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Abstract

We consider the problem of recovering a signal observed in Gaussian noise. If
the set of signals is convex and compact, and can be specified beforehand, one
can use classical linear estimators that achieve a risk within a constant factor of
the minimax risk. However, when the set is unspecified, designing an estimator
that is blind to the hidden structure of the signal remains a challenging problem.
We propose a new family of estimators to recover signals observed in Gaussian
noise. Instead of specifying the set where the signal lives, we assume the existence
of a well-performing linear estimator. Proposed estimators enjoy exact oracle
inequalities and can be efficiently computed through convex optimization. We
present several numerical illustrations that show the potential of the approach.

1 Introduction

We consider the problem of recovering a complex-valued signal (xt)t∈Z from the noisy observations

yτ = xτ + σζτ , −n ≤ τ ≤ n. (1)

Here n ∈ Z+, and ζτ ∼ CN (0, 1) are i.i.d. standard complex-valued Gaussian random variables,
meaning that ζ0 = ξ10 + ıξ20 with i.i.d. ξ10 , ξ

2
0 ∼ N (0, 1). Our goal is to recover xt, 0 ≤ t ≤ n, given

the sequence of observations yt−n, ..., yt up to instant t, a task usually referred to as (pointwise) fil-
tering in machine learning, statistics, and signal processing [5].

The traditional approach to this problem considers linear estimators, or linear filters, which write as

x̂t =

n∑
τ=0

φτyt−τ , 0 ≤ t ≤ n.

Linear estimators have been thoroughly studied in various forms, they are both theoretically attrac-
tive [7, 3, 2, 16, 17, 11, 13] and easy to use in practice. If the set X of signals is well-specified, one
can usually compute a (nearly) minimax on X linear estimator in a closed form. In particular, if X
is a class of smooth signals, such as a Hölder or a Sobolev ball, then the corresponding estimator is
given by the kernel estimator with the properly set bandwidth parameter [16] and is minimax among
all possible estimators. Moreover, as shown by [6, 2], if only X is convex, compact, and centrally
symmetric, the risk of the best linear estimator of xt is within a small constant factor of the minimax
risk over X . Besides, if the set X can be specified in a computationally tractable way, which clearly
is still a weaker assumption than classical smoothness assumptions, the best linear estimator can be
efficiently computed by solving a convex optimization problem on X . In other words, given a com-
putationally tractable set X on the input, one can compute a nearly-minimax linear estimator and
the corresponding (nearly-minimax) risk over X . The strength of this approach, however, comes at
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a price: the set X still must be specified beforehand. Therefore, when one faces a recovery problem
without any prior knowledge of X , this approach cannot be implemented.

We adopt here a novel approach to filtering, which we refer to as structure-blind recovery. While
we do not require X to be specified beforehand, we assume that there exists a linear oracle – a well-
performing linear estimator of xt. Previous works [8, 10, 4], following a similar philosophy, proved
that one can efficiently adapt to the linear oracle filter of lengthm = O(n) if the corresponding filter
φ is time-invariant, i.e. it recovers the target signal uniformly well in theO(n)-sized neighbourhood
of t, and if its `2-norm is small – bounded by ρ/

√
m for a moderate ρ ≥ 1. The adaptive estimator

is computed by minimizing the `∞-norm of the filter discrepancy, in the Fourier domain, under the
constraint on the `1-norm of the filter in the Fourier domain. Put in contrast to the oracle linear filter,
the price for adaptation is proved to be O(ρ3

√
lnn), with the lower bound of O(ρ

√
lnn) [8, 4].

We make the following contributions:

• we propose a new family of recovery methods, obtained by solving a least-squares problem
constrained or penalized by the `1-norm of the filter in the Fourier domain;

• we prove exact oracle inequalities for the `2-risk of these methods;

• we show that the price for adaptation improves upon previous works [8, 4] to O(ρ2
√

lnn)

for the point-wise risk and to O(ρ
√

lnn) for the `2-risk.

• we present numerical experiments that show the potential of the approach on synthetic and
real-world images and signals.

Before presenting the theoretical results, let us introduce the notation we use throughout the paper.

Filters Let C(Z) be the linear space of all two-sided complex-valued sequences x = {xt ∈ C}t∈Z.
For k, k′ ∈ Z we consider finite-dimensional subspaces

C(Zk
′

k ) = {x ∈ C(Z) : xt = 0, t /∈ [k, k′]} .

It is convenient to identify m-dimensional complex vectors, m = k′ − k + 1, with elements of
C(Zk′k ) by means of the notation:

xk
′

k := [xk; ...; xk′ ] ∈ Ck
′−k+1.

We associate to linear mappings C(Zk′k )→ C(Zj
′

j ) (j′−j+1)×(k′−k+1) matrices with complex
entries. The convolution u ∗ v of two sequences u, v ∈ C(Z) is a sequence with elements

[u ∗ v]t =
∑
τ∈Z

uτvt−τ , t ∈ Z.

Given observations (1) and ϕ ∈ C(Zm0 ) consider the (left) linear estimation of x associated with
filter ϕ:

x̂t = [ϕ ∗ y]t

(x̂t is merely a kernel estimate of xt by a kernel ϕ supported on [0, ...,m]).

Discrete Fourier transform We define the unitary Discrete Fourier transform (DFT) operator
Fn : Cn+1 → Cn+1 by

z 7→ Fnz, [Fnz]k = (n+ 1)−1/2
n∑
t=0

zt e
2πıkt
n+1 , 0 ≤ k ≤ n.

The inverse Discrete Fourier transform (iDFT) operator F−1n is given by F−1n := FHn (here AH
stands for Hermitian adjoint of A). By the Fourier inversion theorem, F−1n (Fn z) = z.

