the tree T as inducing an ultrametric dT on V given by
dT (i, j) := |leaves(T [lca (i, j)])| − 1. This is an ultrametric since dT (i, j) = 0 iff i = j and for any
triple i, j, k ∈ V we have dT (i, j) ≤ max{dT (i, k), dT (j, k)}. The following definition introduces
the notion of non-trivial ultrametrics. These turn out to be precisely the ultrametrics that are induced
by tree decompositions of V corresponding to cost function (1), as we will show in Corollary 8.

Definition 2. An ultrametric d on a set of points V is non-trivial if the following conditions hold.

1. For every non-empty set S ⊆ V , there is a pair of points i, j ∈ S such that d(i, j) ≥ |S|−1.

2. For any t if St is an equivalence class of V under the relation i ∼ j iff d(i, j) ≤ t, then
maxi,j∈St d(i, j) ≤ |St| − 1.

Note that for an equivalence class St where d(i, j) ≤ t for every i, j ∈ St it follows from Condition 1
that t ≥ |St| − 1. Thus in the case when t = |St| − 1 the two conditions imply that the maximum
distance between any two points in S is t and that there is a pair i, j ∈ S for which this maximum is
attained. The following lemma shows that non-trivial ultrametrics behave well under restrictions to
equivalence classes St of the form i ∼ j iff d(i, j) ≤ t.
Lemma 3. Let d be a non-trivial ultrametric on V and let St ⊆ V be an equivalence class under
the relation i ∼ j iff d(i, j) ≤ t. Then d restricted to St is a non-trivial ultrametric on St.

Proof. Clearly d restricted to St is an ultrametric on St and so we need to establish that it satisfies
Conditions 1 and 2 of Definition 2. Let S ⊆ St be any set. Since d is a non-trivial ultrametric on
V it follows that there is a pair i, j ∈ S with d(i, j) ≥ |S| − 1, and so d restricted to St satisfies
Condition 1.

If S′r is an equivalence class in St under the relation i ∼ j iff d(i, j) ≤ r then clearly S′r = St if r >
t. Since d is a non-trivial ultrametric on V , it follows that maxi,j∈S′r d(i, j) = maxi,j∈St d(i, j) ≤
|St| − 1 = |S′r| − 1. Thus we may assume that r ≤ t. Consider an i ∈ S′r and let j ∈ V be such
that d(i, j) ≤ r. Since r ≤ t and i ∈ St, it follows that j ∈ St and so j ∈ S′r. In other words S′r is
an equivalence class in V under the relation i ∼ j iff d(i, j) ≤ r. Since d is an ultrametric on V it
follows that maxi,j∈S′r d(i, j) ≤ |S′r| − 1. Thus d restricted to St satisfies Condition 2.

The intuition behind the two conditions in Definition 2 is as follows. Condition 1 imposes a certain
lower bound by ruling out trivial ultrametrics where, e.g., d(i, j) = 1 for every distinct pair i, j ∈ V .
On the other hand Condition 2 discretizes and imposes an upper bound on d by restricting its range
to the set {0, 1, . . . , n− 1} (see Lemma 4). This rules out the other spectrum of triviality where for
example d(i, j) = n for every distinct pair i, j ∈ V with |V | = n.

Lemma 4. Let d be a non-trivial ultrametric on the set V as in Definition 2. Then the range of d is
contained in the set {0, 1, . . . , n− 1} with |V | = n.

Proof. We will prove this by induction on |V |. The base case when |V | = 1 is trivial. Therefore,
we now assume that |V | > 1. By Condition 1 there is a pair i, j ∈ V such that d(i, j) ≥ n − 1.
Let t = maxi,j∈V d(i, j), then the only equivalence class under the relation i ∼ j iff d(i, j) ≤ t
is V . By Condition 2 it follows that maxi,j∈V d(i, j) = t = n − 1. Let V1, . . . Vm denote the

4

set of equivalence classes of V under the relation i ∼ j iff d(i, j) ≤ n − 2. Note that m > 1
as there is a pair i, j ∈ V with d(i, j) = n − 1, and therefore each Vl (V . By Lemma 3, d
restricted to each of these Vi’s is a non-trivial ultrametric on those sets. The claim then follows
immediately: for any i, j ∈ V either i, j ∈ Vl for some Vl in which case by the induction hypothesis
d(i, j) ∈ {0, 1, . . . , |Vl| − 1}, or i ∈ Vl and j ∈ Vl′ for l 6= l′ in which case d(i, j) = n− 1.

3 Ultrametrics and Hierarchical Clusterings

We start with the following easy lemma about the lowest common ancestors of subsets of V in a
hierarchical clustering T of V .
Lemma 5. Let S ⊆ V with |S| ≥ 2. If r = lca(S) then there is a pair i, j ∈ S such that
lca(i, j) = r.

Proof. We will proceed by induction on |S|. If |S| = 2 then the claim is trivial and so we may
assume |S| > 2. Let i ∈ S be an arbitrary point and let r′ = lca(S \ {i}). We claim that
r = lca(i, r′). Clearly the subtree rooted at lca(i, r′) contains S and since T [r] is the smallest such
tree it follows that r ∈ T [lca(i, r′)].

Conversely, T [r] contains S\{i} and so r′ ∈ T [r] and since i ∈ T [r], it follows that lca(i, r′) ∈ T [r].
Thus we conclude that r = lca(i, r′).

If lca(i, r′) = r′, then we are done by the induction hypothesis. Thus we may assume that i /∈ T [r′].
Consider any j ∈ S such that j ∈ T [r′]. Then we have that lca(i, j) = r as lca(i, r′) = r and
j ∈ T [r′] and i /∈ T [r′].

We will now show that non-trivial ultrametrics on V as in Definition 2 are exactly those that are
induced by hierarchical clusterings on V under cost function (1). The following lemma shows the
forward direction: the ultrametric dT induced by any hierarchical clustering T is non-trivial.
Lemma 6. Let T be a hierarchical clustering on V and let dT be the ultrametric on V induced by
it. Then dT is non-trivial.

Proof. Let S ⊆ V be arbitrary and r = lca(S), then T [r] has at least |S| leaves. By Lemma 5 there
must be a pair i, j ∈ S such that r = lca(i, j) and so dT (i, j) ≥ |S| − 1. This satisfies Condition 1
of non-triviality.

For any t, let St be a non-empty equivalence class under the relation i ∼ j iff dT (i, j) ≤ t. Since
dT satisfies Condition 1 it follows that |St| − 1 ≤ t. Let us assume for the sake of contradiction that
there is a pair i, j ∈ St such that dT (i, j) > |St| − 1. Let r = lca(St); using the definition of dT it
follows that t+ 1 ≥ |leaves (T [r])| > |St| since i, j ∈ St. Let k ∈ leaves (T [r]) \St be an arbitrary
point, then for every l ∈ St it follows that dT (k, l) ≤ |leaves(T [r])|−1 ≤ t since the subtree rooted
at r contains both k and l. This is a contradiction to St being an equivalence class under i ∼ j iff
dT (i, j) ≤ t since k /∈ St. Thus dT also satisfies Condition 2 of Definition 2.

The following crucial lemma shows the converse: every non-trivial ultrametric on V is realized by
a hierarchical clustering T of V .
Lemma 7. For every non-trivial ultrametric d on V there is a hierarchical clustering T on V such
that for any pair i, j ∈ V we have

dT (i, j) = |leaves(T [lca (i, j)])| − 1 = d(i, j).

Moreover this hierarchy can be constructed in time O
(
n3
)

by Algorithm 1 where |V | = n.

Proof. The proof is by induction on n. The base case when n = 1 is straightforward. We now
suppose that the statement is true for sets of size < n. Note that i ∼ j iff d(i, j) ≤ n − 2 is an
equivalence relation on V and thus partitions V into m equivalence classes V1, . . . , Vm. We first
observe that m > 1 since by Condition 1 there is a pair of points i, j ∈ V such that d(i, j) ≥ n− 1
and in particular |V |l < n for every l ∈ {1, . . . ,m}. By Lemma 3, d restricted to any Vl is a
non-trivial ultrametric on Vl and there is a pair of points i, j ∈ Vl such that d(i, j) = |Vl| − 1 by
Conditions 1 and 2. Therefore by the induction hypothesis we construct trees T1, . . . , Tm such that

5

for every l ∈ {1, . . . ,m} we have leaves(Tl) = Vl. Further for any pair of points i, j ∈ Vl for some
l ∈ {1, . . . ,m}, we also have d(i, j) = dTl(i, j).

We construct the tree T as follows: we first add a root r and then connect the root rl of Tl to r for
every l ∈ {1, . . . ,m}. Consider a pair of points i, j ∈ V . If i, j ∈ Vl for some l ∈ {1, . . . ,m} then
we are done since dTl(i, j) = dT (i, j) as lca(i, j) ∈ Tl. If i ∈ Vl and j ∈ Vl′ for some l 6= l′ then
d(i, j) = n− 1 since d(i, j) ≥ n− 1 by definition of the equivalence relation and the range of d lies
in {0, 1, . . . , n−1} by Lemma 4. Moreover i and j are leaves in Tl and Tl′ respectively, and thus by
construction of T we have lca(i, j) = r, i.e., dT (i, j) = n−1 and so the claim follows. Algorithm 1
simulates this inductive argument can be easily implemented to run in time O

(
n3
)
.

Lemmas 6 and 7 together imply the following corollary about the equivalence of hierarchical clus-
terings and non-trivial ultrametrics.
Corollary 8. There is a bijection between the set of hierarchical clusterings T on V and the set of
non-trivial ultrametrics d on V satisfying the following conditions.

1. For every hierarchical clustering T on V , there is a non-trivial ultrametric dT defined as
dT (i, j) := |leavesT [lca(i, j)]| − 1 for every i, j ∈ V .

2. For every non-trivial ultrametric d on V , there is a hierarchical clustering T on V such
that for every i, j ∈ V we have |leavesT [lca(i, j)]| − 1 = d(i, j).

Moreover this bijection can be computed in O(n3) time, where |V | = n.

Algorithm 1: Hierarchical clustering of V from non-trivial ultrametric
Input: Data set V of n points, non-trivial ultrametric d : V × V → R≥0

Output: Hierarchical clustering T of V with root r
1 r ← arbitrary choice of designated root in V
2 X ← {r}
3 E ← ∅
4 if n = 1 then
5 T ← (X,E)
6 return r, T
7 else
8 Partition V into {V1, . . . Vm} under the equivalence relation i ∼ j iff d(i, j) < n− 1
9 for l ∈ {1, . . . ,m} do

10 Let rl, Tl be output of Algorithm 1 on Vl, d|Vl
11 X ← X ∪ V (Tl)
12 E ← E ∪ {r, rl}
13 end
14 T ← (X,E)
15 return r, T
16 end

Therefore to find the hierarchical clustering of minimum cost, it suffices to minimize 〈κ, d〉 over
non-trivial ultrametrics d : V × V → {0, . . . , n − 1}, where V is the data set. Note that the cost
of the ultrametric dT corresponding to a tree T is an affine offset of cost(T). In particular, we have
〈κ, dT 〉 = cost(T)−∑{i,j}∈E(Kn) κ(i, j).

