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1 Suitability of Loss Functions

In this section, we present the suitability of the loss functions for Hinge, smooth Hinge, and Logistic
for classification and ¢, and e-insensitive for regression. We prove that these losses satisfy the
condition: there exists a positive constant A such that |V, (y,0)| < A, Yy, o. For each loss, we
show its two forms used in the paper w.r.t o and w.

Hinge loss
! (y,0) = max (0,1 — yo)
(W z,y) = max (0,1 —yw ' ® (z))
) yo<1y

‘V l(y7 o) = |Iyo<1| <1=A
Logistic loss
l(y,0) =log (1+e %)
l(w,z,y) =log (1 + e_waé(m))

—yeY°
ol (y,0) = —o—
Vol (y,0) = ==
V.l R S
‘ o (y70)|_‘€—yo+l‘< -
Smooth Hinge loss [4]
0 if yo>1

I(y,0)=¢1—-yo—35 ifyo<l—7

£ (1-yo)® otherwise
0 ifyw'® (z) > 1

l(w,z,y) =S 1—yw'®(x)—F ifyw ®(x)<1l-7
=(1-—yw'® (:c))2 otherwise

Vol (,0) = —Iiyoc1—r3y + 7 'Ii—r<yoct (Yo — 1)y

Vol (4, 0)| = Liyoci—ry| + |77 Ti—r<yo<t (yo — 1)

< ‘H{yo<177—}’ + 77 Limr<yoca| 1= A
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£ loss

L(y,0) =y — ol
(vay) ly—w'®(z)|
ol (y, )fSlgn(O*y)

|Vl( o) <

e-insensitive loss
l(y,0) = max (0, |y — of —¢)
l(w,z,y) = max (0, T ( (z)] —¢)
\Y l(y7 ) - ]I\y o\>551gn (0 - y)
Vol (y,0)| <1=A4

We note that I 4 denotes the indicator function which renders 1 if A is true and 0 otherwise.

2 Proofs
Lemma 1. After the iteration t, we have the following representations
t
W= a;(1-B;) () (1)
j=1
t
Wy = Zajﬁjz(:cj) )
=1
t
W = Zajq)(a:j) (3)
j=1

where aj = =1Vl (yj,f]h (:c])) ,Vi=1,.. . tandn = 5;

Proof. Since if 3; = 1, we perform the budget maintenance procedure and move the current vector

to the random-feature space, we have the representations in Eqs (TJ2I3). In addition at the iteration j,

® (x;) arrives with the initial coefficient iy = —1; Vol (5, f1' ( )I After the iteration t > j, this

coefficient becomes

t=1t-2 j 1
t t—17j+1)N

Qj = ol (yuff (w_])) = - Vol (yj’fj}‘L (wj))

O

Theorem 2. With a probability at least 1 — 28 (M) exp (7%) where dx specifies the
diameter of the compact set X, we have
l)’ft (= )’<€f0rallt>0andw62€

.o — 1

ii)E [|ft (x) — f (m)H < A1 )e 23:1 E [a?] /2 ,u}/2 where j1; = p (B; = 1).

Let us deﬁp§ a random map 2 : R? — R2?P where 2 (z) = ﬁ [cos (w] z) , sin (w}xﬂil and
W1,y ey WD Y (O, U’QI) for every = € R?. We would like to restate Claim 1 in [3].

Let M be a compact subset of R? with diameter diam (M). Then, for the random mapping z (.), we
have

(L R (ne) 272 (o) <o) 2o (P ) oy (2DE )



2

Tz—x

’ —
where K (J:,a: ) =e 207

Proof. We denote
D

w= (w1, ...,wp) ~py (W) = HN(wi|O,a_21)

i=1

K (az, x/) =z (x)T z (x/> =D ! i (cos (wlTx) cos (w;x,) + sin (wlTx) sin (w:x))

We further denote

g(w)= sugM ‘K (m,x/) - K (m,x/)
G.={w:gw) <A '\e}

It is certain that P, (G.) > 1 — 6 where 6 = 28 (Md"j\i";(M)) exp (%) and for every w € G,

and x, 2’ € M we have
'K (az,x/) -K (m,a/)‘ <A ')e

We now turn back to Theorem 2] It appears that
t
@) = 1 @) < 3 Byl K (5,2) = K (w5,2)
j=1
Therefore, for every w € G we have

|fe (@) = fI (@) < AN Bl

j=1

Let us denote s = (z1,41) , ..., (¢, y¢). Taking expectation of the above inequality w.r.t s, we gain
forall w € G,

