
Supplementary of “Domain Separation Networks”

1 Office Dataset Criticism

The most commonly used dataset for visual domain adaptation in the context of object classification is
Office [4], sometimes combined with the Caltech–256 dataset [2] as an additional domain. However,
these datasets exhibit significant variations in both low-level and high-level parameter distributions.
Low-level variations are due to the different cameras and background textures in the images (e.g.
Amazon versus DSLR), which is welcome. However, there are significant high-level variations due to
elements like label pollution: e.g. the motorcycle class contains non-motorcycle objects; the backpack
class contains 2 laptops; some classes contain the object in only one pose. Other commonly used
datasets such as Caltech-256 suffer from similar problems. We illustrate some of these issues for the
‘back_pack’ class for its 92 Amazon samples, its 12 DSLR samples, its 29 Webcam samples, and its
151 Caltech samples in Fig. 1. Other classes exhibit similar problems. For these reasons some works,
eg [5], pretrain their models on Imagenet before performing the domain adaptation in these scenarios.
This essentially involves another source domain (Imagenet) in the transfer.

Figure 1: Examples of the ‘back_pack’ class in the different domains in Office and Caltech–256.
First Row: 5 of the 92 images in the Amazon domain. Second Row: The DSLR domain contains
4 images for the rightmost image from different frontal angles, 2 images for the other 4 backpacks
for a total of 12 images for this class. Third Row: The webcam domain contains the exact same
backpacks with DSLR with similar poses for a total of 29 images for this class. Fourth Row: Some
of the 151 backpack samples Caltech domain.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



2 Correlation Regularization

Correlation Alignment (CORAL) [5] aims to find a mapping from the representations of the source
domain to the representations of the target domain by matching only the second–order statistics. In our
framework, this would be equivalent to fixing our common representation matrices Hs

c and Ht
c after

normalizing them and then finding a weight matrix Â = argmin
A

∥∥∥AHs
c
>Hs

cA
> −Ht

c
>
Ht

c

∥∥∥2
F

that

aligns the two correlation matrices. Although this has the advantage that the optimization is convex
and can be solved in closed form, all convolutional features remain fixed during the process, which
might not be optimal for the task at hand. Also, because of this we are not able to use it as a similarity
loss for our DSNs. Motivated by this shortcoming, we propose here a new domain adaptation
method, Correlation Regularization (CorReg). We show in Tab. 1 that our new domain adaptation
method, which is theoretically as powerful as an MMD loss with a second–order polynomial kernel,
outperforms CORAL in all our datasets. Adapting a feature hierarchy to be domain–invariant is
more powerful than learning a mapping from the representations of one domain to those of another.
Moreover, we use it as yet another similarity loss for our Domain Separation Networks:

LCorReg
similarity =

∥∥∥Hs
c
>Hs

c −Ht
c
>
Ht

c

∥∥∥2
F

(1)

Our DNS with CorReg performs better than both CORAL and CorReg, which is consistent with the
rest of our results.

Table 1: Our main results from the paper with two additional lines for CorReg and DSN with CorReg.
Model MNIST to Synth Digits to SVHN to Synth Signs to

MNIST-M SVHN MNIST GTSRB
Source-only 56.6 (52.2) 86.7 (86.7) 59.2 (54.9) 85.1 (79.0)
CORAL [5] 57.7 85.2 63.1 86.9
CorReg (Ours) 62.06 87.33 69.20 90.75
MMD [6, 3] 76.9 88.0 71.1 91.1
DANN [1] 77.4 (76.6) 90.3 (91.0) 70.7 (73.8) 92.9 (88.6)
DSN w/ MMD (ours) 80.5 88.5 72.2 92.6
DSN w/ DANN (ours) 83.2 91.2 82.7 93.1
Target-only 98.7 92.4 99.5 99.8

3 Network Topologies and Optimal Parameters

Since we used different network topologies for our domain adaptation scenarios, there was not enough
space to include these in the main paper. We present the exact topologies used in Figures 2–5.

Similarly, we list here all hyperparameters that are important for total reproducibility of all our results.
For CORAL, the SVM penalty parameter that was optimized based on the validation set for each of
our domain adaptation scenarios: 1e−4 for “MNIST to MNIST-M”, “Synth Digits to SVHN”, “Synth
Signs to GTSRB”, and 1e−3 for “SVHN to MNIST”. For MMD we use 19 RBF kernels with the
following standard deviation parameters:

σ = [10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 103, 104, 105, 106]

and equal η weights. We use learning rate between [0.01, 0.015] and γ ∈ [0.1, 0.3]. For DANN
we use learning rate between [0.01, 0.015] and γ ∈ [0.15, 0.25]. For DSN w/ DANN and DSN w/
MMD we use a constant initial learning rate of 0.01 use the hyperparameters in the range of: α ∈
[0.01, 0.15], β ∈ [0.05, 0.075], γ ∈ [0.25, 0.3], whereas for DNS w/ CorReg we use γ ∈ [20, 100].
For the GTSRB experiment we use α ∈ [0.01, 0.015]. In all cases we use an exponential decay of
0.95 on the learning rate every 20, 000 iterations. For the LINEMOD experiments we use ξ = 0.125.