A natural approach is to formulate this problem as an Integer Linear Program (ILP) and then study
LP or SDP relaxations of it. We consider the following ILP for this problem that is motivated by
[18]. We have the variables x1

ij , . . . , x
n−1
ij for every distinct pair i, j ∈ V with xtij = 1 if and only

if d(i, j) ≥ t. For any positive integer n, let [n] := {1, 2, . . . , n}.

min

n−1∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j)xtij (ILP-ultrametric)

6

s.t. xtij ≥ xt+1
ij ∀i, j ∈ V, t ∈ [n− 2] (2)

xtij + xtjk ≥ xtik ∀i, j, k ∈ V, t ∈ [n− 1] (3)∑
i,j∈S

xtij ≥ 2 ∀t ∈ [n− 1], S ⊆ V, |S| = t+ 1 (4)

∑
i,j∈S

x
|S|
ij ≤ |S|

2

∑
i,j∈S

xtij +
∑
i∈S
j /∈S

(
1− xtij

) ∀t ∈ [n− 1], S ⊆ V (5)

xtij = xtji ∀i, j ∈ V, t ∈ [n− 1] (6)

xtii = 0 ∀i ∈ V, t ∈ [n− 1] (7)

xtij ∈ {0, 1} ∀i, j ∈ V, t ∈ [n− 1] (8)

Constraints (2) and (7) follow from the interpretation of the variables xtij : if d(i, j) ≥ t, i.e., xtij = 1

then clearly d(i, j) ≥ t−1 and so xt−1
ij = 1. Furthermore, for any i ∈ V we have d(i, i) = 0 and so

xtii = 0 for every t ∈ [n − 1]. Note that constraint (3) is the same as the strong triangle inequality
(Definition 1) since the variables xtij are in {0, 1}. Constraint 6 ensures that the ultrametric is
symmetric. Constraint 4 ensures the ultrametric satisfies Condition 1 of non-triviality: for every S ⊆
V of size t+ 1 we know that there must be points i, j ∈ S such that d(i, j) = d(j, i) ≥ t or in other
words xtij = xtji = 1. Constraint 5 ensures that the ultrametric satisfies Condition 2 of non-triviality.
To see this note that the constraint is active only when

∑
i,j∈S x

t
ij = 0 and

∑
i∈S,j /∈S(1−xtij) = 0.

In other words d(i, j) ≤ t − 1 for every i, j ∈ S and S is a maximal such set since if i ∈ S and
j /∈ S then d(i, j) ≥ t. Thus S is an equivalence class under the relation i ∼ j iff d(i, j) ≤ t − 1

and so for every i, j ∈ S we have d(i, j) ≤ |S| − 1 or equivalently x|S|ij = 0. The ultrametric d
represented by a feasible solution xtij is given by d(i, j) =

∑n−1
t=1 x

t
ij .

Definition 9. For any
{
xtij | t ∈ [n− 1], i, j ∈ V

}
let Et be defined as Et :=

{
{i, j} | xtij = 0

}
.

Note that if xtij is feasible for ILP-ultrametric then Et ⊆ Et+1 for any t since xtij ≥ xt+1
ij . The sets

{Et}n−1
t=1 induce a natural sequence of graphs {Gt}n−1

t=1 where Gt = (V,Et) with V being the data
set.

For a fixed t ∈ {1, . . . , n− 1} it is instructive to study the combinatorial properties of the so called
layer-t problem, where we restrict ourselves to the constraints corresponding to that particular t and
drop constraints (2) and (5) since they involve different layers in their expression.

min
∑

{i,j}∈E(Kn)

κ(i, j)xtij (ILP-layer)

s.t. xtij + xtjk ≥ xtik ∀i, j, k ∈ V (9)∑
i,j∈S

xtij ≥ 2 ∀S ⊆ V, |S| = t+ 1 (10)

xtij = xtji ∀i, j ∈ V (11)

xtii = 0 ∀i ∈ V (12)

xtij ∈ {0, 1} ∀i, j ∈ V (13)

The following lemma provides a combinatorial characterization of feasible solutions to the layer-t
problem.
Lemma 10. Let Gt = (V,Et) be the graph as in Definition 9 corresponding to a solution xtij to the
layer-t problem ILP-layer. Then Gt is a disjoint union of cliques of size ≤ t. Moreover this exactly
characterizes all feasible solutions of ILP-layer.

Proof. We first note that Gt = (V,Et) must be a disjoint union of cliques since if {i, j} ∈ Et and
{j, k} ∈ Et then {i, k} ∈ Et since xtik ≤ xtij + xtjk = 0 due to constraint (9). Suppose there is a

7

clique in Gt of size > t. Choose a subset S of this clique of size t+ 1. Then
∑
i,j∈S x

t
ij = 0 which

violates constraint (10).

Conversely, let Et be a subset of edges such that Gt = (V,Et) is a disjoint union of cliques of size
≤ t. Let xtij = 0 if {i, j} ∈ Et and 1 otherwise. Clearly xtij = xtji by definition. Suppose xtij
violates constraint (9), so that there is a pair i, j, k ∈ V such that xtik = 1 but xtij = xtjk = 0.
However this implies that Gt is not a disjoint union of cliques since {i, j}, {j, k} ∈ Et but {i, k} /∈
Et. Suppose xtij violates constraint (10) for some set S of size t + 1. Therefore for every i, j ∈ S,
we have xtij = 0 since xtij = xtji for every i, j ∈ V and so S must be a clique of size t + 1 in Gt
which is a contradiction.

By Lemma 10 the layer-t problem is to find a subset Et ⊆ E(Kn) of minimum weight under κ,
such that the complement graph Gt = (V,Et) is a disjoint union of cliques of size ≤ t. Note
that this implies that the number of components in the complement graph is ≥ dn/te.The converse
however, is not necessarily true: when t = n−1 then the layer t-problem is the minimum (weighted)
cut problem whose partitions may have size larger than 1. Our algorithmic approach is to solve an
LP relaxation of ILP-ultrametric and then round the solution to obtain a feasible solution to ILP-
ultrametric. The rounding however proceeds iteratively in a layer-wise manner and so we need to
make sure that the rounded solution satisfies the inter-layer constraints (2) and (5). The following
lemma gives a combinatorial characterization of solutions that satisfy these two constraints.
Lemma 11. For every t ∈ [n − 1], let xtij be feasible for the layer-t problem ILP-layer. Let
Gt = (V,Et) be the graph as in Definition 9 corresponding to xtij , so that by Lemma 10, Gt is a
disjoint union of cliques Kt

1, . . . ,K
t
lt

each of size at most t. Then xtij is feasible for ILP-ultrametric
if and only if the following conditions hold.

Nested cliques For any s ≤ t every clique Ks
p for some p ∈ [ls] in Gs is a subclique of some clique

Kt
q in Gt where q ∈ [lt].

Realization If
∣∣Kt

p

∣∣ = s for some s ≤ t, thenGs containsKt
p as a component clique, i.e.,Ks

q = Kt
p

for some q ∈ [ls].

Proof. Since xtij is feasible for the layer-t problem ILP-layer it is feasible for ILP-ultrametric if
and only if it satisfies constraints (2) and (5). The solution xtij satisfies constraint (2) if and only if
Et ⊆ Et+1 by definition and so Condition Nested cliques follows.

Let us now assume that xtij is feasible for ILP-ultrametric, so that by the above argument Con-
dition Nested cliques is satisfied. Note that every clique Kt

p in the clique decomposition of Gt
corresponds to an equivalence class St under the relation i ∼ j iff xtij = 0. Moreover, by Lemma 10

we have |St| ≤ t. Constraint (5) implies that x|St|ij = 0 for every i, j ∈ St. In other words, if
|St| = s ≤ t, then xsij = 0 for every i, j ∈ St and so St is a subclique of some cliqueKs

q in the clique
decomposition ofGs. However by Condition Nested cliques,Ks

q must be a subclique of a cliqueKt
p′

in the clique decomposition of Gt, since s ≤ t. However, as Kt
p ∩Kt

p′ = St and the clique decom-
position decomposes Gt into a disjoint union of cliques, it follows that St ⊆ Ks

q ⊆ Kt
p′ = Kt

p = St
and so Ks

q = Kt
p. Therefore Condition Realization is satisfied.

Conversely, suppose that xtij satisfies Conditions Nested cliques and Realization, so that by the argu-
ment in the paragraph above xtij satisfies constraint (2). Let us assume for the sake of contradiction
that for a set S ⊆ V and a t ∈ [n− 1] constraint (5) is violated, i.e.,

∑
i,j∈S

x
|S|
ij > |S|2

∑
i,j∈S

xtij +
∑
i∈S
j /∈S

(
1− xtij

) .

Since xtij ∈ {0, 1} it follows that xtij = 0 for every i, j ∈ S and xtij = 1 for every i ∈ S, j /∈ S so

that S is a clique in Gt. Note that |S| < t since
∑
i,j∈S x

|S|
ij > 0. This contradicts Condition Real-

ization however, since S is clearly not a clique in G|S|.

8

The combinatorial interpretation of the individual layer-t problems allow us to simplify the formu-
lation of ILP-ultrametric by replacing the constraints for sets of a specific size (constraint (4)) by a
global constraint about all sets (constraint (14)).

Lemma 12. We may replace constraint (4) of ILP-ultrametric by the following equivalent constraint

∑
j∈S

xtij ≥ |S| − t ∀t ∈ [n− 1], S ⊆ V, i ∈ S. (14)

Proof. Let xtij be a feasible solution to ILP-ultrametric. Note that if |S| ≤ t then the constraints are
redundant since xtij ∈ {0, 1}. Thus we may assume that |S| > t and let i be any vertex in S. Let
us suppose for the sake of a contradiction that

∑
j∈S x

t
ij < |S| − t. This implies that there is a t

sized subset S′ ⊆ S \ {i} such that for every j ∈ S′ we have xtij′ = 0. In other words {i, j′} is an
edge in Gt = (V,Et) for every j′ ∈ S′ and since Gt is a disjoint union of cliques (constraint (3)),
this implies the existence of a clique of size t + 1. Thus by Lemma 10, xtij could not have been a
feasible solution to ILP-ultrametric.

Conversely, suppose xtij is feasible for the modified ILP where constraint (4) is replaced by con-
straint (14). Then again Gt = (V,Et) is a disjoint union of cliques since xtij satisfies constraint (3).
Assume for contradiction that constraint (4) is violated: there is a set S of size t + 1 such that∑
i,j∈S x

t
ij < 2. Note that this implies that

∑
i,j x

t
ij = 0 since xtij = xtji for every i, j ∈ V and

t ∈ [n − 1]. Fix any i ∈ S, then
∑
j∈S x

t
ij < 1 = |S| − t since xtij = xtji by constraint (6),

a violation of constraint (14). Thus xtij is feasible for ILP-ultrametric since it satisfies every other
constraint by assumption.

4 Rounding an LP relaxation

In this section we consider the following natural LP relaxation for ILP-ultrametric. We keep the
variables xtij for every t ∈ [n − 1] and i, j ∈ V but relax the integrality constraint on the variables
as well as drop constraint (5).

min

n−1∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j)xtij (LP-ultrametric)

s.t. xtij ≥ xt+1
ij ∀i, j ∈ V, t ∈ [n− 2] (15)

xtij + xtjk ≥ xtik ∀i, j, k ∈ V, t ∈ [n− 1] (16)∑
j∈S

xtij ≥ |S| − t ∀t ∈ [n− 1], S ⊆ V, i ∈ S (17)

xtij = xtji ∀i, j ∈ V, t ∈ [n− 1] (18)

xtii = 0 ∀i, j ∈ V, t ∈ [n− 1] (19)

0 ≤ xtij ≤ 1 ∀i, j ∈ V, t ∈ [n− 1] (20)

A feasible solution xtij to LP-ultrametric induces a sequence {dt}t∈[n−1] of distance metrics over V
defined as dt(i, j) := xtij . Constraint 17 enforces an additional structure on this metric: informally
points in a “large enough” subset S should be spread apart according to the metric dt. Metrics of
type dt are called spreading metrics and were first studied in [19, 20] in relation to graph partitioning
problems. The following lemma gives a technical interpretation of spreading metrics (see, e.g.,
[19, 20, 32]); we include a proof for completeness.

Lemma 13. Let xtij be feasible for LP-ultrametric and for a fixed t ∈ [n− 1], let dt be the induced
spreading metric. Let i ∈ V be an arbitrary vertex and let S ⊆ V be a set with i ∈ S such that
|S| > (1 + ε)t for some ε > 0. Then maxj∈S dt(i, j) >

ε
1+ε .

9

Proof. For the sake of a contradiction suppose that for every j ∈ S we have dt(i, j) = xtij ≤ ε
1+ε .

This implies that xtij violates constraint (17) leading to a contradiction:∑
j∈S

xtij ≤
ε

1 + ε
|S| < |S| − t,

where the last inequality follows from |S| > (1 + ε)t.

