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Abstract

Semidefinite programs (SDPs) can be solved in polynomial time by interior point
methods, but scalability can be an issue. To address this shortcoming, over a
decade ago, Burer and Monteiro proposed to solve SDPs with few equality con-
straints via rank-restricted, non-convex surrogates. Remarkably, for some appli-
cations, local optimization methods seem to converge to global optima of these
non-convex surrogates reliably. Although some theory supports this empirical
success, a complete explanation of it remains an open question. In this paper, we
consider a class of SDPs which includes applications such as max-cut, community
detection in the stochastic block model, robust PCA, phase retrieval and synchro-
nization of rotations. We show that the low-rank Burer–Monteiro formulation of
SDPs in that class almost never has any spurious local optima.

This paper was corrected on April 9, 2018. Theorems 2 and 4 had the as-
sumption that M (1) is a manifold. From this assumption it was stated that
TYM = {Ẏ ∈ Rn×p : A(Ẏ Y >+ Y Ẏ >) = 0}, which is not true in general.
To ensure this identity, the theorems now make the stronger assumption that gra-
dients of the constraintsA(Y Y >) = b are linearly independent for all Y inM. All
examples treated in the paper satisfy this assumption. Appendix D gives details.

1 Introduction

We consider semidefinite programs (SDPs) of the form

f∗ = min
X∈Sn×n

〈C,X〉 subject to A(X) = b, X � 0, (SDP)

where 〈C,X〉 = Tr(C>X), C ∈ Sn×n is the symmetric cost matrix, A : Sn×n → Rm is a lin-
ear operator capturing m equality constraints with right hand side b ∈ Rm and the variable X is
symmetric, positive semidefinite. Interior point methods solve (SDP) in polynomial time [Nesterov,
2004]. In practice however, for n beyond a few thousands, such algorithms run out of memory (and
time), prompting research for alternative solvers.

?The first two authors contributed equally.
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If (SDP) has a compact search space, then it admits a global optimum of rank at most r, where
r(r+1)

2 ≤ m [Pataki, 1998, Barvinok, 1995]. Thus, if one restricts the search space of (SDP) to
matrices of rank at most p with p(p+1)

2 ≥ m, then the globally optimal value remains unchanged.
This restriction is easily enforced by factorizing X = Y Y >where Y has size n × p, yielding an
equivalent quadratically constrained quadratic program:

q∗ = min
Y ∈Rn×p

〈CY , Y 〉 subject to A(Y Y >) = b. (P)

In general, (P) is non-convex, making it a priori unclear how to solve it globally. Still, the benefits
are that it is lower dimensional than (SDP) and has no conic constraint. This has motivated Burer
and Monteiro [2003, 2005] to try and solve (P) using local optimization methods, with surprisingly
good results. They developed theory in support of this observation (details below). About their
results, Burer and Monteiro [2005, §3] write (mutatis mutandis):

“How large must we take p so that the local minima of (P) are guaranteed to map
to global minima of (SDP)? Our theorem asserts that we need only1 p(p+1)

2 > m
(with the important caveat that positive-dimensional faces of (SDP) which are
‘flat’ with respect to the objective function can harbor non-global local minima).”

The caveat—the existence or non-existence of non-global local optima, or their potentially adverse
effect for local optimization algorithms—was not further discussed.

In this paper, assuming p(p+1)
2 > m, we show that if the search space of (SDP) is compact and if the

search space of (P) is a regularly defined smooth manifold, then, for almost all cost matrices C, if Y
satisfies first- and second-order necessary optimality conditions for (P), then Y is a global optimum
of (P) and, since p(p+1)

2 ≥ m, X = Y Y > is a global optimum of (SDP). In other words, first- and
second-order necessary optimality conditions for (P) are also sufficient for global optimality—an
unusual theoretical guarantee in non-convex optimization.

Notice that this is a statement about the optimization problem itself, not about specific algorithms.
Interestingly, known algorithms for optimization on manifolds converge to second-order critical
points,2 regardless of initialization [Boumal et al., 2016].

For the specified class of SDPs, our result improves on those of [Burer and Monteiro, 2005] in
two important ways. Firstly, for almost all C, we formally exclude the existence of spurious local
optima.3 Secondly, we only require the computation of second-order critical points of (P) rather
than local optima (which is hard in general [Vavasis, 1991]). Below, we make a statement about
computational complexity, and we illustrate the practical efficiency of the proposed methods through
numerical experiments.

SDPs which satisfy the compactness and smoothness assumptions occur in a number of applica-
tions including Max-Cut, robust PCA, Z2-synchronization, community detection, cut-norm approx-
imation, phase synchronization, phase retrieval, synchronization of rotations and the trust-region
subproblem—see Section 4 for references.

A simple example: the Max-Cut problem

Given an undirected graph, Max-Cut is the NP-hard problem of clustering the n nodes of this graph
in two classes, +1 and −1, such that as many edges as possible join nodes of different signs. If C is
the adjacency matrix of the graph, Max-Cut is expressed as

max
x∈Rn

1

4

n∑
i,j=1

Cij(1− xixj) s.t. x21 = · · · = x2n = 1. (Max-Cut)

1The condition on p and m is slightly, but inconsequentially, different in [Burer and Monteiro, 2005].
2Second-order critical points satisfy first- and second-order necessary optimality conditions.
3Before Prop. 2.3 in [Burer and Monteiro, 2005], the authors write: “The change of variables X = Y Y >

does not introduce any extraneous local minima.” This is sometimes misunderstood to mean (P) does not have
spurious local optima, when it actually means that the local optima of (P) are in exact correspondence with the
local optima of “(SDP) with the extra constraint rank(X) ≤ p,” which is also non-convex and thus also liable
to having local optima. Unfortunately, this misinterpretation has led to some confusion in the literature.
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Introducing the positive semidefinite matrix X = xx>, both the cost and the constraints may be ex-
pressed linearly in terms of X . Ignoring that X has rank 1 yields the well-known convex relaxation
in the form of a semidefinite program (up to an affine transformation of the cost):

min
X∈Sn×n

〈C,X〉 s.t. diag(X) = 1, X � 0. (Max-Cut SDP)

If a solutionX of this SDP has rank 1, thenX = xx>for some xwhich is then an optimal cut. In the
general case of higher rank X , Goemans and Williamson [1995] exhibited the celebrated rounding
scheme to produce approximately optimal cuts (within a ratio of .878) from X .

The corresponding Burer–Monteiro non-convex problem with rank bounded by p is:

min
Y ∈Rn×p

〈CY , Y 〉 s.t. diag(Y Y >) = 1. (Max-Cut BM)

The constraint diag(Y Y >) = 1 requires each row of Y to have unit norm; that is: Y is a point on the
Cartesian product of n unit spheres in Rp, which is a smooth manifold. Furthermore, all X feasible
for the SDP have identical trace equal to n, so that the search space of the SDP is compact. Thus,
our results stated below apply:

For p =
⌈√

2n
⌉
, for almost all C, even though (Max-Cut BM) is non-convex, any

local optimum Y is a global optimum (and so isX = Y Y >), and all saddle points
have an escape (the Hessian has a negative eigenvalue).

We note that, for p > n/2, the same holds for all C [Boumal, 2015].

Notation

Sn×n is the set of real, symmetric matrices of size n. A symmetric matrix X is positive semidefinite
(X � 0) if and only if u>Xu ≥ 0 for all u ∈ Rn. For matrices A,B, the standard Euclidean inner
product is 〈A,B〉 = Tr(A>B). The associated (Frobenius) norm is ‖A‖ =

√
〈A,A〉. Id is the

identity operator and In is the identity matrix of size n.

2 Main results

Our main result establishes conditions under which first- and second-order necessary optimality
conditions for (P) are sufficient for global optimality. Under those conditions, it is a fortiori true that
global optima of (P) map to global optima of (SDP), so that local optimization methods on (P) can
be used to solve the higher-dimensional, cone-constrained (SDP).