E. [|f: (2) — £ ()] < A7Ae 3B, [87) 7B, [03]?

j=1
! 1/2
< A_l)\EZquS [aﬂ /
j=1
It means that
t
- 1/2
Py | Es[|fi (@)= fl(2)]] < A 1)\52qu5 [o7] 2\ >p, (G)>1-16
j=1
O
Lemma 3. The following statement holds for all t
A
Iwell < 5

Proof. Using Lemmal[I] we have

t
wi =y a;®(z;)
j=1



where ai; = = Vol (y;, £ (x5)).
It implies that

t t
A A
ol < Yol 0 < 3 ol < 374 = 4
Jj=1 j=1 j=1
O
Lemma 4. The following statement holds for all t
lg:ll < G =24
where we define g, = AWy + Vil (Wi, @i, yr) = AWy + Vol (s, fr (1))  (24).
Proof. We derive as
A
llgell < Mwell + Vol (g2, fi (1)) @ (24)]] < /\X +A=2A
O

Lemma 5. The following statement holds for all t
E [llw, - w*|*] <w?

2A(1+V/5)

where W = 5

Proof. Recall that g, = Awy + Vil (W, @, y:) = Awy + Vol (ye, fi () © (@) It is obvious
that g; satisfies

E(fﬂmyt) [gt‘wt] =J (Wt)
We have the following if we denote dg; = g; — gf

Wi — w*|* = |we —megy — w*|| = lwe — nege — w* + 1:0g: |

2 2 2 *\ T
= [lwy — w*||* = 2nu9, (e — W)+ 07 gell” — 2079/ 5g¢ + 07 10gell” + 2n¢ (Wi — W*) ' dge

It appears that

0ge = [Vol (Y, fr (x4)) — Vol (yt’ )} o (wt
16g¢]| = |Vol (e, fr (1)) — Vol (yt7ft )| <2
Hence, we obtain
[Wier — wH[? < lwe — w*[|? = 209, (wy — W) + 07 G? + AnfGA + dnf A?

+ 21 [[wi — W] [[0ge ]
Taking conditional expectation w.r.t w; on both sides of the above inequality, we gain
E|[lwitr — W*||2} <E [HWt - W*||2] =20 VT (wi) " (Wi — w*) + 77 G? + 4} G A
+ 4 A% 4 20, E [||wy — w|| |5

* * 1 *
<E [Ilwe = w'I’] +164%07 + 20, [[jws — w*| ga]]] - 7 lwe — w*]|

Here we note that we have used

A A
VT (Wi (we = w") 2 T (wi) = T (W) + 5 [we = w*[[* > 5 [lwi = w||”



Taking expectation on both sides again, we obtain

1

/2
2
1642 4AE [Hwt — W*H }

t—1
E [Iwers = wI’] < S [we - w ] + 5oy + X
1/
_tolg o] 1647 4B [Jwe— ]
= {Hwt_w ”}+ e * Y

2A(1+\/3)
X

Choose W = , we have if E [||wt - w*||2} < W2 then E [||wt+1 - w*||2} <w2. O

Theorem 6. The following statement guarantees for all T

T

< 8A2 (log (T) + 1) +1WZE [Mf]l/Z

E[J (Wr) - J (w")] < - AT T 4

]' *
72T (W) =T (w")

where W = % Zle wi, My = Vol (y, ft (1)) — Vol (yt, fr (a:t))

Proof. Recall that g; = Awy + Vil (We, @1, yt) = Awy + Vol (ye, fi (x4)) @ (a¢). It is obvious
that g, satisfies
E(mt’yt) [gt|wt] =VwJ (W)

We have the following if we denote dg; = g; — g@
[Wepr — w*I* = ||we — meglt — w*|| = | W — nege — w* + 00>
= [lwe = w** = 2mg,” (we —w*) + 17 lg:l* — 2079, Sge + 7 159:]1* + 26 (wi — w*) " 641
It appears that
691 = [Vol (ye, fr (1)) — (ye, [ ()] @ (xt
| <2

Vol
||5gtH = |Vol (yt7ft (wt)) Vol (ytuft )
Hence, we obtain
[Wert — w*|* < lwe — w*[” = 209, (wy — W*) + 17G? + 4p?G A + 4n} A?
+ 2 [we — W[ [0l
P = wepr — W
2n:

[we —w

g (wy —w*) < +8A%, + [lwy — w*| [|dg.|

Taking conditional expectation w.r.t w; on both sides, we gain
2
w; — wW*
Iwe—w”]
27]75

A
T (we) =T (W) + 5 llwe — w*<E

lwiesr — w*||?