The following lemma shows that we can optimize over LP-ultrametric in polynomial time.
Lemma 14. An optimal solution to LP-ultrametric can be computed in time polynomial in n and
log (maxi,j κ(i, j)).

Proof. We argue in the standard fashion via the application of the Ellipsoid method (see e.g., [43]).
As such it suffices to verify that the encoding length of the numbers is small (which is indeed the
case here) and that the constraints can be separated in polynomial time in the size of the input, i.e.,
in n and the logarithm of the absolute value of the largest coefficient. Since constraints of type (15),
(16), (18), and (19) are polynomially many in n, we only need to check separation for constraints of
type (17). Given a claimed solution xtij we can check constraint (17) by iterating over all t ∈ [n−1],
vertices i ∈ V , and sizes m of the set S from t + 1 to n. For a fixed t, i, and set size m sort the
vertices in V \ {i} in increasing order of distance from i (according to the metric dt) and let S
be the first m vertices in this ordering. If

∑
j∈S x

t
ij < m − t then clearly xtij is not feasible for

LP-ultrametric, so we may assume that
∑
j∈S x

t
ij ≥ m− t. Moreover this is the only set to check:

for any set S ⊆ V containing i such that |S| = m,
∑
j∈S x

t
ij ≥

∑
j∈S x

t
ij ≥ m − t. Thus for a

fixed t ∈ [n− 1], i ∈ V and set size m, it suffices to check that xtij satisfies constraint (17) for this
subset S.

From now on we will simply refer to a feasible solution to LP-ultrametric by the sequence of spread-
ing metrics {dt}t∈[n−1] it induces. The following definition introduces the notion of an open ball
BU (i, r, t) of radius r centered at i ∈ V according to the metric dt and restricted to the set U ⊆ V .
Definition 15. Let {dt | t ∈ [n− 1]} be the sequence of spreading metrics feasible for LP-
ultrametric. Let U ⊆ V be an arbitrary subset of V . For a vertex i ∈ U , r ∈ R, and t ∈ [n− 1] we
define the open ball BU (i, r, t) of radius r centered at i as

BU (i, r, t) := {j ∈ U | dt(i, j) < r} ⊆ U.
If U = V then we denote BU (i, r, t) simply by B (i, r, t).
Remark 16. For every pair i, j ∈ V we have dt(i, j) ≥ dt+1(i, j) by constraint (15). Thus for any
subset U ⊆ V , i ∈ U , r ∈ R, and t ∈ [n− 2], it holds BU (i, r, t) ⊆ BU (i, r, t+ 1).

To round LP-ultrametric to get a feasible solution for ILP-ultrametric, we will use the technique of
sphere growing which was introduced in [33] to show an O(log n) approximation for the maximum
multicommodity flow problem. Recall from Lemma 10 that a feasible solution to ILP-layer consists
of a decomposition of the graph Gt into a set of disjoint cliques of size at most t. One way to
obtain such a decomposition is to choose an arbitrary vertex, grow a ball around this vertex until
the expansion of this ball is below a certain threshold, chop off this ball and declare it as a partition
and then recurse on the remaining vertices. This is the main idea behind sphere growing, and the
parameters are chosen depending on the constraints of the specific problem (see, e.g., [25, 19, 14]
for a few representative applications of this technique). The first step is to associate to every ball
BU (i, r, t) a volume vol (BU (i, r, t)) and a boundary ∂BU (i, r, t) so that its expansion is defined.
For any t ∈ [n − 1] and U ⊆ V we denote by γUt the value of the layer-t objective for solution dt
restricted to the set U , i.e.,

γUt :=
∑
i,j∈U
i<j

κ(i, j)dt(i, j).

When U = V we refer to γUt simply by γt. Since κ : V × V → R≥0, it follows that γUt ≤ γt for
any U ⊆ V . We are now ready to define the volume, boundary, and expansion of a ball BU (i, r, t).
We use the definition of [19] modified for restrictions to arbitrary subsets U ⊆ V .

10

Definition 17. [19] Let U be an arbitrary subset of V . For a vertex i ∈ U , radius r ∈ R≥0, and
t ∈ [n− 1], let BU (i, r, t) be the ball of radius r as in Definition 15. Then we define its volume as

vol (BU (i, r, t)) :=
γUt

n log n
+

∑
j,k∈BU (i,r,t)

j<k

κ(j, k)dt(j, k) +
∑

j∈BU (i,r,t)
k/∈BU (i,r,t)

k∈U

κ(j, k) (r − dt(i, j)) .

The boundary of the ball ∂BU (i, r, t) is the partial derivative of volume with respect to the radius:

∂BU (i, r, t) :=
∂ vol (BU (i, r, t))

∂r
=

∑
j∈BU (i,r,t)
k/∈BU (i,r,t)

k∈U

κ(j, k).

The expansion φ(BU (i, r, t)) of the ball BU (i, r, t) is defined as the ratio of its boundary to its
volume, i.e.,

φ (BU (i, r, t)) :=
∂BU (i, r, t)

vol (BU (i, r, t))
.

The following lemma shows that the volume of a ball BU (i, r, t) is differentiable with respect to r
in the interval (0,∆] except at finitely many points (see e.g., [19]).
Lemma 18. Let BU (i, r, t) be the ball corresponding to a set U ⊆ V , vertex i ∈ U , radius r ∈ R
and t ∈ [n−1]. Then vol (BU (i, r, t)) is differentiable with respect to r in the interval (0,∆] except
at finitely many points.

Proof. Note that for any fixed U ⊆ V , vol (BU (i, r, t)) is a monotone non-decreasing function in r
since for a pair j, k ∈ U such that j ∈ BU (i, r, t) and k /∈ BU (i, r, t) we have r−dt(i, j) ≤ dt(j, k)
otherwise r−dt(i, j) > dt(j, k) so that r > dt(i, j)+dt(j, k) ≥ dt(i, k), a contradiction to the fact
that k /∈ BU (i, r, t). Therefore adding the vertex k to the ball centered at i is only going to increase
its volume as r−dt(i, j) ≤ dt(j, k) (see Definition 15). Thus vol (BU (i, r, t)) is differentiable with
respect to r in the interval (0,∆] except at finitely many points which correspond to a new vertex
from U being added to the ball.

The following theorem establishes that the rounding procedure of Algorithm 2 ensures that the
cliques in Ct are “small” and that the cost of the edges removed to form them are not too high. It
also shows that Algorithm 2 can be implemented to run in time polynomial in n.

Theorem 19. Let mε :=
⌊
n−1
1+ε

⌋
as in Algorithm 2 and let

{
xtij | t ∈ [mε], i, j ∈ V

}
be the output

of Algorithm 2 run on a feasible solution {dt}t∈[n−1] of LP-ultrametric and any choice of ε ∈ (0, 1).
For any t ∈ [mε], we have that xtij is feasible for the layer-b(1 + ε) tc problem ILP-layer and there
is a constant c(ε) > 0 depending only on ε such that∑

{i,j}∈E(Kn)

κ(i, j)xtij ≤ c(ε)(log n)γt.

Moreover, Algorithm 2 can be implemented to run in time polynomial in n.

Proof. We first show that for a fixed t, the constructed solution xtij is feasible for the layer-b(1+ε)tc
problem ILP-layer. Let Ct be as in Algorithm 2 so that xtij = 1 if i, j belong to different sets in Ct
and xtij = 0 otherwise. Let Gt = (V,Et) be as in Definition 9 corresponding to xtij . Note that for
any t ∈ [mε], every Vi ∈ Ct is a clique in Gt by construction (line 19) and for every distinct pair
Vi, Vj ∈ Ct we have Vi ∩ Vj = ∅ (lines 15 and 16). Therefore by Lemma 10, it suffices to prove
that for any Vi ∈ Ct, it holds |Vi| ≤ b(1 + ε)tc. If Vi is added to Ct in line 9 then there is nothing to
prove.

Thus let us assume that Vi is of the form BU (i, r, t) for some U ⊆ V as in line 14 so that
φ (BU (i, r, t)) ≤ 1

∆ log
(

vol(BU (i,∆,t))
vol(BU (i,0,t))

)
. Note that by Lemma 13 it suffices to show that there

11

Algorithm 2: Iterative rounding algorithm to find a low cost ultrametric
Input: Data set V , {dt}t∈[n−1] : V × V , ε > 0, κ : V × V → R≥0

Output: A solution set of the form
{
xtij ∈ {0, 1} | t ∈

[⌊
n−1
1+ε

⌋]
, i, j ∈ V

}
1 mε ←

⌊
n−1
1+ε

⌋
2 t← mε

3 Ct+1 ← {V }
4 ∆← ε

1+ε

5 while t ≥ 1 do
6 Ct ← ∅
7 for U ∈ Ct+1 do
8 if |U | ≤ (1 + ε)t then
9 Ct ← Ct ∪ {U}

10 Go to line 7
11 end
12 while U 6= ∅ do
13 Let i be arbitrary in U

14 Let r ∈ (0,∆] be s.t. φ (BU (i, r, t)) ≤ 1
∆ log

(
vol(BU (i,∆,t))
vol(BU (i,0,t))

)
15 Ct ← Ct ∪ {BU (i, r, t)}
16 U ← U \ BU (i, r, t)
17 end
18 end
19 xtij = 1 if i ∈ U1 ∈ Ct, j ∈ U2 ∈ Ct and U1 6= U2, else xtij = 0

20 t← t− 1
21 end
22 return

{
xtij | t ∈ [mε], i, j ∈ V

}

is such an r ∈ (0,∆]. This property follows from the rounding scheme due to [19] as we will
explain now.

By Lemma 18 vol (BU (i, r, t)) is differentiable everywhere in the interval (0,∆] except at finitely
many pointsX . Let the set of discontinuous points beX = {x1, x2, . . . , xk−1}with x0 = 0 < x1 <
x2 . . . xk−1 < xk = ∆. We claim that there must be an r ∈ (0,∆] \X such that φ (BU (i, r, t)) ≤
1
∆ log

(
vol(BU (i,∆,t))
vol(BU (i,0,t))

)
. Let us assume for the sake of a contradiction that for every r ∈ (0,∆]\X we

have φ (BU (i, r, t)) > 1
∆ log

(
vol(BU (i,∆,t))
vol(BU (i,0,t))

)
. However integrating both sides from 0 to ∆ results

in a contradiction:∫ ∆

r=0

φ (BU (i, r, t)) dr =

∫ ∆

r=0

∂BU (i, r, t)

vol (BU (i, r, t))
dr (21)

=

k∑
i=1

∫ xi

r=xi−1

∂BU (i, r, t)

vol (BU (i, r, t))
dr (22)

=

k∑
i=1

∫ xi

r=xi−1

d (vol (BU (i, r, t)))

vol (BU (i, r, t))
(23)

≤ log vol (BU (i,∆, t))− log vol (BU (i, 0, t)) (24)

=

∫ ∆

r=0

1

∆
log

(
vol (BU (i,∆, t))

vol (BU (i, 0, t))

)
dr, (25)

where line 24 follows since f is monotonic increasing. For any t ∈ [mε] the set Ct is a disjoint
partition of V with balls of the form BU (i, r, t′) for some t′ ≥ t and U ⊆ Ul ∈ Ct′+1: this is easily
seen by induction since Cmε+1 is initialized as V . Further, a cluster Vi is added to Ct either in line 15
in which case it is a ball of the form BU (i, r, t) for some U ∈ Ct+1, i ∈ U , and r ∈ R or it is added

12

in line 9 in which case it must have been a ball BU (i′, r′, t′) for some t′ > t, U ⊆ Ul ∈ Ct′+1,
i′ ∈ V , and r′ ∈ R. Note that for any t′ ≥ t and U ⊆ V , it holds γUt′ ≤ γUt since for every pair
i, j ∈ V we have κ(i, j) ≥ 0 and dt(i, j) ≥ dt′(i, j) because of constraint (15). Moreover, for any
subset U ⊆ V we have γUt ≤ γt since κ, dt ≥ 0.