We now specify the necessary optimality conditions of (P). Under the assumptions of our main
result below (Theorem 2), the search space

M =Mp = {Y ∈ Rn×p : A(Y Y >) = b} (1)

is a smooth and compact manifold of dimension np−m. As such, it can be linearized at each point
Y ∈M by a tangent space, differentiating the constraints [Absil et al., 2008, eq. (3.19)]:

TYM = {Ẏ ∈ Rn×p : A(Ẏ Y >+ Y Ẏ >) = 0}. (2)

Endowing the tangent spaces ofM with the (restricted) Euclidean metric 〈A,B〉 = Tr(A>B) turns
M into a Riemannian submanifold of Rn×p. In general, second-order optimality conditions can
be intricate to handle [Ruszczyński, 2006]. Fortunately, here, the smoothness of both the search
space (1) and the cost function

f(Y ) = 〈CY , Y 〉 (3)

make for straightforward conditions. In spirit, they coincide with the well-known conditions for un-
constrained optimization. As further detailed in Appendix A, the Riemannian gradient gradf(Y ) is
the orthogonal projection of the classical gradient of f to the tangent space TYM. The Riemannian
Hessian of f at Y is a similarly restricted version of the classical Hessian of f to the tangent space.
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Definition 1. A (first-order) critical point for (P) is a point Y ∈M such that

gradf(Y ) = 0, (1st order nec. opt. cond.)

where gradf(Y ) ∈ TYM is the Riemannian gradient at Y of f restricted toM. A second-order
critical point for (P) is a critical point Y such that

Hessf(Y ) � 0, (2nd order nec. opt. cond.)

where Hessf(Y ) : TYM → TYM is the Riemannian Hessian at Y of f restricted toM (a sym-
metric linear operator).
Proposition 1. All local (and global) optima of (P) are second-order critical points.

Proof. See [Yang et al., 2014, Rem. 4.2 and Cor. 4.2].

We can now state our main result. In the theorem statement below, “for almost all C” means po-
tentially troublesome cost matrices form at most a (Lebesgue) zero-measure subset of Sn×n, in the
same way that almost all square matrices are invertible. In particular, given any matrix C ∈ Sn×n,
perturbing C to C + σW where W is a Wigner random matrix results in an acceptable cost matrix
with probability 1, for arbitrarily small σ > 0.

Theorem 2. Given constraints A : Sn×n → Rm, b ∈ Rm and p satisfying p(p+1)
2 > m, if

(i) the search space of (SDP) is compact; and

(ii) the search space of (P) is a regularly-defined smooth manifold, in the sense that
A1Y, . . . , AmY are linearly independent in Rn×p for all Y ∈M (see Appendix D),

then for almost all cost matrices C ∈ Sn×n, any second-order critical point of (P) is globally
optimal. Under these conditions, if Y is globally optimal for (P), then the matrix X = Y Y > is
globally optimal for (SDP).

The assumptions are discussed in the next section. The proof—see Appendix A—follows directly
from the combination of two intermediate results:

1. If Y is rank deficient and second-order critical for (P), then it is globally optimal and
X = Y Y > is optimal for (SDP); and

2. If p(p+1)
2 > m, then, for almost all C, every first-order critical Y is rank-deficient.

The first step holds in a more general context, as previously established by Burer and Monteiro
[2003, 2005]. The second step is new and crucial, as it allows to formally exclude the existence of
spurious local optima, generically in C, thus resolving the caveat mentioned in the introduction.

The smooth structure of (P) naturally suggests using Riemannian optimization to solve it [Absil et al.,
2008], which is something that was already proposed by Journée et al. [2010] in the same context.
Importantly, known algorithms converge to second-order critical points regardless of initialization.
We state here a recent computational result to that effect.
Proposition 3. Under the numbered assumptions of Theorem 2, the Riemannian trust-region method
(RTR) [Absil et al., 2007] initialized with any Y0 ∈ M returns in O(1/ε2gεH + 1/ε3H) iterations a
point Y ∈M such that

f(Y ) ≤ f(Y0), ‖gradf(Y )‖ ≤ εg, and Hessf(Y ) � −εH Id .

Proof. Apply the main results of [Boumal et al., 2016] using that f has locally Lipschitz continuous
gradient and Hessian in Rn×p andM is a compact submanifold of Rn×p.

Essentially, each iteration of RTR requires evaluation of one cost and one gradient, a bounded num-
ber of Hessian-vector applications, and one projection from Rn×p toM. In many important cases,
this projection amounts to Gram–Schmidt orthogonalization of small blocks of Y—see Section 4.

Proposition 3 bounds worst-case iteration counts for arbitrary initialization. In practice, a good
initialization point may be available, making the local convergence rate of RTR more informative.
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For RTR, one may expect superlinear or even quadratic local convergence rates near isolated local
minimizers [Absil et al., 2007]. While minimizers are not isolated in our case [Journée et al., 2010],
experiments show a characteristically superlinear local convergence rate in practice [Boumal, 2015].
This means high accuracy solutions can be achieved, as demonstrated in Appendix B.

Thus, under the conditions of Theorem 2, generically in C, RTR converges to global optima. In
practice, the algorithm returns after a finite number of steps, and only approximate second-order
criticality is guaranteed. Hence, it is interesting to bound the optimality gap in terms of the approx-
imation quality. Unfortunately, we do not establish such a result for small p. Instead, we give an
a posteriori computable optimality gap bound which holds for all p and for all C. In the following
statement, the dependence ofM on p is explicit, asMp. The proof is in Appendix A.
Theorem 4. LetR <∞ be the maximal trace of anyX feasible for (SDP). For any p such thatMp

andMp+1 are smooth manifolds (even if p(p+1)
2 ≤ m) and for any Y ∈ Mp, form Ỹ = [Y |0n×1]

inMp+1. The optimality gap at Y is bounded as

0 ≤ 2(f(Y )− f∗) ≤
√
R‖gradf(Y )‖ −Rλmin(Hessf(Ỹ )). (4)

If all feasibleX have the same traceR and there exists a positive definite feasibleX , then the bound
simplifies to

0 ≤ 2(f(Y )− f∗) ≤ −Rλmin(Hessf(Ỹ )) (5)

so that ‖gradf(Y )‖ needs not be controlled explicitly. If p > n, the bounds hold with Ỹ = Y .

In particular, for p = n+ 1, the bound can be controlled a priori: approximate second-order critical
points are approximately optimal, for any C.4

Corollary 5. Under the assumptions of Theorem 4, if p = n + 1 and Y ∈ M satisfies both
‖gradf(Y )‖ ≤ εg and Hessf(Y ) � −εH Id, then Y is approximately optimal in the sense that

0 ≤ 2(f(Y )− f∗) ≤
√
Rεg +RεH .

Under the same condition as in Theorem 4, the bound can be simplified to RεH .

This works well with Proposition 3. For any p, equation (4) also implies the following:

λmin(Hessf(Ỹ )) ≤ −2(f(Y )− f∗)−
√
R‖gradf(Y )‖

R
.

That is, for any p and any C, an approximate critical point Y inMp which is far from optimal maps
to a comfortably-escapable approximate saddle point Ỹ inMp+1.

This suggests an algorithm as follows. For a starting value of p such that Mp is a manifold, use
RTR to compute an approximate second-order critical point Y . Then, form Ỹ in Mp+1 and test
the left-most eigenvalue of Hessf(Ỹ ).5 If it is close enough to zero, this provides a good bound
on the optimality gap. If not, use an (approximate) eigenvector associated to λmin(Hessf(Ỹ )) to
escape the approximate saddle point and apply RTR from that new point inMp+1; iterate. In the
worst-case scenario, p grows to n + 1, at which point all approximate second-order critical points
are approximate optima. Theorem 2 suggests p =

⌈√
2m
⌉

should suffice for C bounded away from
a zero-measure set. Such an algorithm already features with less theory in [Journée et al., 2010]
and [Boumal, 2015]; in the latter, it is called the Riemannian staircase, for it lifts (P) floor by floor.

Related work

Low-rank approaches to solve SDPs have featured in a number of recent research papers. We high-
light just two which illustrate different classes of SDPs of interest.

Shah et al. [2016] tackle SDPs with linear cost and linear constraints (both equalities and inequal-
ities) via low-rank factorizations, assuming the matrices appearing in the cost and constraints are

4With p = n+ 1, problem (P) is no longer lower dimensional than (SDP), but retains the advantage of not
involving a positive semidefiniteness constraint.

5It may be more practical to test λmin(S) (14) rather than λmin(Hessf). Lemma 7 relates the two.
See [Journée et al., 2010, §3.3] to construct escape tangent vectors from S.
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positive semidefinite. They propose a non-trivial initial guess to partially overcome non-convexity
with great empirical results, but do not provide optimality guarantees.

Bhojanapalli et al. [2016a] on the other hand consider the minimization of a convex cost function
over positive semidefinite matrices, without constraints. Such problems could be obtained from
generic SDPs by penalizing the constraints in a Lagrangian way. Here too, non-convexity is partially
overcome via non-trivial initialization, with global optimality guarantees under some conditions.