2



max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x32
ReLU

conv
5x5x48
ReLU

FC 100 units
ReLU

FC 100 units
ReLU

FC 300 units
ReLU

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x32
ReLU

conv
5x5x64
ReLU

conv
5x5x16
ReLU

conv
5x5x16
ReLU

conv
3x3x16
ReLU

conv
3x3x3

FC 100 units
ReLU

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x32
ReLU

conv
5x5x64
ReLU

reshape
10x10x3

upsampling
32x32x16

private target encoder

private source encoder

shared encoder Ec(·; θc)Ec(·; θc)

FC 100 units
ReLU

FC 10 units
softmax

Ep(·; θp)Ep(·; θp)tt

Ep(·; θp)Ep(·; θp)ss

shared decoder D(·; θd)D(·; θd)

classifier G(·; θc)G(·; θc)

FC 100 units
ReLU

FC 1 unit

Z(·; θz)Z(·; θz)domain adversarial network

gradient 
reversal layer

t

s

Figure 2: The network topology for “MNIST to MNIST-M”. The green blocks denote convolutional
layers, the red pooling layers, the blue fully connected ones, and the yellow upsampling ones.

max-pool 3x3
2x2 stride

max-pool 3x3
2x2 stride

conv
5x5x64
ReLU

conv
5x5x64
ReLU

FC 3072 units
ReLU

FC 3072 units
ReLU

FC 300 units
ReLU

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x32
ReLU

conv
5x5x64
ReLU

conv
5x5x16
ReLU

conv
5x5x16
ReLU

conv
3x3x16
ReLU

conv
3x3x3

FC 3072 units
ReLU

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x32
ReLU

conv
5x5x64
ReLU

reshape
10x10x3

upsampling
32x32x16

private target encoder

private source encoder

shared encoder Ec(·; θc)Ec(·; θc)

FC 2048 units
ReLU

FC 10 units
softmax

shared decoder D(·; θd)D(·; θd)

FC 100 units
ReLU

FC 1 unit

Z(·; θz)Z(·; θz)domain adversarial network

tt

classifier G(·; θc)G(·; θc)

gradient 
reversal layer

Ep(·; θp)Ep(·; θp)
t

Ep(·; θp)Ep(·; θp)ss s

Figure 3: The network topology for the “Synth SVHN to SVHN” and “SVHN to MNIST” experiments.
The green blocks denote convolutional layers, the red pooling layers, the blue fully connected ones,
and the yellow upsampling ones.

3



max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x96
ReLU

conv
3x3x144
ReLU

conv
5x5x256
ReLU

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x96
ReLU

conv
3x3x144
ReLU

conv
5x5x256
ReLU

max-pool 2x2
2x2 stride

conv
5x5x256
ReLU

conv
3x3x32
ReLU

conv
3x3x32
ReLU

conv
3x3x3

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x96
ReLU

conv
5x5x144
ReLU

upsampling
20x20x32

conv
3x3x16
ReLU

upsampling
40x40x32

private target encoder

private source encoder

shared encoder Ec(·; θc)Ec(·; θc)

shared decoder D(·; θd)D(·; θd)

FC 512 units
ReLU

FC 43 units
softmax

classifier G(·; θc)G(·; θc)

Ep(·; θp)Ep(·; θp)tt

Ep(·; θp)Ep(·; θp)ss

FC 100 units
ReLU

FC 1 unit

Z(·; θz)Z(·; θz)domain adversarial network

gradient 
reversal layer

t

s

Figure 4: The network topology for “Synth Signs to GTSRB”. The green blocks denote convolutional
layers, the red pooling layers, the blue fully connected ones, and the yellow upsampling ones.

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x32
ReLU

conv
3x3x64
ReLU

conv
5x5x32
ReLU

conv
5x5x32
ReLU

conv
3x3x4

upsampling
16x16x32

conv
5x5x32
ReLU

upsampling
32x32x32

upsampling
64x54x32

private target encoder

private source encoder

shared encoder Ec(·; θc)Ec(·; θc)

shared decoder D(·; θd)D(·; θd)

FC 512 units
ReLU

FC 600 units
ReLU

FC 128 units
ReLU

FC 11 units softmax

task specific network G(·; θc)G(·; θc)

Ep(·; θp)Ep(·; θp)tt

Ep(·; θp)Ep(·; θp)ss

FC 100 units
ReLU

FC 1 unit

Z(·; θz)Z(·; θz)domain adversarial network

gradient 
reversal layer

t

s

FC 128 units
ReLU

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x32
ReLU

conv
5x5x64
ReLU

FC 128 units
ReLU

max-pool 2x2
2x2 stride

max-pool 2x2
2x2 stride

conv
5x5x32
ReLU

conv
5x5x64
ReLU

FC 4 units / L2 Normalization

Figure 5: The network topology for “Synthetic Objects to Linemod”. The green blocks denote
convolutional layers, the red pooling layers, the blue fully connected ones, and the yellow upsampling
ones.

4



References
[1] Y. Ganin et al. . Domain-Adversarial Training of Neural Networks. JMLR, 17(59):1–35, 2016.
[2] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. CNS-TR-2007-001, 2007.
[3] M. Long and J. Wang. Learning transferable features with deep adaptation networks. ICML, 2015.
[4] K. Saenko et al. . Adapting visual category models to new domains. In ECCV. Springer, 2010.
[5] B. Sun, J. Feng, and K. Saenko. Return of frustratingly easy domain adaptation. In AAAI. 2016.
[6] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell. Deep domain confusion: Maximizing for

domain invariance. Preprint arXiv:1412.3474, 2014.

5


	Office Dataset Criticism
	Correlation Regularization
	Network Topologies and Optimal Parameters