We claim that for any t ∈ [mε] the total volume of the balls in Ct is at most
(

2 + 1
logn

)
γt. First

note that the affine term γU
t′

n logn in the volume of a ball BU (i, r, t′) in Ct is upper bounded by γt
n logn

and appears at most n times. Next we claim that the contribution to the total volume from the term
involving the edges inside and crossing a ball BU (i, r, t′) ∈ Ct is at most 2γt. This is because the
balls are disjoint, r−dt′(i, k) ≤ dt′(j, k) ≤ dt(j, k) for the crossing edges of a ball BU (i, r, t′) ∈ Ct
and a crossing edge contributes to the volume of at most 2 balls in Ct. Note that for any U ⊆ V ,
i ∈ U , and r ∈ R≥0 we have vol (BU (i, r, t)) ∈

[
γUt

n logn ,
(

1 + 1
n logn

)
γUt

]
. Using this observation

and the stopping condition of line 14 it follows that∑
{i,j}∈E(Kn)

κ(i, j)xtij =
∑

{i,j}∈E(Kn):
i,j separated in Ct

κ(i, j)

=
1

2

∑
BU(i,r,t′)∈Ct:

t′≥t
U⊆Ul∈Ct′+1

∑
j∈BU(i,r,t′)
k/∈BU(i,r,t′)

κ(j, k)

︸ ︷︷ ︸
Since κ is symmetric

=
1

2

∑
BU(i,r,t′)∈Ct:

t′≥t
U⊆Ul∈Ct′+1

∂BU (i, r, t′)

=
1

2

∑
BU(i,r,t′)∈Ct:

t′≥t
U⊆Ul∈Ct′+1

φ (BU (i, r, t′)) vol (BU (i, r, t′))

≤
∑

BU(i,r,t′)∈Ct:
t′≥t

U⊆Ul∈Ct′+1

1

2∆
log

(
vol (BU (i,∆, t′))

vol (BU (i, 0, t′))

)
vol (BU (i, r, t′))

≤ 1

2∆
(log (n log n+ 1))︸ ︷︷ ︸

via interval bounds

∑
BU(i,r,t′)∈Ct:

t′≥t
U⊆Ul∈Ct′+1

vol (BU (i, r, t′))

≤ 1 + ε

2ε
(log (n log n+ 1))

(
2 +

1

log n

)
γt︸ ︷︷ ︸

contribution of affine term≤ γt
logn

contribution of edge terms≤ 2γt

≤ c(ε)(log n)γt,

for some constant c(ε) > 0 depending only on ε.

For the run time of Algorithm 2 note that the loop in line 5 runs for at most n − 1 steps, while
the loop in line 7 runs for at most n steps. For a set U ⊆ V , to compute the ball BU (i, r, t) of
least radius r such that φ (BU (i, r, t)) ≤ 1

∆ log
(

vol(BU (i,∆,t))
vol(BU (i,0,t))

)
, sort the vertices in U \ {i} in

increasing order of distance from i according to dt. Let the vertices in U \ {i} in this sorted order
be
{
j1, . . . , j|U |−1

}
. Then it suffices to check the expansion of the balls {i} and {i} ∪ {j1, . . . , jk}

for every k ∈ [|U | − 1]. It is straightforward to see that all the other steps in Algorithm 2 run in time
polynomial in n.

13

Remark 20. A discrete version of the volumetric argument for region growing can be found in [26].

We are now ready to prove the main theorem showing that we can obtain a low cost non-trivial
ultrametric from Algorithm 2.
Theorem 21. Let {xtij | t ∈ [mε] , i, j ∈ V } be the output of Algorithm 2 on an optimal solution
{dt}t∈[n−1] of LP-ultrametric for any choice of ε ∈ (0, 1). Define the sequence

{
ytij
}

for every
t ∈ [n− 1] and i, j ∈ V as

ytij :=

{
x
bt/(1+ε)c
ij if t > 1 + ε

1 if t ≤ 1 + ε.

Then ytij is feasible for ILP-ultrametric and satisfies

n−1∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j)ytij ≤ (2c(ε) log n) OPT

where OPT is the optimal solution to ILP-ultrametric and c(ε) is the constant in the statement of
Theorem 21.

Proof. Note that by Theorem 19 for every t ∈ [mε], xtij is feasible for the layer-b(1 + ε)tc
problem ILP-layer and that there is a constant c(ε) > 0 such that for every t ∈ [mε], we have∑
{i,j}∈E(Kn) κ(i, j)xtij ≤ (c(ε) log n) γt.

Let ytij be as in the statement of the theorem. The graphGt = (V,Et) as in Definition 9 correspond-
ing to ytij for t ≤ 1+ε consists of isolated vertices, i.e., cliques of size 1: By definition ytij is feasible
for the layer-t problem ILP-layer. The collection C1 corresponding to x1

ij consists of cliques of size
at most 1 + ε, however since 0 < ε < 1 it follows that the cliques in C1 are isolated vertices and so
x1
ij = 1 for every {i, j} ∈ E(Kn). Thus

∑
i,j κ(i, j)ytij =

∑
i,j κ(i, j)x1

ij ≤ (c(ε) log n) γ1 for t ≤
1+ε by Theorem 19. Moreover for every t > 1+ε, we have

∑
i,j κ(i, j)ytij ≤ (c(ε) log n)γbt/(1+ε)c

again by Theorem 19. We claim that ytij is feasible for ILP-ultrametric. The solution ytij corresponds
to the collection Cb t

1+ε c for t > 1 + ε or to the collection C1 for t ≤ 1 + ε from Algorithm 2. For
any t < mε, every ball BU (i, r, t) ∈ Ct comes from the refinement of a ball BU ′ (i′, r′, t′) for some
i′ ∈ V , r′ ≥ r, t′ ≥ t and U ′ ⊇ U . Thus ytij satisfies Condition Nested cliques of Lemma 11.
On the other hand line 8 ensures that if |BU (i, r, t)| = b(1 + ε)sc for some U ⊆ V and s < t
then BU (i, r, t) also appears as a ball in Cs. Therefore ytij also satisfies Condition Realization of
Lemma 11 and so is feasible for ILP-ultrametric. The cost of ytij is at most

n−1∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j)ytij ≤ (c(ε) log n)

(
γ1 +

n−1∑
t=2

γbt/(1+ε)c

)

≤ 2c(ε) log n

n−1∑
t=1

γt

≤ 2c(ε) log nOPT,

where we use the fact that
∑n−1
t=1 γt = OPT(LP) ≤ OPT since LP-ultrametric is a relaxation of

ILP-ultrametric.

Theorem 21 implies the following corollary where we put everything together to obtain a hierar-
chical clustering of V in time polynomial in n with |V | = n. Let T denote the set of all possible
hierarchical clusterings of V .
Corollary 22. Given a data set V of n points and a similarity function κ : V × V → R≥0,
Algorithm 3 returns a hierarchical clustering T of V satisfying

cost(T) ≤ O (log n) min
T ′∈T

cost(T ′).

Moreover Algorithm 3 runs in time polynomial in n and log (maxi,j∈V κ(i, j)).

14

Algorithm 3: Hierarchical clustering of V for cost function (1)
Input: Data set V of n points, similarity function κ : V × V → R≥0

Output: Hierarchical clustering of V
1 Solve LP-ultrametric to obtain optimal sequence of spreading metrics {dt | dt : V × V → [0, 1]}
2 Fix a choice of ε ∈ (0, 1)

3 mε ←
⌊
n−1
1+ε

⌋
4 Let

{
xtij | t ∈ [mε]

}
be the output of Algorithm 2 on V, κ, {dt}t∈[n−1]

5 Let ytij :=

{
x
bt/(1+ε)c
ij if t > 1 + ε

1 if t ≤ 1 + ε
for every t ∈ [n− 1], i, j ∈ E(Kn)

6 d(i, j)←∑n−1
t=1 y

t
ij for every i, j ∈ E(Kn)

7 d(i, i)← 0 for every i ∈ V
8 Let r, T be the output of Algorithm 1 on V, d
9 return r, T

Proof. Let T̂ be the optimal hierarchical clustering according to cost function (1). By Corollary 8
and Theorem 21 we can find a hierarchical clustering T satisfying

∑
{i,j}∈E(Kn)

κ(i, j)(|leaves(T [lca(i, j)])| − 1) ≤ O(log n)

 ∑
{i,j}∈E(Kn)

κ(i, j)
(∣∣∣leaves(T̂ [lca(i, j)])

∣∣∣− 1
) .

Let K :=
∑
{i,j}∈E(Kn) κ(i, j). Then it follows from the above expression that cost(T) ≤

O(log n) cost(T̂)−O(log n)K +K ≤ O(log n) cost(T̂).

We can find an optimal solution to LP-ultrametric due to Lemma 14 using the Ellipsoid algorithm
in time polynomial in n and log (maxi,j∈V κ(i, j)). Algorithm 2 runs in time polynomial in n due
to Theorem 19. Finally, Algorithm 1 runs in time O

(
n3
)

due to Lemma 7.

5 Generalized Cost Function

In this section we study the following natural generalization of cost function (1) also introduced by
[16] where the distance between the two points is scaled by a function f : R≥0 → R≥0, i.e.,

costf (T) :=
∑

{i,j}∈E(Kn)

κ(i, j)f (|leavesT [lca(i, j)]|) . (26)

In order that cost function (26) makes sense, f should be strictly increasing and satisfy f(0) = 0.
Possible choices for f could be

{
x2, ex − 1, log(1 + x)

}
. The top-down heuristic in [16] finds the

optimal hierarchical clustering up to an approximation factor of cn log n with cn being defined as

cn := 3αn max
1≤n′≤n

f(n′)

f (dn′/3e)
and where αn is the approximation factor from the Sparsest Cut algorithm used.

A naive approach to solving this problem using the ideas of Algorithm 2 would be to replace the
objective function of ILP-ultrametric by∑

{i,j}∈E(Kn)

κ(i, j)f

(
n−1∑
t=1

xtij

)
.

This makes the corresponding analogue of LP-ultrametric non-linear however, and for a general κ
and f it is not clear how to compute an optimum solution in polynomial time. One possible solution
is to assume that f is convex and use the Frank-Wolfe algorithm to compute an optimum solution.
That still leaves the problem of how to relate f

(∑n−1
t=1 x

t
ij

)
to
∑n−1
t=1 f

(
xtij
)

as one would have
to do to get a corresponding version of Theorem 21. The following simple observation provides an
alternate way of tackling this problem.

15

Observation 23. Let d : V ×V → R be an ultrametric and f : R≥0 → R≥0 be a strictly increasing
function such that f(0) = 0. Define the function f(d) : V × V → R as f(d)(i, j) := f(d(i, j)).
Then f(d) is also an ultrametric on V .

Therefore by Corollary 8 to find a minimum cost hierarchical clustering T of V according to the cost
function (26), it suffices to minimize 〈κ, d〉 where d is the f -image of a non-trivial ultrametric as in
Definition 2. The following lemma lays down the analogue of Conditions 1 and 2 from Definition 2
that the f -image of a non-trivial ultrametric satisfies.
Lemma 24. Let f : R≥0 → R≥0 be a strictly increasing function satisfying f(0) = 0. An ultra-
metric d on V is the f -image of a non-trivial ultrametric on V iff

1. for every non-empty set S ⊆ V , there is a pair of points i, j ∈ S such that d(i, j) ≥
f (|S| − 1),

2. for any t if St is an equivalence class of V under the relation i ∼ j iff d(i, j) ≤ t, then
maxi,j∈St d(i, j) ≤ f (|St| − 1).

Proof. If d is the f -image of a non-trivial ultrametric d′ on V then clearly d satisfies Conditions 1
and 2. Conversely, let d be an ultrametric on V satisfying Conditions 1 and 2. Note that f is
strictly increasing and V is a finite set and thus f−1 exists and is strictly increasing as well, with
f−1(0) = 0. Define d′ as d′(i, j) := f−1(d(i, j)) for every i, j ∈ V . By Observation 23 d′ is an
ultrametric on V satisfying Conditions 1 and 2 of Definition 2 and so d′ is a non-trivial ultrametric
on V .