Also of interest are recent results about the harmlessness of non-convexity in low-rank matrix com-
pletion [Ge et al., 2016, Bhojanapalli et al., 2016b]. Similarly to the present work, the authors there
show there is no need for special initialization despite non-convexity.

3 Discussion of the assumptions

Our main result, Theorem 2, comes with geometric assumptions on the search spaces of both (SDP)
and (P) which we now discuss. Examples of SDPs which fit the assumptions of Theorem 2 are
featured in the next section.

The assumption that the search space of (SDP),

C = {X ∈ Sn×n : A(X) = b,X � 0}, (6)

is compact works in pair with the assumption p(p+1)
2 > m as follows. For (P) to reveal the global

optima of (SDP), it is necessary that (SDP) admits a solution of rank at most p. One way to ensure
this is via the Pataki–Barvinok theorems [Pataki, 1998, Barvinok, 1995], which state that all extreme
points of C have rank r bounded as r(r+1)

2 ≤ m. Extreme points are faces of dimension zero (such
as vertices for a cube). When optimizing a linear cost function 〈C,X〉 over a compact convex set C,
at least one extreme point is a global optimum [Rockafellar, 1970, Cor. 32.3.2]—this is not true in
general if C is not compact. Thus, under the assumptions of Theorem 2, there is a point Y ∈M such
that X = Y Y > is an optimal extreme point of (SDP); then, of course, Y itself is optimal for (P).

In general, the Pataki–Barvinok bound is tight, in that there exist extreme points of rank up to that
upper-bound (rounded down)—see for example [Laurent and Poljak, 1996] for the Max-Cut SDP
and [Boumal, 2015] for the Orthogonal-Cut SDP. Let C (the cost matrix) be the negative of such an
extreme point. Then, the unique optimum of (SDP) is that extreme point, showing that p(p+1)

2 ≥ m
is necessary for (SDP) and (P) to be equivalent for all C. We further require a strict inequality
because our proof relies on properties of rank deficient Y ’s inM.

The assumption that M (eq. (1)) is a regularly-defined smooth manifold works in pair with the
ambition that the result should hold for (almost) all cost matrices C. The starting point is that,
for a given non-convex smooth optimization problem—even a quadratically constrained quadratic
program—computing local optima is hard in general [Vavasis, 1991]. Thus, we wish to restrict our
attention to efficiently computable points, such as points which satisfy first- and second-order KKT
conditions for (P)—see [Burer and Monteiro, 2003, §2.2] and [Ruszczyński, 2006, §3]. This only
makes sense if global optima satisfy the latter, that is, if KKT conditions are necessary for opti-
mality. A global optimum Y necessarily satisfies KKT conditions if constraint qualifications (CQs)
hold at Y [Ruszczyński, 2006]. The standard CQs for equality constrained programs are Robin-
son’s conditions or metric regularity (they are here equivalent). They read as follows, assuming
A(Y Y >)i =

〈
Ai, Y Y

>〉 for some matrices A1, . . . , Am ∈ Sn×n:

CQs hold at Y if A1Y, . . . , AmY are linearly independent in Rn×p. (7)

Considering almost all C, global optima could, a priori, be almost anywhere in M. To simplify,
we require CQs to hold at all Y ’s in M rather than only at the (unknown) global optima. Under
this condition, the constraints are independent at each point and ensureM is a smooth embedded
submanifold of Rn×p of codimension m [Absil et al., 2008, Prop. 3.3.3]. Indeed, tangent vectors
Ẏ ∈ TYM (2) are exactly those vectors that satisfy 〈AiY , Ẏ 〉 = 0: under CQs, the AiY ’s form a
basis of the normal space to the manifold at Y .

Finally, we note that Theorem 2 only applies for almost all C, rather than all C. To justify this
restriction, if indeed it is justified, one should exhibit a matrix C that leads to suboptimal second-
order critical points while other assumptions are satisfied. We do not have such an example. We do
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observe that (Max-Cut SDP) on cycles of certain even lengths has a unique solution of rank 1, while
the corresponding (Max-Cut BM) with p = 2 has suboptimal local optima (strictly, if we quotient
out symmetries). This at least suggests it is not enough, for generic C, to set p just larger than
the rank of the solutions of the SDP. (For those same examples, at p = 3, we consistently observe
convergence to global optima.)

4 Examples of smooth SDPs

The canonical examples of SDPs which satisfy the assumptions in Theorem 2 are those where the
diagonal blocks of X or their traces are fixed. We note that the algorithms and the theory continue
to hold for complex matrices, where the set of Hermitian matrices of size n is treated as a real
vector space of dimension n2 (instead of n(n+1)

2 in the real case) with inner product 〈H1, H2〉 =

<{Tr(H∗1H2)}, so that occurrences of p(p+1)
2 are replaced by p2.

Certain concrete examples of SDPs include:
min
X
〈C,X〉 s.t. Tr(X) = 1, X � 0; (fixed trace)

min
X
〈C,X〉 s.t. diag(X) = 1, X � 0; (fixed diagonal)

min
X
〈C,X〉 s.t. Xii = Id, X � 0. (fixed diagonal blocks)

Their rank-constrained counterparts read as follows (matrix norms are Frobenius norms):
min

Y : n×p
〈CY , Y 〉 s.t. ‖Y ‖ = 1; (sphere)

min
Y : n×p

〈CY , Y 〉 s.t. Y >= [y1 · · · yn] and ‖yi‖ = 1 for all i; (product of spheres)

min
Y : qd×p

〈CY , Y 〉 s.t. Y >= [Y1 · · · Yq] and Y >i Yi = Id for all i. (product of Stiefel)

The first example has only one constraint: the SDP always admits an optimal rank 1 solution, cor-
responding to an eigenvector associated to the left-most eigenvalue of C. This generalizes to the
trust-region subproblem as well.

For the second example, in the real case, p = 1 forces yi = ±1, allowing to capture combinatorial
problems such as Max-Cut [Goemans and Williamson, 1995], Z2-synchronization [Javanmard et al.,
2016] and community detection in the stochastic block model [Abbe et al., 2016, Bandeira et al.,
2016a]. The same SDP is central in a formulation of robust PCA [McCoy and Tropp, 2011] and
is used to approximate the cut-norm of a matrix [Alon and Naor, 2006]. Theorem 2 states that for
almost all C, p =

⌈√
2n
⌉

is sufficient. In the complex case, p = 1 forces |yi| = 1, allowing to
capture problems where phases must be recovered; in particular, phase synchronization [Bandeira
et al., 2017, Singer, 2011] and phase retrieval via Phase-Cut [Waldspurger et al., 2015]. For almost
all C, it is then sufficient to set p = b

√
n+ 1c.

In the third example, Y of size n × p is divided in q slices of size d × p, with p ≥ d. Each
slice has orthonormal rows. For p = d, the slices are orthogonal (or unitary) matrices, allowing
to capture Orthogonal-Cut [Bandeira et al., 2016b] and the related problems of synchronization of
rotations [Wang and Singer, 2013] and permutations. Synchronization of rotations is an important
step in simultaneous localization and mapping, for example. Here, it is sufficient for almost all C to
let p =

⌈√
d(d+ 1)q

⌉
.

SDPs with constraints that are combinations of the above examples can also have the smoothness
property; the right-hand sides 1 and Id can be replaced by any positive definite right-hand sides by a
change of variables. Another simple rule to check is if the constraint matrices A1, . . . , Am ∈ Sn×n
such that A(X)i = 〈Ai, X〉 satisfy AiAj = 0 for all i 6= j (note that this is stronger than requiring
〈Ai, Aj〉 = 0), see [Journée et al., 2010].

5 Conclusions

The Burer–Monteiro approach consists in replacing optimization of a linear function 〈C,X〉 over
the convex set {X � 0 : A(X) = b} with optimization of the quadratic function 〈CY , Y 〉 over the

7



non-convex set {Y ∈ Rn×p : A(Y Y >) = b}. It was previously known that, if the convex set is
compact and p satisfies p(p+1)

2 ≥ m where m is the number of constraints, then these two problems
have the same global optimum. It was also known from [Burer and Monteiro, 2005] that spurious
local optima Y , if they exist, must map to special faces of the compact convex set, but without
statement as to the prevalence of such faces or the risk they pose for local optimization methods.
In this paper we showed that, if the set of X’s is compact and the set of Y ’s is a regularly-defined
smooth manifold, and if p(p+1)

2 > m, then for almost all C, the non-convexity of the problem in
Y is benign, in that all Y ’s which satisfy second-order necessary optimality conditions are in fact
globally optimal.