Vw T(w,—w*) <E
J (wy) (wy—w") < o

2
[wi —w*|

[wig1 — w*|*
2m, 2m,
+8A4% + E[lwe — w*| [|6g¢]
Taking expectation on both sides once again, we achieve
A A
E[T (W) =T (W) 5 (t = DE [[we —w*|[*] = StE [[iwis — |’
+8A% + El|we — w*| [[g:]

E17 (w) ~ 7 (W) < 5 (6= DE [Iwe = w[2] = S8 [Jwes = w|]

—E

847 1 E [we —w ] E [10g]

+8A%, + Ellwe — w*|[[ag|]



Taking sum the above inequality when ¢t = 1, ..., T', we obtain

o T T
SR MET LI

t=1 t=1

8A2(logT+1) 1 d 971/2
< -0 =2 @ 7 —
< ST + TszlE [M{]

IN

1 T
B |7 2T () =T ()

Here we note that

16g¢ll = || [Vol (e, fr (0)) = Vol (e, £ (®0))] @ (24)|| = | M

The last conclusion comes from the convexity of the function 7 (.). O

Theorem 7. Assume that | (y, o) is a y-strongly smooth loss function. With a probability at least
1 — 6, the following statements hold

i) E[J(Wr)—JT (W) < E [% Zthl J(wi) =T (w*)} < % +
o 1/2

7Wne it (@)

DELT (V1) = T ()] B [F 50, () — 7 ()] < ST L

Ad 2_2
where § = 28 (70“)\5 X) exp (774(1131/)-25)/12)'

Proof. From the smoothness of the loss function, we have
|Vol (e, Ji (1)) — Vol (yta fth (-’Bt))| <7 |ft () — fth (ict)|

Referring to Lemma with a probability at least 1 — 28 (%) exp (—%) =1—-0we

have

t t t
_ _ A €
M| < 7ATIAD o] B < vA 1)\gzﬁﬁj:%25j
j=1 j=1
2

j=1
2.2 t 2.2 1 2.2 t
2 _ V€ e 2 V€ . . o
My < e ]2:1 Bi| < ” jE:1 Bi = " jé:l B; (since B; =0 or 1)

E [A2 <ﬁ : .
[ t]— P ZMJ
j=1

and |M;| < ~e. Therefore, with a probability at least 1 — 6 we achieve

T
BT (Wr) ~ T (W] <E | 23T (w) <w*)]

t /2
842 (logT +1) 1 T (E Si=1 uj)
< = 7 |/]/ = - 7
= AT e

1/2
8A% (logT+1) 1 DS
<2 Ves T) — Lej=11"
< T + 7 Woe > ;



and

1
ElT (Wr) =T (w9 <E sz(wt) -J (")
t=1
8A2(logT+1) 1
S—— 7  F TW;’%
8A2% (logT + 1)
< 7 + Wne

3 Computational Complexities of DualSGD and FOGD

We compare the computational complexities of our proposed DualSGD and Fourier Online Gradient
Descent (FOGD) [2]]. Recall that M and D denote the dimensions of input space and feature space,
and B the budget size. There are four operators: (i) random feature mapping; (ii) kernel function;
(iii) sorting coefficients of support vectors and (iv) prediction. The random feature mapping first
projects the input data vector to random feature space with O (M D) computational complexity, and
then compute sin, cos on the random feature dimension with O (2D x 2logny log2 n) where n is
the number of bits accuracy [[1]. The kernel function, sorting coefficients and prediction operate in
O (MB), O (Blog B) and O (D) complexity, respectively. The FOGD performs random feature
mapping and prediction whilst the DualSGD performs all four operators.

Let D; and D denote the number of random features of FOGD and DualSGD. The computational
complexities of FOGD and DualSGD reads

Orocp = O (M Dy + 2Dy % 28" nlog? n + Dy) = U (M Dy + 2Dy % 2'°8"nlog? n + D)
Obuaisep = O (M Dy + 2Dy * 2'°8™nlog? n + Dy + M B + Blog B)
=V (MDs + 2D, % 2°¢"nlog”> n + Dy + M B + Blog B)
where U, V' are the number of iterations.

Taking the subtraction of Opogp and Opyascp, We obtain:

O = Orocp — Opuaisp
=M (UDy —VDs— B) + (UD; — VD) (2%2°8"nlog” n + 1) — Blog B

According Fig. 1 in the introduction section, D1 > Dy and D; > B, thus D1 — Dy > B. In
addition, we assume that U = V' and normally use double-precision floating-point with n = 64 (bits)
for storing and computing real number, thus 2 * 2!°2"n log? n + 1 > log B. Finally, we can see that
O > 0, thus the computational complexity of DualSGD, in practice, is significantly lower than that
of FOGD.
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