Lemma 24 allows us to write the analogue of ILP-ultrametric for finding the minimum cost ultra-
metric that is the f -image of a non-trivial ultrametric on V . Note that by Lemma 4 the range of
such an ultrametric is the set {f(0), f(1), . . . , f(n−1)}. We have the binary variables xtij for every
distinct pair i, j ∈ V and t ∈ [n− 1], where xtij = 1 if d(i, j) ≥ f(t) and xtij = 0 if d(i, j) < f(t).

min

n−1∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j) (f(t)− f(t− 1))xtij (f-ILP-ultrametric)

s.t. xtij ≥ xt+1
ij ∀i, j ∈ V, t ∈ [n− 2] (27)

xtij + xtjk ≥ xtik ∀i, j, k ∈ V, t ∈ [n− 1] (28)∑
i,j∈S

xtij ≥ 2 ∀t ∈ [n− 1], S ⊆ V, |S| = t+ 1 (29)

∑
i,j∈S

x
|S|
ij ≤ |S|

2

∑
i,j∈S

xtij +
∑
i∈S
j /∈S

(
1− xtij

)∀t ∈ [n− 1], S ⊆ V (30)

xtij = xtji ∀i, j ∈ V, t ∈ [n− 1] (31)

xtii = 0 ∀i ∈ V, t ∈ [n− 1] (32)

xtij ∈ {0, 1} ∀i, j ∈ V, t ∈ [n− 1] (33)

If xtij is a feasible solution to f-ILP-ultrametric then the ultrametric represented by it is defined as

d(i, j) :=

n−1∑
t=1

(f(t)− f(t− 1))xtij .

Constraint (29) ensures that d satisfies Condition 1 of Lemma 24, since for every S ⊆ V of size
t + 1 we have a pair i, j ∈ S such that d(i, j) ≥ f(t). Similarly constraint (30) ensures that
d satisfies Condition 2 of Lemma 24 since it is active if and only if S is an equivalence class of
V under the relation i ∼ j iff d(i, j) < f(t). In this case Condition 2 of Lemma 24 requires
maxi,j∈S d(i, j) ≤ f (|S| − 1) or in other words x|S|ij = 0 for every i, j ∈ S.

16

Similar to ILP-layer we define an analogous layer-t problem where we fix a choice of t ∈ [n − 1]
and drop the constraints that relate the different layers to each other.

min
∑

{i,j}∈E(Kn)

κ(i, j) (f(t)− f(t− 1))xtij (f-ILP-layer)

s.t. xtij + xtjk ≥ xtik ∀i, j, k ∈ V (34)∑
i,j∈S

xtij ≥ 2 ∀S ⊆ V, |S| = t+ 1 (35)

xtij = xtji ∀i, j ∈ V (36)

xtii = 0 ∀i ∈ V (37)

xtij ∈ {0, 1} ∀i, j ∈ V (38)

Note that f-ILP-ultrametric and f-ILP-layer differ from ILP-ultrametric and ILP-layer respectively
only in the objective function. Therefore Lemmas 10 and 11 also give a combinatorial characteriza-
tion of the set of feasible solutions to f-ILP-layer and f-ILP-ultrametric respectively.

Similarly by Lemma 12 we may replace constraint (29) by the following equivalent constraint over
all subsets of V

∑
j∈S

xtij ≥ |S| − t ∀t ∈ [n− 1], S ⊆ V, i ∈ S.

This provides the analogue of LP-ultrametric in which we drop constraint (30) and enforce it in the
rounding procedure.

min

n−1∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j) (f(t)− f(t− 1))xtij (f-LP-ultrametric)

s.t. xtij ≥ xt+1
ij ∀i, j ∈ V, t ∈ [n− 2] (39)

xtij + xtjk ≥ xtik ∀i, j, k ∈ V, t ∈ [n− 1] (40)∑
j∈S

xtij ≥ |S| − t ∀t ∈ [n− 1], S ⊆ V, i ∈ S (41)

xtij = xtji ∀i, j ∈ V, t ∈ [n− 1] (42)

xtii = 0 ∀i ∈ V, t ∈ [n− 1] (43)

0 ≤ xtij ≤ 1 ∀i, j ∈ V, t ∈ [n− 1] (44)

Since f-LP-ultrametric differs from LP-ultrametric only in the objective function, it follows from
Lemma 14 that an optimum solution to f-LP-ultrametric can be computed in time polynomial in n.
As before, a feasible solution xtij of f-LP-ultrametric induces a sequence {dt}t∈[n−1] of spreading
metrics on V defined as dt(i, j) := xtij . Note that in contrast to the ultrametric d, the spreading
metrics {dt}t∈[n−1] are independent of the function f .

Let BU (i, r, t) be a ball of radius r centered at i ∈ U for some set U ⊆ V as in Definition 15. For a
subset U ⊆ V , let γUt be defined as before to be the value of the layer-t objective corresponding to
a solution dt of f-LP-ultrametric restricted to U , i.e.,

γUt :=
∑
i,j∈U
i<j

(f(t)− f(t− 1))κ(i, j)dt(i, j).

As before, we denote γVt by γt. We will associate a volume vol (BU (i, r, t)) and a boundary
∂BU (i, r, t) to the ball BU (i, r, t) as in Section 4.

17

Definition 25. Let U be an arbitrary subset of V . For a vertex i ∈ U , radius r ∈ R≥0, and
t ∈ [n− 1], let BU (i, r, t) be the ball of radius r as in Definition 15. Then we define its volume as

vol (BU (i, r, t)) :=
γUt

n log n
+ (f(t)− f(t− 1))

∑

j,k∈BU (i,r,t)
j<k

κ(j, k)dt(j, k) +
∑

j∈BU (i,r,t)
k/∈BU (i,r,t)

k∈U

κ(j, k) (r − dt(i, j))

 .

The boundary of the ball ∂BU (i, r, t) is the partial derivative of volume with respect to the radius:

∂BU (i, r, t) := (f(t)− f(t− 1))

(
∂ vol (BU (i, r, t))

∂r

)
= (f(t)− f(t− 1))

∑

j∈BU (i,r,t)
k/∈BU (i,r,t)

k∈U

κ(j, k)

 .

The expansion φ (BU (i, r, t)) of the ball BU (i, r, t) is defined as the ratio of its boundary to its
volume, i.e.,

φ (BU (i, r, t)) :=
∂BU (i, r, t)

vol (BU (i, r, t))
.

Note that the expansion φ (BU (i, r, t)) of Definition 25 is the same as in Definition 17 since the
(f(t)− f(t− 1)) term cancels out. Thus one could run Algorithm 2 with the same notion of volume
as in Definition 17, however in that case the analogous versions of Theorems 19 and 21 do not follow
as naturally. The following is then a simple corollary of Theorem 19.

Corollary 26. Let mε :=
⌊
n−1
1+ε

⌋
as in Algorithm 2. Let

{
xtij | t ∈ [n− 1], i, j ∈ V

}
be the output

of Algorithm 2 using the notion of volume, boundary and expansion as in Definition 25, on a feasible
solution to f-LP-ultrametric and any choice of ε ∈ (0, 1). For any t ∈ [mε], we have that xtij is
feasible for the layer-b(1 + ε)tc problem f-ILP-layer and there is a constant c(ε) > 0 depending
only on ε such that ∑

{i,j}∈E(Kn)

κ(i, j) (f(t)− f(t− 1))xtij ≤ (c(ε) log n) γt.

Corollary 26 allows us to prove the analogue of Theorem 21, i.e., we can use Algorithm 2 to get an
ultrametric that is an f -image of a non-trivial ultrametric and whose cost is at most O(log n) times
the cost of an optimal hierarchical clustering according to cost function (26).
Theorem 27. Let {xtij | t ∈ [mε] , i, j ∈ V } be the output of Algorithm 2 using the notion of volume,
boundary, and expansion as in Definition 25 on an optimal solution {dt}t∈[n−1] of f-LP-ultrametric
for any choice of ε ∈ (0, 1). Define the sequence

{
ytij
}

for every t ∈ [n− 1] and i, j ∈ V as

ytij :=

{
x
bt/(1+ε)c
ij if t > 1 + ε

1 if t ≤ 1 + ε.

Then ytij is feasible for f-ILP-ultrametric and there is a constant c(ε) > 0 such that

n−1∑
t=1

∑
{i,j}∈E(Kn)

κ(i, j) (f(t)− f(t− 1)) ytij ≤ (c(ε) log n) OPT

where OPT is the optimal solution to f-ILP-ultrametric.

Proof. Immediate from Corollary 26 and Theorem 21.

Finally we put everything together to obtain the corresponding Algorithm 4 that outputs a hier-
archical clustering of V of cost at most O (log n) times the optimal clustering according to cost
function (26).

18

Corollary 28. Given a data set V of n points and a similarity function κ : V ×V → R, Algorithm 4
returns a hierarchical clustering T of V satisfying

costf (T) ≤ O (an + log n) min
T ′∈T

costf (T ′),

where an := maxn′∈[n] f(n′) − f(n′ − 1). Moreover Algorithm 4 runs in time polynomial in n,
log f(n) and log (maxi,j∈V κ(i, j)).

Proof. Let T̂ be an optimal hierarchical clustering according to cost function (26). By Corollary 8,
Lemma 24 and Theorem 27 it follows that we can find a hierarchical clustering T satisfying

∑
{i,j}∈E(Kn)

κ(i, j)f (|leaves(T [lca(i, j)]| − 1) ≤ O(log n)

 ∑
{i,j}∈E(Kn)

κ(i, j)f
(∣∣∣leaves(T̂ [lca(i, j)]

∣∣∣− 1
) .

Recall that costf (T) :=
∑
{i,j}∈E(Kn) κ(i, j)f (|leaves(T [lca(i, j)]|). Let K :=∑

{i,j}∈E(Kn) κ(i, j). Note that for any hierarchical clustering T ′ we have K ≤ costf (T ′) since f
is an increasing function. From the above expression we infer that

costf (T)− anK ≤
∑

{i,j}∈E(Kn)

κ(i, j)f (|leaves(T [lca(i, j)]| − 1) ≤ O(log n) costf (T̂),

and so costf (T) ≤ O(log n) costf (T̂) + anK ≤ O(an + log n) costf (T̂). We can find an optimal
solution to f-LP-ultrametric due to Lemma 14 using the Ellipsoid algorithm in time polynomial in
n, log f(n), and log (maxi,j∈V κ(i, j)). Note the additional log f(n) in the running time since now
we need to binary search over the interval [0,maxi,j∈V κ(i, j) · f(n) · n]. Algorithm 2 runs in time
polynomial in n due to Theorem 19. Finally, Algorithm 1 runs in time O

(
n3
)

due to Lemma 7.

Algorithm 4: Hierarchical clustering of V for cost function (26)
Input: Data set V of n points, similarity function κ : V × V → R≥0, f : R≥0 → R≥0 strictly

increasing with f(0) = 0
Output: Hierarchical clustering of V

1 Solve f-LP-ultrametric to obtain optimal sequence of spreading metrics {dt | dt : V × V → [0, 1]}
2 Fix a choice of ε ∈ (0, 1)

3 mε ←
⌊
n−1
1+ε

⌋
4 Let

{
xtij | t ∈ [mε]

}
be the output of Algorithm 2 on V, κ, {dt}t∈[n−1]

5 Let ytij :=

{
x
bt/(1+ε)c
ij if t > 1 + ε

1 if t ≤ 1 + ε
for every t ∈ [n− 1], i, j ∈ E(Kn)

6 d(i, j)←∑n−1
t=1 (f(t)− f(t− 1)) ytij for every i, j ∈ E(Kn)

7 d(i, i)← 0 for every i ∈ V
8 Let r, T be the output of Algorithm 1 on V, f−1(d)
9 return r, T

6 Experiments

Finally, we describe the experiments we performed. For small data sets ILP-ultrametric and f-ILP-
ultrametric describe integer programming formulations that allow us to compute the exact optimal
hierarchical clustering for cost functions (1) and (26) respectively. We implement f-ILP-ultrametric
where one can plug in any strictly increasing function f satisfying f(0) = 0. In particular, setting
f(x) = x gives us ILP-ultrametric. We use the Mixed Integer Programming (MIP) solver Gurobi 6.5
[27]. Similarly, we also implement Algorithms 1, 2, and 4 using Gurobi as our LP solver. Note that
Algorithm 4 needs to fix a parameter choice ε ∈ (0, 1). In Sections 4 and 5 we did not discuss the
effect of the choice of the parameter ε in detail. In particular, we need to choose an ε small enough
such that for every U ⊆ V encountered in Algorithm 2, vol (BU (i,∆, t)) is of the same sign as

19

vol (BU (i, 0, t)) for every t ∈ [n−1], so that log
(

vol(BU (i,∆,t))
vol(BU (i,0,t))

)
is defined. In our experiments we

start with a particular value of ε (say 0.5) and halve it till the volumes have the same sign. For the
sake of exposition, we limit ourselves to the following choices for the function f{

x, x2, log(1 + x), ex − 1
}
.