We further reference the Riemannian trust-region method [Absil et al., 2007] to solve the problem in
Y , as it was recently guaranteed to converge from any starting point to a point which satisfies second-
order optimality conditions, with global convergence rates [Boumal et al., 2016]. In addition, for p =
n + 1, we guarantee that approximate satisfaction of second-order conditions implies approximate
global optimality. We note that the 1/ε3 convergence rate in our results may be pessimistic. Indeed,
the numerical experiments clearly show that high accuracy solutions can be computed fast using
optimization on manifolds, at least for certain applications.

Addressing a broader class of SDPs, such as those with inequality constraints or equality constraints
that may violate our smoothness assumptions, could perhaps be handled by penalizing those con-
straints in the objective in an augmented Lagrangian fashion. We also note that, algorithmically,
the Riemannian trust-region method we use applies just as well to nonlinear costs in the SDP. We
believe that extending the theory presented here to broader classes of problems is a good direction
for future work.
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A Proofs and additional lemmas

We start by working out explicit formulas for the Riemannian gradient and Hessian which appear
in Definition 1. Let ProjY : Rn×p → TYM be the orthogonal projector to the tangent space at Y
(eq. (2)), and let

∇f(Y ) = 2CY, ∇2f(Y )[Ẏ ] = 2CẎ (8)

be the (Euclidean) gradient and Hessian of the cost function (3). The Riemannian gradient and
Hessian of f onM are related to these as follows [see Absil et al., 2008, eqs (3.37), (5.15)]:

gradf(Y ) = ProjY∇f(Y ), (9)

∀Ẏ ∈ TYM, Hessf(Y )[Ẏ ] = ProjY D (Y 7→ gradf(Y )) (Y )[Ẏ ]. (10)

Let us focus on the gradient first. Since gradf(Y ) is a tangent vector at Y (2),6

A(gradf(Y )Y >) = 0, (11)

and since it is the orthogonal projection of ∇f(Y ) to the tangent space, there exists µ ∈ Rm such
that

gradf(Y ) + 2A∗(µ)Y = ∇f(Y ) = 2CY, (12)

where A∗ : Rm → Sn×n is the adjoint of A. Indeed, considering symmetric matrices A1, . . . , Am
such that A(X)i = 〈Ai, X〉, matrices A∗(µ)Y = µ1A1Y + · · ·+ µmAmY span the normal space
to the manifold at Y . Right-multiply (12) with Y > and apply A to obtain

A
(
A∗(µ)Y Y >

)
= A(CY Y >). (13)

Under the assumption that the AiY ’s are linearly independent, µ is the unique solution to this linear
system—for KKT points, these are the Lagrange multipliers. Furthermore, contrary to classical
KKT conditions, µ is defined for all feasible Y (not only for KKT points) and can be found by
solving (13).7 This µ is a well-defined, differentiable function of Y .8 Using this definition of µ, let

S = S(Y ) = S(Y Y >) = C −A∗(µ). (14)

First-order critical points then satisfy (using (12)):

1

2
gradf(Y ) = SY = 0. (15)

We note in passing that µ(Y ) is feasible for the dual of (SDP) exactly when S(Y ) � 0:

d∗ = max
µ∈Rm

b>µ subject to C −A∗(µ) � 0, (DSDP)

which illustrates the importance of S as a dual certificate for (SDP).

Now let us turn to the Hessian of f . Equation (10) requires computation of the differential of
gradf(Y ), which is

D
(
Y 7→ gradf(Y )

)
(Y )[Ẏ ] = D

(
Y 7→ 2SY

)
(Y )[Ẏ ] = 2SẎ + 2ṠY,

where Ṡ , DS(Y )[Ẏ ] is a symmetric matrix. Because of eq. (14), Ṡ = A∗(ν) for some
ν ∈ Rm. Hence, for any tangent vector Ż ∈ TYM (2), we have 〈Ż, ṠY 〉 = 〈ŻY >,A∗(ν)〉 =

〈A(ŻY >), ν〉 = 0: ṠY is orthogonal to the tangent space at Y . Using (10), we find that

1

2
Hessf(Y )[Ẏ ] = ProjY SẎ . (16)

6For non-symmetric B ∈ Rn×n, note that A(B) = A
(
B+B>

2

)
.

7For the Max-Cut SDP for example, A = diag and µ = diag(CY Y >).
8Eq. (13) is equivalent to Gµ = A(CY Y >), where Gij = 〈AiY ,AjY 〉. For all Y ∈ M, G is invertible

since A1Y, . . . , AmY are linearly independent. Hence, µ = G−1A(CY Y >) is differentiable in Y at Y ∈M.
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The second-order condition for Y is that Hessf(Y ) be positive semidefinite on TYM. Using that
ProjY is a self-adjoint operator, it follows that this condition is equivalent to:

∀Ẏ ∈ TYM,
1

2
〈Ẏ ,Hessf(Y )[Ẏ ]〉 = 〈Ẏ , SẎ 〉 ≥ 0. (17)

We now show that rank-deficient second-order critical points are globally optimal. We obtain this
result as a corollary to a more informative statement about optimality gap at approximately second-
order critical points (assuming exact rank deficiency). The lemmas also show how S can be used to
control the optimality gap at approximate critical points without requiring rank deficiency. This is
valid for any p and any C.
Lemma 6. For any Y on the manifold M, if ‖gradf(Y )‖ ≤ εg and S(Y ) � − εH2 In, then the
optimality gap at Y with respect to (SDP) is bounded as

0 ≤ 2(f(Y )− f∗) ≤ εHR+ εg
√
R, (18)

where R = maxX∈C Tr(X) < ∞ measures the size of the compact set C (6). If In ∈ im(A∗), the
right hand side of (18) simplifies to εHR. This holds in particular if all X ∈ C have same trace and
C has a relative interior point (Slater condition).

Proof. By assumption on S(Y ) (eq. (14)),

∀X̃ ∈ C, −εH
2

Tr(X̃) ≤ 〈S(Y ), X̃〉 = 〈C, X̃〉 − 〈A∗(µ(Y )), X̃〉 = 〈C, X̃〉 − 〈µ(Y ), b〉.

This holds in particular for X̃ optimal for (SDP). Thus, we may set 〈C, X̃〉 = f∗; and certainly,
Tr(X̃) ≤ R. Furthermore,

〈µ(Y ), b〉 = 〈µ(Y ),A(Y Y >)〉 = 〈C − S(Y ), Y Y >〉 = f(Y )− 〈S(Y )Y , Y 〉.

Combining the typeset equations and using gradf(Y ) = 2S(Y )Y , we find

0 ≤ 2(f(Y )− f∗) ≤ εHR+ 〈gradf(Y ), Y 〉. (19)

In general, we do not assume In ∈ im(A∗) and we get the result by Cauchy–Schwarz on (19) and
‖Y ‖ =

√
Tr(Y Y >) ≤

√
R:

0 ≤ 2(f(Y )− f∗) ≤ εHR+ εg
√
R.

But if In ∈ im(A∗), then we show that Y is a normal vector at Y , so that it is orthogonal to
gradf(Y ). Formally: there exists ν ∈ Rm such that In = A∗(ν), and

〈gradf(Y ), Y 〉 = 〈gradf(Y )Y >, In〉 = 〈A(gradf(Y )Y >), ν〉 = 0,

since gradf(Y ) ∈ TYM (2). This indeed allows to simplify (19).

To conclude, we show that if C has a relative interior point X ′ (that is, A(X ′) = b and X ′ � 0) and
if Tr(X) is a constant for all X in C, then In ∈ im(A∗). Indeed, Sn×n = im(A∗)⊕ kerA, so there
exist ν ∈ Rm and M ∈ kerA such that In = A∗(ν) +M . Thus, for all X in C,

0 = Tr(X −X ′) = 〈A∗(ν) +M,X −X ′〉 = 〈M,X −X ′〉 .

This implies that M is orthogonal to all X −X ′. These span kerA since X ′ is interior. Indeed, for
any H ∈ kerA, since X ′ � 0, there exists ε > 0 such that X , X ′ + εH � 0 and A(X) = b, so
thatX ∈ C. Hence,M ∈ kerA is orthogonal to kerA. Consequently,M = 0 and In = A∗(ν).

Lemma 7. If Y ∈M is column rank deficient and Hessf(Y ) � −εH Id, then S(Y ) � − εH2 In.