By Lemma 14 we can optimize over f-LP-ultrametric in time polynomial in n using the Ellipsoid
method. In practice however, we use the dual simplex method where we separate triangle inequality
constraints (40) and spreading constraints (41) to obtain fast computations. For the similarity func-
tion κ : V × V → R we limit ourselves to using cosine similarity and the Gaussian kernel with
σ = 1. They are defined formally below.
Definition 29 (Cosine similarity). Given a data set V ∈ Rm for some m ≥ 0, the cosine similarity
κcos is defined as κcos(x, y) := 〈x,y〉

‖x‖‖y‖ .

Since the LP rounding Algorithm 2 assumes that κ ≥ 0 in practice we implement 1 + κcos rather
than κcos.
Definition 30 (Gaussian kernel). Given a data set V ∈ Rm for some m ≥ 0, the Gaussian kernel
κgauss with standard deviation σ is defined as κgauss(x, y) := exp

(
−‖x−y‖

2

2σ2

)
.

The main aim of our experiments was to answer the following two questions.

1. How good is the hierarchal clustering obtained from Algorithm 4 as opposed to the true
optimal output by f-ILP-ultrametric?

2. How good does Algorithm 4 perform compared to other hierarchical clustering methods?

For the first question, we are restricted to working with small data sets since computing an optimum
solution to f-ILP-ultrametric is expensive. In this case we consider synthetic data sets of small size
and samples of some data sets from the UCI database [36]. The synthetic data sets we consider are
mixtures of Gaussians in various small dimensional spaces. Figure 1 shows a comparison of the
cost of the hierarchy (according to cost function (26)) returned by solving f-ILP-ultrametric and by
Algorithm 4 for various forms of f when the similarity function is κcos and κgauss. Note that we
normalize the cost of the tree returned by f-ILP-ultrametric and Algorithm 4 by the cost of the trivial
clustering r, T ∗ where T ∗ is the star graph with V as its leaves and r as the internal node. In other
words dT∗(i, j) = n − 1 for every distinct pair i, j ∈ V and so the normalized cost of any tree lies
in the interval (0, 1].

For the study of the second question, we consider some of the popular algorithms for hierarchical
clustering are single linkage, average linkage, complete linkage, and Ward’s method [45]. To get a
numerical handle on how good a hierarchical clustering T of V is, we prune the tree to get the best
k flat clusters and measure its error relative to the target clustering. We use the following notion of
error also known as Classification Error that is standard in the literature for hierarchical clustering
(see, e.g., [37]). Note that we may think of a flat k-clustering of the data V as a function h mapping
elements of V to a label set L := {1, . . . , k}. Let Sk denote the group of permutations on k letters.
Definition 31 (Classification Error). Given a proposed clustering h : V → L its classification error
relative to a target clustering g : V → L is denoted by err (g, h) and is defined as

err (g, h) := min
σ∈Sk

[
Pr
x∈V

[h(x) 6= σ(g(x))

]
.

Example 32. Recall the data set from Example ??. Let k = 3 and g be the target clustering defined
as g(x0) = g(x1) = 1, g(x2) = g(x3) = 2, and g(x4) = g(x5) = 3. Then the error of the best
pruning of the hierarchal clustering in Figures ?? and ?? is 0 while for Figures ?? and ?? it is 1

6 .

We compare the error of Algorithm 4 with the various linkage based algorithms that are com-
monly used for hierarchical clustering, as well as Ward’s method and the k-means algorithm.
We test Algorithm 4 most extensively for f(x) = x while doing a smaller number of tests for
f(x) ∈

{
x2, log(1 + x), ex − 1

}
. Note that both Ward’s method and the k-means algorithm work

on the squared Euclidean distance ‖x− y‖22 between two points x, y ∈ V , i.e., they both require
an embedding of the data points into a normed vector space which provides extra information that

20

0.0 0.2 0.4 0.6 0.8 1.0

Cost of HC by solving ILP formulation

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
of

H
C

re
tu

rn
ed

by
A

lg
or

it
hm

4

f(x) = x

f(x) = x2

f(x) = ex − 1

f(x) = log(1 + x)

0.0 0.2 0.4 0.6 0.8 1.0

Cost of HC by solving ILP formulation

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
of

H
C

re
tu

rn
ed

by
A

lg
or

it
hm

4

f(x) = x

f(x) = x2

f(x) = ex − 1

f(x) = log(1 + x)

Figure 1: Comparison of f-ILP-ultrametric and Algorithm 4 for 1 + κcos (left) and κgauss (right)

0 10 20 30 40 50

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 10 20 30 40 50

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 2: Comparison of Algorithm 4 using f(x) = x, with other algorithms for clustering using
1 + κcos (left) and κgauss (right)

can be potentially exploited. For the linkage based algorithms we use the same notion of similarity
1 + κcos or κgauss that we use for Algorithm 4. For comparison we use a mix of synthetic data sets
as well as the Wine, Iris, Soybean-small, Digits, Glass, and Wdbc data sets from the UCI repository
[36]. For some of the larger data sets, we sample uniformly at random a smaller number of data
points and take the average of the error over the different runs. Figures 2, 3, 4, and 5 show that
the hierarchical clustering returned by Algorithm 4 with f(x) ∈

{
x, x2, log(1 + x), ex − 1

}
often

has better projections into flat clusterings than the other algorithms. This is especially true when we
compare it to the linkage based algorithms, since they use the same pairwise similarity function as
Algorithm 4, as opposed to Ward’s method and k-means.

7 Discussion

In this work we have studied the cost functions (1) and (26) for hierarchical clustering given a
pairwise similarity function over the data and shown an O(log n) approximation algorithm for this
problem. As briefly mentioned in Section 2 however, such a cost function is not unique. Further,
there is an intimate connection between hierarchical clusterings and ultrametrics over discrete sets
which points to other directions for formulating a cost function over hierarchies. In particular we
briefly mention the related notion of hierarchically well-separated trees (HST) as defined in [6] (see
also [8, 9]). A k-HST for k ≥ 1 is a tree T such that each vertex u ∈ T has a label ∆(u) ≥ 0 such

21

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x2

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = x2

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 3: Comparison of Algorithm 4 using f(x) = x2, with other algorithms for clustering using
1 + κcos (left) and κgauss (right)

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = log(1 + x)

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h
Algorithm 4, f(x) = log(1 + x)

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 4: Comparison of Algorithm 4 using f(x) = log(1 +x), with other algorithms for clustering
using 1 + κcos (left) and κgauss (right)

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = ex − 1

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

0 1 2 3 4 5 6 7 8 9

Data sets

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or
w

it
h

re
sp

ec
t

to
gr

ou
nd

tr
ut

h

Algorithm 4, f(x) = ex − 1

Average linkage

Single linkage

Complete linkage

Ward’s method

k-means

Figure 5: Comparison of Algorithm 4 using f(x) = ex − 1, with other algorithms for clustering
using 1 + κcos (left) and κgauss (right)

22

that ∆(u) = 0 if and only if u is a leaf of T . Further, if u is a child of v in T then ∆(u) ≤ ∆(v)/k.
It is well known that any ultrametric d on a finite set V is equivalent to a 1-HST where V is the
set of leaves of T and d(i, j) = ∆ (lca(i, j)) for every i, j ∈ V . Thus in the special case when
∆(u) = |leavesT [u]| − 1 we get the cost function (1), while if ∆(u) = f (|leavesT [u]| − 1) for
a strictly increasing function f with f(0) = 0 then we get cost function (26). It turns out this
assumption on ∆ enables us to prove the combinatorial results of Section 3 and give a O(log n)
approximation algorithm to find the optimal cost tree according to these cost functions. It is an
interesting problem to investigate cost functions and algorithms for hierarchical clustering induced
by other families of ∆ that arise from a k-HST on V , i.e., if the cost of T is defined as

cost∆(T) :=
∑

{i,j}∈E(Kn)

κ(i, j)∆ (lca(i, j)) . (45)

Note that not all choices of ∆ lead to a meaningful cost function. For example, choosing ∆(u) =
diam (T [u])− 1 gives rise to the following cost function

cost(T) :=
∑

{i,j}∈E(Kn)

κ(i, j) distT (i, j) (46)

where distT (i, j) is the length of the unique path from i to j in T . In this case, the trivial clustering
r, T ∗ where T ∗ is the star graph with V as its leaves and r as the root is always a minimizer; in other
words, there is no incentive for spreading out the hierarchical clustering. Also worth mentioning
is a long line of related work on fitting tree metrics to metric spaces (see e.g., [2, 40, 21]). In this
setting, the data points V are assumed to come from a metric space dV and the objective is to find
a hierarchical clustering T so as to minimize ‖dV − dT ‖p. If the points in V lie on the unit sphere
and the similarity function κ is the cosine similarity κcos(i, j) = 1 − dV (i, j)/2, then the problem
of fitting a tree metric with p = 2 minimizes the same objective as cost function (46). Since dV ≤ 1
in this case, the minimizer is the trivial tree r, T ∗ (as remarked above). In general, when the points
in V are not constrained to lie on the unit sphere, the two problems are incomparable.

8 Acknowledgments

Research reported in this paper was partially supported by NSF CAREER award CMMI-1452463
and NSF grant CMMI-1333789. We would like to thank Kunal Talwar and Mohit Singh for helpful
discussions and anonymous reviewers for helping improve the presentation of this paper.

References
[1] Ackerman, M., Ben-David, S., and Loker, D. (2010). Characterization of linkage-based clustering. In

COLT, pages 270–281. Citeseer. 2

[2] Ailon, N. and Charikar, M. (2005). Fitting tree metrics: Hierarchical clustering and phylogeny. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pages 73–82. IEEE. 2, 23

[3] Arora, S., Rao, S., and Vazirani, U. (2009). Expander flows, geometric embeddings and graph partitioning.
Journal of the ACM (JACM), 56(2):5. 2, 26

[4] Awasthi, P., Bandeira, A. S., Charikar, M., Krishnaswamy, R., Villar, S., and Ward, R. (2015). Relax, no
need to round: Integrality of clustering formulations. In Proceedings of the 2015 Conference on Innovations
in Theoretical Computer Science, pages 191–200. ACM. 2

[5] Balcan, M.-F., Blum, A., and Vempala, S. (2008). A discriminative framework for clustering via similarity
functions. In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 671–680.
ACM. 1

[6] Bartal, Y. (1996). Probabilistic approximation of metric spaces and its algorithmic applications. In Foun-
dations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages 184–193. IEEE. 21

[7] Bartal, Y. (2004). Graph decomposition lemmas and their role in metric embedding methods. In European
Symposium on Algorithms, pages 89–97. Springer. 3

23

[8] Bartal, Y., Bollobás, B., and Mendel, M. (2001). A ramsey-type theorem for metric spaces and its ap-
plications for metrical task systems and related problems. In Foundations of Computer Science, 2001.
Proceedings. 42nd IEEE Symposium on, pages 396–405. IEEE. 21

[9] Bartal, Y., Linial, N., Mendel, M., and Naor, A. (2003). On metric ramsey-type phenomena. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 463–472. ACM. 21

[10] Braun, G., Pokutta, S., and Roy, A. (2015). Strong reductions for extended formulations. CoRR,
abs/1512.04932. 26, 27, 29

[11] Chan, S. O., Lee, J., Raghavendra, P., and Steurer, D. (2013). Approximate constraint satisfaction requires
large lp relaxations. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on,
pages 350–359. IEEE. 29

[12] Charikar, M. and Chatziafratis, V. (2016). Approximate hierarchical clustering via sparsest cut and spread-
ing metrics. arXiv preprint arXiv:1609.09548. 3

[13] Charikar, M., Guha, S., Tardos, É., and Shmoys, D. B. (1999). A constant-factor approximation algorithm
for the k-median problem. In Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 1–10. ACM. 2

[14] Charikar, M., Guruswami, V., and Wirth, A. (2003). Clustering with qualitative information. In Founda-
tions of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages 524–533. IEEE. 3,
10

[15] Charikar, M. and Li, S. (2012). A dependent lp-rounding approach for the k-median problem. In Au-
tomata, Languages, and Programming, pages 194–205. Springer. 2

[16] Dasgupta, S. (2016). A cost function for similarity-based hierarchical clustering. In Wichs, D. and
Mansour, Y., editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 118–127. ACM. 1, 2, 3, 4, 15, 27, 28

[17] Dasgupta, S. and Long, P. M. (2005). Performance guarantees for hierarchical clustering. Journal of
Computer and System Sciences, 70(4):555–569. 2

[18] Di Summa, M., Pritchard, D., and Sanità, L. (2015). Finding the closest ultrametric. Discrete Applied
Mathematics, 180:70–80. 2, 3, 6

[19] Even, G., Naor, J., Rao, S., and Schieber, B. (1999). Fast approximate graph partitioning algorithms.
SIAM Journal on Computing, 28(6):2187–2214. 2, 3, 9, 10, 11, 12

[20] Even, G., Naor, J. S., Rao, S., and Schieber, B. (2000). Divide-and-conquer approximation algorithms
via spreading metrics. Journal of the ACM (JACM), 47(4):585–616. 3, 9

[21] Fakcharoenphol, J., Rao, S., and Talwar, K. (2003). A tight bound on approximating arbitrary metrics
by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages
448–455. ACM. 23

[22] Felsenstein, J. and Felenstein, J. (2004). Inferring phylogenies, volume 2. Sinauer Associates Sunderland.
2

[23] Friedman, J., Hastie, T., and Tibshirani, R. (2001). The elements of statistical learning, volume 1.
Springer series in statistics Springer, Berlin. 2

[24] Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1976). Some simplified np-complete graph problems.
Theoretical computer science, 1(3):237–267. 26, 28, 29

[25] Garg, N., Vazirani, V. V., and Yannakakis, M. (1996). Approximate max-flow min-(multi) cut theorems
and their applications. SIAM Journal on Computing, 25(2):235–251. 3, 10

[26] Gupta, A. (2005). Lecture notes on approximation algorithms. Available at https: // www. cs. cmu.
edu/ afs/ cs/ academic/ class/ 15854-f05/ www/ scribe/ lec20. pdf . 14

[27] Gurobi Optimization, I. (2015). Gurobi optimizer reference manual. 19

[28] Jain, K., Mahdian, M., Markakis, E., Saberi, A., and Vazirani, V. V. (2003). Greedy facility location
algorithms analyzed using dual fitting with factor-revealing lp. Journal of the ACM (JACM), 50(6):795–
824. 2

24

https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15854-f05/www/scribe/lec20.pdf

[29] Jain, K. and Vazirani, V. V. (2001). Approximation algorithms for metric facility location and k-median
problems using the primal-dual schema and lagrangian relaxation. Journal of the ACM (JACM), 48(2):274–
296. 2

[30] Jardine, N. and Sibson, R. (1968). The construction of hierarchic and non-hierarchic classifications. The
Computer Journal, 11(2):177–184. 2

[31] Jardine, N. and Sibson, R. (1971). Mathematical taxonomy. London etc.: John Wiley. 2

[32] Krauthgamer, R., Naor, J. S., and Schwartz, R. (2009). Partitioning graphs into balanced components.
In Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 942–949.
Society for Industrial and Applied Mathematics. 2, 9

[33] Leighton, T. and Rao, S. (1988). An approximate max-flow min-cut theorem for uniform multicommodity
flow problems with applications to approximation algorithms. In Foundations of Computer Science, 1988.,
29th Annual Symposium on, pages 422–431. IEEE. 2, 3, 10

[34] Leighton, T. and Rao, S. (1999). Multicommodity max-flow min-cut theorems and their use in designing
approximation algorithms. Journal of the ACM (JACM), 46(6):787–832. 2

[35] Li, S. and Svensson, O. (2013). Approximating k-median via pseudo-approximation. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing, pages 901–910. ACM. 2

[36] Lichman, M. (2013). UCI machine learning repository. 20, 21

[37] Meilă, M. and Heckerman, D. (2001). An experimental comparison of model-based clustering methods.
Machine learning, 42(1-2):9–29. 20

[38] Peng, J. and Wei, Y. (2007). Approximating k-means-type clustering via semidefinite programming.
SIAM Journal on Optimization, 18(1):186–205. 2

[39] Peng, J. and Xia, Y. (2005). A new theoretical framework for k-means-type clustering. In Foundations
and advances in data mining, pages 79–96. Springer. 2

[40] Räcke, H. (2008). Optimal hierarchical decompositions for congestion minimization in networks. In
Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 255–264. ACM. 23, 26

[41] Raghavendra, P., Steurer, D., and Tulsiani, M. (2012). Reductions between expansion problems. In
Computational Complexity (CCC), 2012 IEEE 27th Annual Conference on, pages 64–73. IEEE. 25, 29, 30

[42] Recht, B., Re, C., Tropp, J., and Bittorf, V. (2012). Factoring nonnegative matrices with linear programs.
In Advances in Neural Information Processing Systems, pages 1214–1222. 2

[43] Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons. 10

[44] Sneath, P. H., Sokal, R. R., et al. (1973). Numerical taxonomy. The principles and practice of numerical
classification. 2

[45] Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244. 20

[46] Zadeh, R. B. and Ben-David, S. (2009). A uniqueness theorem for clustering. In Proceedings of the
twenty-fifth conference on uncertainty in artificial intelligence, pages 639–646. AUAI Press. 2

A Hardness of finding the optimal hierarchical clustering

In this section we study the hardness of finding the optimal hierarchical clustering according to cost
function (1). We show that under the assumption of the Small Set Expansion (SSE) hypothesis there
is no constant factor approximation algorithm for this problem. We also show that no polynomial
sized Linear Program (LP) or Semidefinite Program (SDP) can give a constant factor approximation
for this problem without the need for any complexity theoretic assumptions. Both these results
make use of the similarity of this problem with the minimum linear arrangement problem. To
show hardness under Small Set Expansion, we make use of the result of [41] showing that there is
no constant factor approximation algorithm for the Minimum Linear Arrangement problem under

25

the assumption of SSE. To show the LP and SDP inapproximability results, we make use of the
reduction framework of [10] together with the NP-hardness proof for Minimum Linear Arrangement
due to [24]. We also note that both these hardness results hold even for unweighted graphs (i.e., when
κ ∈ {0, 1}).
Note that the individual layer-t problem f-ILP-layer for t = bn/2c is equivalent to the minimum
bisection problem for which the best known approximation is O(log n) due to [40], while the best
known bi-criteria approximation is O

(√
log n

)
due to [3] and improving these approximation fac-

tors is a major open problem. However it is not clear if an improved approximation algorithm for
hierarchical clustering under cost function (1) would imply an improved algorithm for every layer-t
problem, which is why a constant factor inapproximability result is of interest. We start by recalling
the definition of an optimization problem in the framework of [10].
Definition 33 (Optimization problem). [10] An optimization problem is a tuple P = (S, I, val)
consisting of a set S of feasible solutions, a set I of instances, and a real-valued objective called
measure val : I× S → R. We shall use valI(s) for the objective value of a feasible solution s ∈ S
for an instance I ∈ I.

Since we are interested in the integrality gaps of LP and SDP relaxations for an optimization problem
P = (S, I, val), we represent the approximation gap by two functions C, S : I→ R where C is the
completeness guarantee while S is the soundness guarantee. Note that the ratio C/S represents the
approximation factor for the problem P . We recall below the formal definition of an LP relaxation
of P that achieves a (C, S)-approximation guarantee. We assume without loss of generality that P
is a maximization problem.
Definition 34 (LP formulation of an optimization problem). [10] Let P = (S, I, val) be an opti-
mization problem, and C, S : I → R. Then let IS := {I ∈ I |max valI ≤ S(I)} denote the set
of sound instances, i.e., for which the soundness guarantee S is an upper bound on the maximum.
A (C, S)-approximate LP formulation of P consists of a linear program Ax ≤ b with x ∈ Rr for
some r and the following realizations:

Feasible solutions as vectors xs ∈ Rr for every s ∈ S satisfying

Axs ≤ b for all s ∈ S, (47)

i.e., the system Ax ≤ b is a relaxation of conv (xs | s ∈ S).

Instances as affine functions wI : Rr → R for all I ∈ IS satisfying

wI(xs) = valI(s) for all s ∈ S, (48)

i.e., the linearization wI of valI is required to be exact on all xs with s ∈ S.

Achieving (C, S) approximation guarantee by requiring

max {wI(x) |Ax ≤ b} ≤ C(I) for all I ∈ IS , (49)

The size of the formulation is the number of inequalities in Ax ≤ b. Finally, the (C, S)-approximate
LP formulation complexity fcLP(P, C, S) of P is the minimal size of all its LP formulations.

One can similarly define a (C, S)-approximate SDP formulation for a problem P where instead of
a LP, we now have a SDP relaxation A(X) = b with X ∈ Sr+ and where Sr+ denotes the space
of r × r positive semidefinite matrices. The size of such an SDP formulation is measured by the
dimension r and fcSDP(P, C, S) is defined as the minimum size of an SDP formulation achieving
(C, S)-approximation for problem P . Below we recall the precise notion of a reduction between
two problems as in [10].
Definition 35 (Reduction). [10] Let P1 = (S1, I1, val) and P2 = (S2, I2, val) be optimization
problems with guarantees C1, S1 and C2, S2, respectively. Let τ1 = +1 if P1 is a maximization
problem, and τ1 = −1 if P1 is a minimization problem. Similarly, let τ2 = ±1 depending on
whether P2 is a maximization problem or a minimization problem.

A reduction from P1 to P2 respecting the guarantees consists of

1. two mappings: ∗ : I1 → I2 and ∗ : S1 → S2 translating instances and feasible solutions
independently;

26

2. two nonnegative I1 × S1 matrices M1, M2

subject to the conditions

τ1 [C1(I1)− valI1(s1)] = τ2
[
C2(I∗1)− valI∗1 (s∗1)

]
M1(I1, s1) +M2(I1, s1) (50-complete)

τ2 OPT (I∗1) ≤ τ2S2(I∗1) if τ1 OPT (I1) ≤ τ1S1(I1). (50-sound)

The matrices M1 and M2 control the parameters of the reduction relating the integrality gap of
relaxations for P1 to the integrality gap of corresponding relaxations for P2. For a matrix A, let
rk+A and rkpsd A denote the nonnegative rank and psd rank of A respectively. The following
theorem is a restatement of Theorem 3.2 from [10] ignoring constants.
Theorem 36. [10] Let P1 and P2 be optimization problems with a reduction from P1 to P2 re-
specting the completeness guarantees C1, C2 and soundness guarantees S1, S2 of P1 and P2,
respectively. Then

fcLP(P1, C1, S1) ≤ rk+M2 + rk+M1 + rk+M1 · fcLP(P2, C2, S2), (51)
fcSDP(P1, C1, S1) ≤ rkpsd M2 + rkpsd M1 + rkpsd M1 · fcSDP(P2, C2, S2), (52)

where M1 and M2 are the matrices in the reduction as in Definition 35.