Proof. By assumption, there exists z ∈ Rp, ‖z‖ = 1 such that Y z = 0. Thus, for any x ∈ Rn, we
can form Ẏ = xz>: it is a tangent vector since Y Ẏ >= 0 (2). Then, condition (17) combined with
the assumption on Hessf(Y ) tells us

−εH‖x‖2 ≤ 〈Ẏ ,Hessf(Y )[Ẏ ]〉 = 2〈Ẏ , SẎ 〉 = 2〈xz>zx>, S〉 = 2x>Sx.

This holds for all x ∈ Rn, hence S � − εH2 In as required.
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Corollary 8. If Y ∈ Mp is a column rank-deficient second-order critical point for (P), then it is
optimal for (P) and X = Y Y > is optimal for (SDP). In particular, for p > n, all second-order
critical points are optimal.

The first part of this corollary also appears as [Burer and Monteiro, 2003, Prop. 4], where the state-
ment is made about local optima rather than second-order critical points.

At this point, we can already give a short proof of Theorem 4.

Proof of Theorem 4. Since Ỹ Ỹ > = Y Y >, S(Ỹ ) = S(Y ); in particular, f(Ỹ ) = f(Y ) and
‖gradf(Ỹ )‖ = ‖gradf(Y )‖. Since Ỹ has deficient column rank, apply Lemmas 6 and 7. For
p > n, there is no need to form Ỹ as Y necessarily has deficient column rank.

Based on Corollary 8, to establish Theorem 2 it is sufficient to show that, for almost all C, all
second-order critical points are rank deficient already for small p. We show that in fact this is true
even for first-order critical points. The argument is by dimensionality counting on Sn×n: the set of
all possible cost matrices C.

Lemma 9. Under the assumptions of Theorem 2, for almost all C, all critical points of (P) are rank
deficient.

Proof. Let Y be a critical point for (P). By the first-order condition S(Y )Y = 0 (15) and the
definition of S(Y ) = C −A∗(µ(Y )) (14), there exists µ ∈ Rm such that

rankY ≤ null(C −A∗(µ)) ≤ max
ν∈Rm

null(C −A∗(ν)), (20)

where null denotes the nullity (dimension of the kernel). This first step in the proof is inspired
by [Wen and Yin, 2013, Thm. 3]. If the right hand side evaluates to `, then there exists ν such that
M = C −A∗(ν) and null(M) = `. Writing C = M +A∗(ν), we find that

C ∈ N` + im(A∗) (21)

where the + is a set-sum andN` denotes the set of symmetric matrices of size n with nullity `. This
set has dimension

dimN` =
n(n+ 1)

2
− `(`+ 1)

2
, (22)

whereas dim im(A∗) = rank(A∗) ≤ m. Assume the right hand side of (20) evaluates to p or more.
Then, a fortiori,

C ∈
⋃

`=p,...,n

N` + im(A∗). (23)

The set on the right hand side contains all “bad” C’s, that is, those for which (20) offers no informa-
tion about the rank of Y . The dimension of that set is bounded as follows, using that the dimension
of a finite union is at most the maximal dimension, and the dimension of a finite sum of sets is at
most the sum of the set dimensions:

dim

 ⋃
`=p,...,n

N` + im(A∗)

 ≤ dim (Np + im(A∗)) ≤ n(n+ 1)

2
− p(p+ 1)

2
+m.

Since C ∈ Sn×n lives in a space of dimension n(n+1)
2 , almost no C verifies (23) if

n(n+ 1)

2
− p(p+ 1)

2
+m <

n(n+ 1)

2
.

Hence, if p(p+1)
2 > m, then, for almost all C, critical points verify rank(Y ) < p.

Theorem 2 follows as a corollary of Corollary 8 and Lemma 9.
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B Numerical experiments

As an example, we run five different solvers on (Max-Cut SDP) with a collection of graphs used
in [Burer and Monteiro, 2003, 2005] known as the Gset.9 The solvers are as follows, all run in
Matlab. The first three are based on a low-rank factorization while the last two are interior point
methods (IPM).

Manopt runs the Riemannian Trust-Region method on (Max-Cut BM), via the Manopt tool-
box [Boumal et al., 2014], with p =

⌈√
8n+1
2

⌉
and random initialization. The number of

inner iterations allowed to solve the trust-region subproblem is 500. The solver returns
when 1

2‖gradf(Y )‖ = ‖SY ‖ ≤ 10−6. Code is in Matlab.

Manopt+ runs the same algorithm as above, but with p increasing from 2 to
⌈√

8n+1
2

⌉
in

5 steps. The point Y computed at a lower p is appended with columns of i.i.d. random
Gaussian variables with standard deviation 10−5 and mean 0, then rows are normalized to
produce Y+: the initial point for the next value of p. The randomization allows to escape
near-saddle points (in practice). Code is in Matlab.
SDPLR runs the original Burer–Monteiro algorithm implemented by its authors [Burer and
Monteiro, 2003]. Code is in C interfaced through C-mex.
HRVW runs an IPM whose implementation is tailored to (Max-Cut SDP), implemented by
its authors [Helmberg et al., 1996]. Code is in Matlab.
CVX runs SDPT3 [Toh et al., 1999] on (Max-Cut SDP) via CVX [CVX, 2012]. Code is in
C interfaced through C-mex.

After the solvers return, we project their answers to the feasible set. Manopt and SDPLR return a
matrix Y : it is sufficient to normalize each row to ensure X = Y Y > is feasible for (Max-Cut SDP)
(for Manopt, this step is not necessary). HRVW and CVX return a symmetric matrixX . We compute
its Cholesky factorization X = RR>—if X is not positive semidefinite, we first project using
an eigenvalue decomposition. Then, each row of R is normalized so that X = RR> is feasible
for (Max-Cut SDP). Computation time required for these projections is not included in the timings.

We report three metrics for each graph and each solver.

Cut bound: a bound on the maximal cut value (lower is better). If C is the adjacency
matrix of the graph and D is the degree matrix, then L = D − C is the Laplacian and
maxX

1
4 〈L,X〉 s.t. diag(X) = 1, X � 0 is a bound on the maximal cut. Using Lemma 6

applied to (Max-Cut SDP), a candidate optimizer X yields a bound 1
4 〈L,X〉−

n
4λmin(S).

λmin(S): by Lemma 6, this is a measure of optimality for X (feasible), where S = C −
diag(diag(CX)). It is nonpositive and must be as close to 0 as possible. We compute it
using bisection and the Cholesky factorization to ensure accuracy.
Time: computation time in seconds for the solver to run10 (this excludes time taken to
project the solution to the feasible set and to compute the reported metrics.)

Based on the results reported in Table 1, we make the following main observations: (i) the Manopt
approach (optimization on manifolds, also advocated in [Journée et al., 2010]) consistently reaches
high accuracy solutions, being often orders of magnitude more accurate than other methods, as
judged from λmin(S); (ii) incremental rank solvers (Manopt+ and SDPLR) are often the fastest
solvers for large instances; and (iii) the tailored IPM HRVW is faster and typically more accurate
than the IPM called by CVX (which is generic software). The latter point hints that one must be
careful in dismissing IPMs based on experiments using generic software, although it remains clear
from Table 1 that IPMs scale poorly compared to the low-rank factorization methods tested here. In
particular, CVX runs into memory trouble for the larger problem instances reported.11 To save time,
we did not run CVX on the largest graphs.

9Downloaded from: http://web.stanford.edu/~yyye/yyye/Gset/ on June 6, 2016.
10Matlab R2015a on 2 × 6 cores processors with hyperthreading, Intel(R) Xeon(R) CPU E5-2640 @

2.50GHz, 256Gb RAM, Springdale Linux 6.
11On Graph 77, running CVX leads to Matlab error “Number of elements exceeds maximum flint 253 − 1.”
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C Numerical experiments: results

Table 1: Results of the experiments described in Section B.

Graph Metric Manopt Manopt+ SDPLR HRVW CVX
Graph 1 Cut bound 12083.2 12083.2 12083.2 12083.2 12083.2

800 nodes λmin(S) −3 · 10−11 −2 · 10−11 −9 · 10−6 −2 · 10−5 −3 · 10−6

19176 edges Time [s] 2.1 3.2 6.6 1.9 35.0
Graph 2 Cut bound 12089.4 12089.4 12089.4 12089.4 12089.4

800 nodes λmin(S) −2 · 10−10 −8 · 10−12 −5 · 10−6 −3 · 10−5 −7 · 10−7

19176 edges Time [s] 1.6 3.1 7.8 2.0 33.7
Graph 3 Cut bound 12084.3 12084.3 12085.5 12084.3 12084.3

800 nodes λmin(S) −3 · 10−11 −1 · 10−11 −6 · 10−3 −4 · 10−5 −2 · 10−6

19176 edges Time [s] 2.1 4.5 9.8 2.0 34.0
Graph 4 Cut bound 12111.5 12111.5 12111.5 12111.5 12111.5

800 nodes λmin(S) −2 · 10−11 −2 · 10−10 −1 · 10−5 −3 · 10−5 −6 · 10−6

19176 edges Time [s] 1.8 3.2 10.6 2.2 33.7
Graph 5 Cut bound 12099.9 12099.9 12099.9 12099.9 12099.9

800 nodes λmin(S) −3 · 10−12 −8 · 10−12 −1 · 10−5 −3 · 10−5 −1 · 10−6

19176 edges Time [s] 1.5 2.5 6.7 2.2 33.7
Graph 6 Cut bound 2656.2 2656.2 2660.8 2656.2 2656.2

800 nodes λmin(S) −4 · 10−12 −8 · 10−12 −2 · 10−2 −7 · 10−6 −9 · 10−6

19176 edges Time [s] 1.4 2.6 5.5 2.4 34.1
Graph 7 Cut bound 2489.3 2489.3 2489.3 2489.3 2489.3

800 nodes λmin(S) −2 · 10−11 −2 · 10−11 −1 · 10−5 −9 · 10−6 −4 · 10−7

19176 edges Time [s] 6.4 2.6 5.9 2.0 35.7
Graph 8 Cut bound 2506.9 2506.9 2506.9 2506.9 2506.9

800 nodes λmin(S) −5 · 10−12 −9 · 10−12 −4 · 10−5 −1 · 10−5 −1 · 10−6

19176 edges Time [s] 1.2 1.8 10.6 2.2 34.0
Graph 9 Cut bound 2528.7 2528.7 2528.7 2528.7 2528.7

800 nodes λmin(S) −1 · 10−9 −8 · 10−12 −8 · 10−6 −1 · 10−5 −1 · 10−6

19176 edges Time [s] 0.9 1.8 5.7 2.4 34.8
Graph 10 Cut bound 2485.1 2485.1 2485.1 2485.1 2485.1

800 nodes λmin(S) −5 · 10−11 −8 · 10−12 −6 · 10−6 −8 · 10−6 −2 · 10−6

19176 edges Time [s] 1.2 1.6 5.3 2.1 33.9
Graph 11 Cut bound 629.2 629.2 629.2 629.2 629.2

800 nodes λmin(S) −3 · 10−9 −7 · 10−12 −5 · 10−6 −1 · 10−6 −4 · 10−8

1600 edges Time [s] 13.6 13.6 3.9 2.0 31.5
Graph 12 Cut bound 623.9 623.9 623.9 623.9 623.9

800 nodes λmin(S) −1 · 10−10 −4 · 10−12 −3 · 10−6 −3 · 10−6 −9 · 10−8

1600 edges Time [s] 8.8 7.3 1.9 2.0 31.7
Graph 13 Cut bound 647.1 647.1 647.1 647.1 647.1

800 nodes λmin(S) −1 · 10−9 −2 · 10−12 −2 · 10−6 −2 · 10−6 −1 · 10−7

1600 edges Time [s] 6.9 6.7 1.3 2.2 31.4
Graph 14 Cut bound 3191.6 3191.6 3191.6 3191.6 3191.6

800 nodes λmin(S) −1 · 10−10 −3 · 10−12 −3 · 10−5 −3 · 10−5 −1 · 10−6

4694 edges Time [s] 1.5 5.3 4.4 2.5 34.1
Graph 15 Cut bound 3171.6 3171.6 3171.6 3171.6 3171.6

800 nodes λmin(S) −1 · 10−10 −5 · 10−12 −6 · 10−6 −5 · 10−6 −3 · 10−7

4661 edges Time [s] 3.4 6.5 5.4 3.2 34.6
Graph 16 Cut bound 3175.0 3175.0 3175.1 3175.0 3175.0

800 nodes λmin(S) −9 · 10−12 −2 · 10−12 −6 · 10−4 −1 · 10−5 −6 · 10−7

4672 edges Time [s] 6.6 6.2 3.8 3.1 34.8
Graph 17 Cut bound 3171.3 3171.3 3171.5 3171.3 3171.3

800 nodes λmin(S) −5 · 10−12 −2 · 10−12 −1 · 10−3 −1 · 10−5 −1 · 10−7

4667 edges Time [s] 6.1 6.3 3.5 2.9 34.5
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Graph Metric Manopt Manopt+ SDPLR HRVW CVX
Graph 18 Cut bound 1166.0 1166.0 1166.0 1166.0 1166.0

800 nodes λmin(S) −4 · 10−12 −3 · 10−12 −3 · 10−6 −4 · 10−6 −1 · 10−6

4694 edges Time [s] 1.8 2.9 4.2 3.2 35.1
Graph 19 Cut bound 1082.0 1082.0 1082.0 1082.0 1082.0

800 nodes λmin(S) −4 · 10−10 −4 · 10−12 −4 · 10−6 −3 · 10−6 −8 · 10−7

4661 edges Time [s] 1.9 2.8 4.3 3.4 34.5
Graph 20 Cut bound 1111.4 1111.4 1112.1 1111.4 1111.4

800 nodes λmin(S) −2 · 10−12 −3 · 10−12 −3 · 10−3 −4 · 10−6 −2 · 10−6

4672 edges Time [s] 2.8 3.7 2.9 3.6 34.1
Graph 21 Cut bound 1104.3 1104.3 1104.3 1104.3 1104.3

800 nodes λmin(S) −2 · 10−11 −6 · 10−12 −4 · 10−6 −2 · 10−6 −6 · 10−6

4667 edges Time [s] 2.7 4.3 3.5 3.7 34.1
Graph 22 Cut bound 14135.9 14135.9 14136.0 14135.9 14137.2

2000 nodes λmin(S) −8 · 10−12 −8 · 10−12 −3 · 10−5 −3 · 10−5 −2 · 10−3

19990 edges Time [s] 5.5 4.9 22.5 25.7 177.7
Graph 23 Cut bound 14142.1 14142.1 14142.1 14142.1 14143.5

2000 nodes λmin(S) −2 · 10−11 −3 · 10−11 −8 · 10−6 −3 · 10−5 −3 · 10−3

19990 edges Time [s] 7.0 9.1 16.3 23.8 182.8
Graph 24 Cut bound 14140.9 14140.9 14140.9 14140.9 14142.1

2000 nodes λmin(S) −1 · 10−11 −7 · 10−12 −1 · 10−5 −2 · 10−5 −2 · 10−3

19990 edges Time [s] 4.5 5.7 24.3 24.8 173.3
Graph 25 Cut bound 14144.2 14144.2 14148.8 14144.2 14145.8

2000 nodes λmin(S) −1 · 10−9 −9 · 10−12 −9 · 10−3 −9 · 10−6 −3 · 10−3

19990 edges Time [s] 4.8 18.1 16.7 23.8 175.0
Graph 26 Cut bound 14132.9 14132.9 14132.9 14132.9 14134.2

2000 nodes λmin(S) −7 · 10−12 −1 · 10−11 −4 · 10−6 −2 · 10−5 −3 · 10−3

19990 edges Time [s] 6.8 6.5 14.4 23.1 177.6
Graph 27 Cut bound 4141.7 4141.7 4145.0 4141.7 4143.1

2000 nodes λmin(S) −1 · 10−11 −7 · 10−12 −7 · 10−3 −9 · 10−6 −3 · 10−3

19990 edges Time [s] 3.7 4.4 10.8 23.5 175.9
Graph 28 Cut bound 4100.8 4100.8 4100.8 4100.8 4102.2

2000 nodes λmin(S) −2 · 10−9 −6 · 10−12 −3 · 10−5 −7 · 10−6 −3 · 10−3

19990 edges Time [s] 3.0 8.0 19.6 26.5 176.8
Graph 29 Cut bound 4208.9 4208.9 4208.9 4208.9 4210.0

2000 nodes λmin(S) −2 · 10−11 −2 · 10−11 −5 · 10−6 −2 · 10−6 −2 · 10−3

19990 edges Time [s] 12.2 8.3 17.7 24.5 180.6
Graph 30 Cut bound 4215.4 4215.4 4215.4 4215.4 4216.6