Therefore to obtain a lower bound for problem P2, it suffices to find a source problem P1 and
matrices M1 and M2 of low nonnegative rank and low psd rank, satisfying Definition 35.

Below, we cast the hierarchical clustering problem (HCLUST) as an optimization problem. We also
recall a different formulation of cost function (1) due to [16] that will be useful in the analysis of the
reduction.
Definition 37 (HCLUST as optimization problem). The minimization problem HCLUST of size n
consists of

instances similarity function κ : E(Kn)→ R≥0

feasible solutions hierarchical clustering r, T of V (Kn)

measure valκ(T) =
∑
{i,j}∈E(Kn) κ(i, j) |leaves(T [lca(i, j)])|.

We will also make use of the following alternate interpretation of cost function (1) given by [16]. Let
κ : V × V → R≥0 be an instance of HCLUST. For a subset S ⊆ V , a split S1, . . . , Sk is a partition
of S into k disjoint pieces. For a binary split S1, S2 we can define κ(S1, S2) :=

∑
i∈S1,j∈S2

κ(i, j).
This can be extended to k-way splits in the natural way:

κ(S1, . . . , Sk) :=
∑

1≤i≤j≤k

κ(Si, Sj).

Then the cost of a tree T is the sum over all the internal nodes of the splitting costs at the nodes, as
follows.

cost(T) =
∑

splits S→(S1,...,Sk) in T

|S|κ(S1, . . . , Sk).

We now briefly recall the MAXCUT problem.
Definition 38 (MAXCUT as optimization problem). The maximization problem MAXCUT of size
n consists of

instances all graphs G with V (G) ⊆ [n]

feasible solutions all subsets X of [n]

measure valG(X) = |δG(X)|.

Similarly, the Minimum Linear Arrangement problem can be phrased as an optimization problem as
follows.

27

Definition 39 (MLA as optimization problem). The minimization problem MLA of size n consists of

instances weight function w : E(Kn)→ R≥0

feasible solutions all permutations π : V (Kn)→ [n]

measure valw(π) :=
∑
{i,j}∈E(Kn) w(i, j) |π(i)− π(j)|.

We now describe the reduction from MAXCUT to HCLUST which is a modification of the reduction
from MAXCUT to MLA due to [24]. Note that an instance of MAXCUT maps to an unweighted
instance of HCLUST, i.e., κ ∈ {0, 1}.

Mapping instances Given an instance G = (V,E) of MAXCUT of size n, let r = n4 and U =
{u1, u2, . . . , ur}. The instance κ of HCLUST is on the graph with vertex set V ′ := V ∪U
and has weights in {0, 1}. For any distinct pair i, j ∈ V ′, if {i, j} ∈ E then we define
κ(i, j) := 0 and otherwise we set κ(i, j) := 1.

Mapping solutions Given a cut X ⊆ V of MAXCUT we map it to the clustering r, T of V ′ where
the root r has the following children: n4 leaves corresponding to U , and 2 internal vertices
corresponding to X and X . The internal vertices for X and X are split into |X| and

∣∣X∣∣
leaves respectively at the next level.

The following lemma relates the LP and SDP formulations for MAXCUT and MLA.

Lemma 40. For any completeness and soundness guarantee (C, S), we have the following

fcLP (MAXCUT, C, S) ≤ fcLP (HCLUST, C ′, S′) +O(n2)

fcSDP (MAXCUT, C, S) ≤ fcSDP (HCLUST, C ′, S′) +O(n2).

where C ′ := (n4+n)3−(n4+n)
3 − C(n4 + n) and S′ :=

(
n4+n+1

3

)
− Sn4.

Proof. To show completeness, we analyze the cost of the tree T that a cut X maps to, using the
alternate interpretation of the cost function (1) due to [16] (see above). Let H be the graph on vertex
set V ′ induced by κ, i.e. {i, j} ∈ E(H) iff κ(i, j) = 1. Let H denote the complement graph of H
and let κ be the similarity function induced by it, i.e., κ(i, j) = 1 iff {i, j} 6∈ E(H) and κ(i, j) = 0
otherwise. For a hierarchical clustering T of V ′, we denote by costH(T) and costH(T) the cost
of T induced by κ and κ respectively, i.e., costH(T) :=

∑
{i,j}∈E(H) |leaves(T [lca(i, j)])| and

costH(T) :=
∑
{i,j}6∈E(H) |leaves(T [lca(i, j)])|. Let X := V ′ \X . The cost of the tree T that the

cut X maps to, is given by

cost(T) = costH(T)

=

(
n+ n4

)3 − (n+ n4)

3
− costH(T)

=

(
n+ n4

)3 − (n+ n4)

3
−

∑
splits S→(S1,...,Sk) in T

|S|κ(S1, . . . , Sk)

=

(
n+ n4

)3 − (n+ n4)

3
−
(
n+ n4

)
valG(X)−

(
|X| |E[X]|+

∣∣X∣∣ ∣∣E[X]
∣∣) ,

where E[X] and E[X] are the edges of E(H) induced on the set X and X respectively. Therefore,
we have the following completeness relationship between the two problems

C − valG(X) =
1

n+ n4

(
cost(T)−

(
(n+ n4)3 − (n+ n4)

3
− C(n+ n4)

))
+
|X| |E[X]|+

∣∣X∣∣ ∣∣E[X]
∣∣

n4 + n
.

We now define the matrices M1 and M2 as M1(H,X) := 1
n+n4 and M2(H,X) := |X| |E[X]| +∣∣X∣∣ ∣∣E[X]

∣∣. Clearly, M1 has O(1) nonnegative rank and psd rank. We claim that the nonnegative

28

rank of M2 is at most 2
(
n
2

)
. The vectors vH ∈ R2(n2) corresponding to the instances H is defined

as the concatenation [uH , wH] of two vectors uH , wH ∈ R(n2). Both the vectors uH , wH encode
the edges of H scaled by n4 + n, i.e., uH({i, j}) = wH({i, j}) = 1/(n4 + n) iff {i, j} ∈ E(H)

and 0 otherwise. The vectors vX ∈ R2(n2) corresponding to the solutions are also defined as the
concatenation [uX , wX] of two vectors uX , wX ∈ Rn. The vector uX encodes the vertices in X
scaled by |X| i.e., uX({i, j}) = |X| iff i, j ∈ X and 0 otherwise. The vector wX encodes the
vertices in X scaled by

∣∣X∣∣ i.e., wX({i, j}) =
∣∣X∣∣ iff i, j ∈ X and 0 otherwise. Clearly, we have

M2(H,X) = 〈vH , vX〉 and so the nonnegative (and psd) rank of M2 is at most 2
(
n
2

)
.

Soundness follows due to the analysis in [24] and by noting that the cost of a linear arrangement
obtained by projecting the leaves of T is a lower bound on cost(T). By the analysis in [24] if the
optimal value OPT(G) of MAXCUT is at most S, then the optimal value of MLA on V ′, κ is at
least

(
n4+n+1

3

)
− Sn4. Therefore, it follows that the optimal value of HCLUST on V ′, κ is also at

least
(
n4+n+1

3

)
− Sn4.

The constant factor inapproximability result for HCLUST now follows due to the following theo-
rems.
Theorem 41 ([11, Theorem 3.2]). For any ε > 0 there are infinitely many n such that

fcLP

(
MAXCUT, 1− ε, 1

2
+
ε

6

)
≥ nΩ(logn/ log logn).

Theorem 42 ([10, Theorem 7.1]). For any δ, ε > 0 there are infinitely many n such that

fcSDP

(
MAXCUT,

4

5
− ε, 3

4
+ δ

)
= nΩ(logn/ log logn). (53)

Thus we have the following corollary about the LP and SDP inapproximability for the problem
HCLUST.
Corollary 43 (LP and SDP hardness for HCLUST). For any constant c ≥ 1, HCLUST is LP-hard
and SDP-hard with an inapproximability factor of c.

Proof. Straightforward by using Theorems 41 and 42 together with Lemma 40 and by choosing n
large enough.

The following lemma shows that a minor modification of the argument in [41] also implies a constant
factor inapproximability result under the Small Set Expansion (SSE) hypothesis. Note that this
reduction is also true for unit capacity graphs, i.e., κ ∈ {0, 1}. We briefly recall the formulation of
the Small Set Expansion hypothesis. Informally, given a graph G = (V,E) the problem is to decide
whether all “small” sets in the graph are expanding. Let d(i) denote the degree of a vertex i ∈ V .
For a subset S ⊆ V let µ(S) := |S| / |V | be the volume of S, and let φ(S) := E(S, S)/

∑
i∈S d(i)

be the expansion of S. Then the SSE problem is defined as follows.
Definition 44 (Small set expansion (SSE) hypothesis [41]). For every constant η > 0, there exists
sufficiently small δ > 0 such that given a graph G = (V,E), it is NP-hard to decide the following
cases,

Completeness there exists a subset S ⊆ V with volume µ(S) = δ and expansion φ(S) ≤ η,

Soundness every subset S ⊆ V of volume µ(S) = δ has expansion φ(S) ≥ 1− η.

Under this assumption, [41] proved the following amplification result about the expansion of small
sets in the graph.
Theorem 45 (Theorem 3.5 [41]). For all q ∈ N and ε′, γ > 0 it is SSE-hard to distinguish the
following for a given graph H = (VH , EH)

Completeness There exist disjoint sets S1, . . . , Sq ⊆ VH satisfying µ(Si) = 1
q and φ(Si) ≤ ε′ +

o(ε′) for all i ∈ [n],

29

Soundness For all sets S ⊆ VH we have φ(S) ≥ φG(1− ε′/2)(µ(S))− γ/µ(S),

where φG(1 − ε′/2)(µ(S)) is the expansion of sets of volume µ(S) in the infinite Gaussian graph
G(1− ε′/2).

The following lemma establishes that it is SSE-hard to approximate HCLUST to within any con-
stant factor. The argument closely parallels Corollary A.5 of [41] where it was shown that it is
SSE-hard to approximate MLA to within any constant factor.
Lemma 46. Let G = (V,E) be a graph on V with κ induced by the edges E i.e., κ(i, j) = 1 iff
{i, j} ∈ E and 0 otherwise. Then it is SSE-hard to distinguish between the following two cases

Completeness There exists a hierarchical clustering T of V with cost(T) ≤ εn |E|,
Soundness Every hierarchical clustering T of V satisfies cost(T) ≥ c√εn |E|

for some constant c not depending on n.

Proof. Apply Theorem 45 on the graph G with the following choice of parameters: q = d2/εe,
ε′ = ε/3 and γ = ε. Suppose there exist S1, . . . , Sq ⊆ V satisfying φ(Si) ≤ ε′ + o(ε′) and
|Si| = |V | /q ≤ ε |V | /2. Then consider the tree r, T with the root r having q children corresponding
to each Si, and each Si being further separated into |Si| leaves at the next level. We claim that
cost(T) ≤ εn |E|. We analyze this using the alternate interpretation of cost function (1) (see above).
Every crossing edge between Si, Sj for distinct i, j ∈ [q] incurs a cost of n, but by assumption there
are at most ε |E| /2 such edges. Further, any edge in Si incurs a cost n

q ≤ εn/2 and thus their
contribution is upper bounded by εn |E|.
The analysis for soundness follows by the argument of Corollary A.5 in [41]. In particular, if for
every S ⊆ V we have φ(S) ≥ φG(1 − ε′/2)(µ(S)) − γ/µ(S) then the cost of the optimal linear
arrangement on G is at most

√
εn |E|. Since the cost of any tree (including the optimal tree) is

at least the cost of the linear arrangement induced by projecting the leaf vertices, the claim about
soundness follows.

30

	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	3 Ultrametrics and Hierarchical Clusterings
	4 Rounding an LP relaxation
	5 Generalized Cost Function
	6 Experiments
	7 Discussion
	8 Acknowledgments
	A Hardness of finding the optimal hierarchical clustering