2000 nodes λmin(S) −7 · 10−11 −6 · 10−12 −5 · 10−6 −6 · 10−6 −2 · 10−3

19990 edges Time [s] 19.8 10.5 11.6 25.2 176.7
Graph 31 Cut bound 4116.7 4116.7 4119.1 4116.7 4118.0

2000 nodes λmin(S) −2 · 10−11 −5 · 10−12 −5 · 10−3 −7 · 10−6 −3 · 10−3

19990 edges Time [s] 4.1 8.9 16.2 26.2 170.6
Graph 32 Cut bound 1567.6 1567.6 1567.6 1567.6 1567.8

2000 nodes λmin(S) −2 · 10−10 −8 · 10−12 −1 · 10−6 −1 · 10−6 −3 · 10−4

4000 edges Time [s] 45.6 25.4 13.9 21.7 142.6
Graph 33 Cut bound 1544.3 1544.3 1544.3 1544.3 1544.4

2000 nodes λmin(S) −7 · 10−10 −5 · 10−12 −1 · 10−6 −9 · 10−7 −1 · 10−4

4000 edges Time [s] 31.2 17.3 9.9 23.0 141.2
Graph 34 Cut bound 1546.7 1546.7 1546.7 1546.7 1546.8

2000 nodes λmin(S) −1 · 10−9 −5 · 10−12 −2 · 10−6 −1 · 10−6 −2 · 10−4

4000 edges Time [s] 31.3 22.0 7.7 23.6 143.9
Graph 35 Cut bound 8014.7 8014.7 8014.7 8014.7 8015.3

2000 nodes λmin(S) −1 · 10−9 −4 · 10−11 −5 · 10−6 −9 · 10−6 −1 · 10−3

11778 edges Time [s] 19.4 17.4 26.0 34.5 187.7
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Graph Metric Manopt Manopt+ SDPLR HRVW CVX
Graph 36 Cut bound 8006.0 8006.0 8006.0 8006.0 8006.6

2000 nodes λmin(S) −9 · 10−10 −3 · 10−11 −1 · 10−5 −2 · 10−5 −1 · 10−3

11766 edges Time [s] 12.0 36.9 41.1 37.0 193.3
Graph 37 Cut bound 8018.6 8018.6 8019.4 8018.6 8019.5

2000 nodes λmin(S) −2 · 10−10 −1 · 10−11 −1 · 10−3 −1 · 10−5 −2 · 10−3

11785 edges Time [s] 11.2 15.4 38.4 35.2 191.1
Graph 38 Cut bound 8015.0 8015.0 8015.0 8015.0 8015.5

2000 nodes λmin(S) −1 · 10−10 −1 · 10−11 −2 · 10−5 −1 · 10−5 −1 · 10−3

11779 edges Time [s] 13.1 14.2 44.7 37.5 193.0
Graph 39 Cut bound 2877.6 2877.6 2877.8 2877.6 2878.4

2000 nodes λmin(S) −4 · 10−9 −7 · 10−12 −3 · 10−4 −4 · 10−6 −2 · 10−3

11778 edges Time [s] 16.9 12.2 31.9 39.3 195.8
Graph 40 Cut bound 2864.8 2864.8 2866.2 2864.8 2865.6

2000 nodes λmin(S) −1 · 10−11 −2 · 10−11 −3 · 10−3 −3 · 10−6 −2 · 10−3

11766 edges Time [s] 9.2 9.4 40.8 40.9 189.0
Graph 41 Cut bound 2865.2 2865.2 2868.1 2865.2 2865.8

2000 nodes λmin(S) −4 · 10−10 −1 · 10−11 −6 · 10−3 −4 · 10−6 −1 · 10−3

11785 edges Time [s] 5.3 8.6 30.8 40.9 189.8
Graph 42 Cut bound 2946.3 2946.3 2948.3 2946.3 2947.0

2000 nodes λmin(S) −9 · 10−12 −7 · 10−12 −4 · 10−3 −6 · 10−6 −1 · 10−3

11779 edges Time [s] 7.9 8.1 32.9 41.8 188.4
Graph 43 Cut bound 7032.2 7032.2 7032.2 7032.2 7033.2

1000 nodes λmin(S) −3 · 10−12 −4 · 10−12 −6 · 10−6 −2 · 10−5 −4 · 10−3

9990 edges Time [s] 1.9 2.3 3.6 3.8 36.4
Graph 44 Cut bound 7027.9 7027.9 7029.2 7027.9 7029.4

1000 nodes λmin(S) −1 · 10−8 −3 · 10−12 −5 · 10−3 −2 · 10−5 −6 · 10−3

9990 edges Time [s] 2.9 3.9 3.7 3.6 38.0
Graph 45 Cut bound 7024.8 7024.8 7024.8 7024.8 7025.9

1000 nodes λmin(S) −1 · 10−9 −5 · 10−12 −2 · 10−5 −8 · 10−6 −5 · 10−3

9990 edges Time [s] 1.3 6.1 4.9 3.5 37.4
Graph 46 Cut bound 7029.9 7029.9 7029.9 7029.9 7030.8

1000 nodes λmin(S) −2 · 10−10 −3 · 10−12 −2 · 10−5 −1 · 10−5 −4 · 10−3

9990 edges Time [s] 12.9 2.3 3.1 3.7 38.3
Graph 47 Cut bound 7036.7 7036.7 7036.7 7036.7 7037.8

1000 nodes λmin(S) −8 · 10−10 −9 · 10−12 −1 · 10−5 −1 · 10−5 −5 · 10−3

9990 edges Time [s] 10.4 4.1 8.2 3.8 39.2
Graph 48 Cut bound 6000.0 6000.0 6000.0 6000.0 6000.0

3000 nodes λmin(S) 4 · 10−16 3 · 10−16 −6 · 10−10 −3 · 10−6 5 · 10−18

6000 edges Time [s] 2.8 4.3 3.5 47.7 307.3
Graph 49 Cut bound 6000.0 6000.0 6000.0 6000.0 6000.0

3000 nodes λmin(S) 4 · 10−16 4 · 10−16 −1 · 10−9 −3 · 10−6 −4 · 10−16

6000 edges Time [s] 3.9 5.1 4.9 46.1 299.7
Graph 50 Cut bound 5988.2 5988.2 5988.2 5988.2 5988.2

3000 nodes λmin(S) −2 · 10−12 −1 · 10−14 −1 · 10−7 −3 · 10−6 2 · 10−16

6000 edges Time [s] 6.0 5.0 5.4 45.7 318.4
Graph 51 Cut bound 4006.3 4006.3 4006.3 4006.3 4006.9

1000 nodes λmin(S) −2 · 10−9 −4 · 10−12 −8 · 10−6 −1 · 10−5 −3 · 10−3

5909 edges Time [s] 5.8 7.8 10.7 5.4 41.4
Graph 52 Cut bound 4009.6 4009.6 4010.0 4009.6 4010.2

1000 nodes λmin(S) −4 · 10−12 −9 · 10−12 −1 · 10−3 −5 · 10−6 −2 · 10−3

5916 edges Time [s] 6.4 8.8 6.5 5.2 39.6
Graph 53 Cut bound 4009.7 4009.7 4009.7 4009.7 4010.5

1000 nodes λmin(S) −1 · 10−10 −1 · 10−11 −6 · 10−6 −1 · 10−5 −3 · 10−3

5914 edges Time [s] 4.2 8.5 8.3 5.0 39.1
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Graph Metric Manopt Manopt+ SDPLR HRVW CVX
Graph 54 Cut bound 4006.2 4006.2 4006.2 4006.2 4006.9

1000 nodes λmin(S) −2 · 10−10 −3 · 10−12 −3 · 10−5 −5 · 10−6 −3 · 10−3

5916 edges Time [s] 2.9 6.6 6.1 4.8 39.1
Graph 55 Cut bound 11039.5 11039.5 11039.5 11039.5 11039.7

5000 nodes λmin(S) −2 · 10−12 −3 · 10−12 −5 · 10−6 −6 · 10−6 −2 · 10−4

12498 edges Time [s] 26.6 20.6 22.2 411.4 1588.0
Graph 56 Cut bound 4760.0 4760.0 4760.0 4760.0 4760.3

5000 nodes λmin(S) −7 · 10−12 −2 · 10−12 −1 · 10−5 −2 · 10−6 −3 · 10−4

12498 edges Time [s] 20.1 16.3 32.9 475.9 1550.1
Graph 57 Cut bound 3885.5 3885.5 3885.5 3885.5 3885.7

5000 nodes λmin(S) −1 · 10−9 −8 · 10−12 −2 · 10−6 −2 · 10−6 −1 · 10−4

10000 edges Time [s] 218.0 78.8 38.3 269.8 1012.4
Graph 58 Cut bound 20136.2 20136.2 20138.1 20136.2 20136.7

5000 nodes λmin(S) −3 · 10−9 −5 · 10−11 −2 · 10−3 −7 · 10−6 −4 · 10−4

29570 edges Time [s] 55.4 44.0 321.5 497.9 1865.7
Graph 59 Cut bound 7312.3 7312.3 7315.0 7312.3 7313.0

5000 nodes λmin(S) −7 · 10−12 −3 · 10−11 −2 · 10−3 −4 · 10−6 −5 · 10−4

29570 edges Time [s] 51.3 35.6 353.1 511.3 1869.0
Graph 60 Cut bound 15222.3 15222.3 15222.3 15222.3 15222.6

7000 nodes λmin(S) −3 · 10−11 −4 · 10−12 −2 · 10−5 −2 · 10−6 −2 · 10−4

17148 edges Time [s] 58.6 30.9 63.6 1326.9 3581.9
Graph 61 Cut bound 6828.1 6828.1 6828.2 6828.1 6828.4

7000 nodes λmin(S) −2 · 10−11 −4 · 10−12 −7 · 10−5 −2 · 10−6 −2 · 10−4

17148 edges Time [s] 113.4 40.2 55.8 1263.3 3795.6
Graph 62 Cut bound 5430.9 5430.9 5430.9 5430.9 5431.1

7000 nodes λmin(S) −1 · 10−9 −6 · 10−11 −9 · 10−7 −2 · 10−6 −1 · 10−4

14000 edges Time [s] 813.8 242.8 110.8 862.4 2124.3
Graph 63 Cut bound 28244.4 28244.4 28245.9 28244.4 28245.0

7000 nodes λmin(S) −7 · 10−9 −8 · 10−9 −8 · 10−4 −9 · 10−6 −3 · 10−4

41459 edges Time [s] 238.9 97.6 663.0 1454.7 4583.9
Graph 64 Cut bound 10465.9 10465.9 10466.6 10465.9 10466.6

7000 nodes λmin(S) −3 · 10−9 −2 · 10−11 −4 · 10−4 −5 · 10−6 −4 · 10−4

41459 edges Time [s] 140.4 109.5 1014.8 1609.4 4439.8
Graph 65 Cut bound 6205.5 6205.5 6205.5 6205.5 6205.7

8000 nodes λmin(S) −1 · 10−9 −1 · 10−11 −6 · 10−7 −1 · 10−6 −1 · 10−4

16000 edges Time [s] 567.2 168.5 154.4 1075.2 2861.5
Graph 66 Cut bound 7077.2 7077.2 7077.2 7077.2 7077.4

9000 nodes λmin(S) −2 · 10−9 −5 · 10−11 −2 · 10−7 −9 · 10−7 −6 · 10−5

18000 edges Time [s] 762.6 215.3 218.1 1525.7 3915.7
Graph 67 Cut bound 7744.4 7744.4 7744.4 7744.4 -

10000 nodes λmin(S) −1 · 10−9 −3 · 10−11 −3 · 10−7 −1 · 10−6 -
20000 edges Time [s] 816.4 339.0 267.3 2005.4 -

Graph 70 Cut bound 9861.5 9861.5 9861.5 9861.5 -
10000 nodes λmin(S) −2 · 10−10 −6 · 10−13 −2 · 10−6 −2 · 10−6 -
9999 edges Time [s] 143.3 82.9 102.2 3167.3 -

Graph 72 Cut bound 7808.5 7808.5 7808.5 7808.5 -
10000 nodes λmin(S) −6 · 10−10 −8 · 10−12 −8 · 10−7 −1 · 10−6 -
20000 edges Time [s] 720.8 262.6 199.0 1902.7 -

Graph 77 Cut bound 11045.7 11045.7 11045.7 11045.7 -
14000 nodes λmin(S) −8 · 10−10 −4 · 10−11 −7 · 10−7 −1 · 10−6 -
28000 edges Time [s] 1578.5 513.0 515.1 5249.1 -

Graph 81 Cut bound 15656.2 15656.2 15656.2 15656.2 -
20000 nodes λmin(S) −5 · 10−10 −6 · 10−11 −1 · 10−6 −3 · 10−6 -
40000 edges Time [s] 4152.8 1539.7 1035.6 16576.6 -
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D Regularity assumption

Originally, Theorems 2 and 4 had the assumption that the search space of the factorized problem,

M = {Y ∈ Rn×p : A(Y Y >) = b},
is a manifold. From this assumption, we stated incorrectly that the tangent space at Y ofM, denoted
by TYM, is given by (2):

TYM = {Ẏ ∈ Rn×p : A(Ẏ Y >+ Y Ẏ >) = 0}.
This identity is used in a number of places of the proofs. In general, M being an embedded sub-
manifold of Rn×p only implies the left hand side is included in the right hand side.12 Below, we
give an example whereM is a manifold yet the two sets are not equal.

In order to restore equality, we strengthened the assumption, requiring constraint qualifications to
hold at all feasible points (see (7)):

∀Y ∈M, A1Y, . . . , AmY are linearly independent in Rn×p,
where Ai, i = 1, . . . ,m, are the symmetric constraint matrices such that A(X)i = 〈Ai, X〉. This
ensures the map Φ(Y ) = A(Y Y >) − b is full rank onM = Φ−1(0), from which it follows by a
standard result in differential geometry (see for example [Lee, 2012, Cor. 5.14]) thatM is a smooth
embedded submanifold of Rn×p of dimension np−m. Then, the left hand side of (2) has dimension
np−m, and it is included in the right hand side, which itself is a linear space of dimension np−m,
so that they are equal.

We now describe an SDP such thatM is indeed a manifold, yet (2) does not hold. Consider n =
2,m = 2, b = (1, 1)> and

A1 =

(
1 0
0 1

)
, A2 =

(
1 0
0 1

4

)
.

The search space of the SDP,

C = {X = X>∈ Rn×n : A(X) = b,X � 0} =

{(
1 0
0 0

)}
,

is degenerate but it is compact. Furthermore, the setM is a smooth manifold for p = 1:

Mp=1 =

{
Y =

(
y1
y2

)
∈ R2 : y21 + y22 = 1 and y21 +

1

4
y22 = 1

}
= {(1, 0)>, (−1, 0)>}.

The dimension of the manifold is 0, so that TYM = {0} for all Y ∈ M. Consider now the right
hand side of (2),

KY = {Ẏ ∈ Rn×p : A(Ẏ Y >+ Y Ẏ >) = 0} = {Ẏ ∈ Rn×p : 〈A1Y , Ẏ 〉 = 〈A2Y , Ẏ 〉 = 0}.
These are the vectors orthogonal toA1Y,A2Y . For Y = (±1, 0)>, we getA1Y = A2Y = (±1, 0)>:
they are colinear, so KY has dimension 1 at all Y ∈M: TYM 6= KY .

Similarly, at p = 2, the setM becomes a circle embedded in R4:

Mp=2 =

{
Y =

(
y1 y2
y3 y4

)
∈ R2×2 : y21 + y22 + y23 + y24 = 1 and y21 + y22 +

1

4
(y23 + y24) = 1

}
=

{
Y =

(
y1 y2
y3 y4

)
∈ R2×2 : y21 + y22 = 1 and y3 = y4 = 0

}
.

This manifold has dimension 1 (and so do all its tangent spaces). Yet, KY has dimension 3 for all
Y ∈M. Indeed, we can parameterizeMp=2 as the matrices(

cos θ sin θ
0 0

)
for all θ ∈ R. It is easy to verify thatA1Y = A2Y 6= 0 for all Y ∈Mp=2, so that the codimension of
KY is 1, here too in disagreement with TYM. Notice also that in this example we have p(p+1)

2 > m.

12If Ẏ ∈ TYM, by definition, there exists a smooth curve γ : R→M such that γ(0) = Y and γ′(0) = Ẏ .
Since γ(t) ∈ M for all t, we have A(γ(t)γ(t)>) = b for all t. Differentiating on both sides with respect to t
and evaluating at 0 gives A(Ẏ Y >+ Y Ẏ >) = 0.
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