We denote ‖ · ‖p usual `p-norms on C(Z): ‖x‖p = (
∑
t∈Z |xt|

p
)1/p, p ∈ [1,∞]. Usually, the

argument will be finite-dimensional – an element of C(Zk′k ); we reserve the special notation

‖x‖n,p := ‖xn0‖p.
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Furthermore, DFT allows to equip C(Zn0 ) with the norms associated with `p-norms in the spectral
domain:

‖x‖∗n,p := ‖xn0‖∗p := ‖Fnxn0‖p, p ∈ [1,∞];

note that unitarity of the DFT implies the Parseval identity: ‖x‖n,2 = ‖x‖∗n,2.

Finally, c, C, and C ′ stand for generic absolute constants.

2 Oracle inequality for constrained recovery

Given observations (1) and % > 0, we first consider the constrained recovery x̂con given by

[x̂con]t = [ϕ̂ ∗ y]t, t = 0, ..., n,

where ϕ̂ is an optimal solution of the constrained optimization problem

min
ϕ∈C(Zn0 )

{
‖y − ϕ ∗ y‖n,2 : ‖ϕ‖∗n,1 ≤ %/

√
n+ 1

}
. (2)

The constrained recovery estimator minimizes a least-squares fit criterion under a constraint on
‖ϕ‖∗n,1 = ‖Fnϕn0‖1, that is an `1 constraint on the discrete Fourier transform of the filter. While the
least-squares objective naturally follows from the Gaussian noise assumption, the constraint can be
motivated as follows.

Small-error linear filters Linear filter ϕo with a small `1 norm in the spectral domain and small
recovery error exists, essentially, whenever there exists a linear filter with small recovery error [8, 4].
Indeed, let us say that x ∈ C(Zn0 ) is simple [4] with parameters m ∈ Z+ and ρ ≥ 1 if there exists
φo ∈ C(Zm0 ) such that for all −m ≤ τ ≤ 2m,[

E
{
|xτ − [φo ∗ y]τ |2

}]1/2 ≤ σρ√
m+ 1

. (3)

In other words, x is (m, ρ)-simple if there exists a hypothetical filter φo of the length at most m+ 1

which recovers xτ with squared risk uniformly bounded by σ2ρ2

m+1 in the interval −m ≤ τ ≤ 2m.
Note that (3) clearly implies that ‖φo‖2 ≤ ρ/

√
m+ 1, and that |[x − φo ∗ x]τ | ≤ σρ/

√
m+ 1

∀τ, −m ≤ τ ≤ 2m. Now, let n = 2m, and let

ϕo = φo ∗ φo ∈ Cn+1.

As proved in [15, Appendix C], we have

‖ϕo‖∗n,1 ≤ 2ρ2/
√
n+ 1, (4)

and, for a moderate absolute constant c,

‖x− ϕo ∗ y‖n,2 ≤ cσρ
2
√

1 + ln[1/α] (5)

with probability 1−α. To summarize, if x is (m, ρ)-simple, i.e., when there exists a filter φo of length
≤ m + 1 which recovers x with small risk on the interval [−m, 2m], then the filter ϕo = φo ∗ φo
of the length at most n + 1, with n = 2m, has small norm ‖ϕo‖∗n,1 and recovers the signal x with
(essentially the same) small risk on the interval [0, n].

Hidden structure The constrained recovery estimator is completely blind to a possible hidden
structure of the signal, yet can seamlessly adapt to it when such a structure exists, in a way that
we can rigorously establish. Using the right-shift operator on C(Z), [∆x]t = xt−1, we formalize
the hidden structure as an unknown shift-invariant linear subspace of C(Z), ∆S = S , of a small
dimension s. We do not assume that x belongs to that subspace. Instead, we make a more general
assumption that x is close to this subspace, that is, it may be decomposed into a sum of a component
that lies in the subspace and a component whose norm we can control.
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Assumption A We suppose that x admits the decomposition

x = xS + ε, xS ∈ S,
where S is an (unknown) shift-invariant, ∆S = S, subspace of C(Z) of dimension s, 1 ≤ s ≤ n+1,
and ε is “small”, namely,

‖∆τε‖n,2 ≤ σκ, 0 ≤ τ ≤ n.

Shift-invariant subspaces of C(Z) are exactly the sets of solutions of homogeneous linear difference
equations with polynomial operators. This is summarized by the following lemma (we believe it is
a known fact; for completeness we provide a proof in [15, Appendix C]).
Lemma 2.1. Solution set of a homogeneous difference equation with a polynomial operator p(∆),

[p(∆)x]t =

[
s∑

τ=0

pτxt−τ

]
= 0, t ∈ Z, (6)

with deg(p(·)) = s, p(0) = 1, is a shift-invariant subspace of C(Z) of dimension s. Conversely,
any shift-invariant subspace S ⊂ C(Z), ∆S ⊆ S , dim(S) = s <∞, is the set of solutions of some
homogeneous difference equation (6) with deg(p(·)) = s, p(0) = 1. Moreover, such p(·) is unique.

On the other hand, for any polynomial p(·), solutions of (6) are exponential polynomials [?
] with frequencies determined by the roots of p(·). For instance, discrete-time polynomials
xt =

∑s−1
k=0 ckt

k, t ∈ Z of degree s − 1 (that is, exponential polynomials with all zero fre-
quencies) form a linear space of dimension s of solutions of the equation (6) with a polynomial
p(∆) = (1 − ∆)s with a unique root of multiplicity s, having coefficients pk = (−1)k

(
s
k

)
. Natu-

rally, signals which are close, in the `2 distance, to discrete-time polynomials are Sobolev-smooth
functions sampled over the regular grid [10]. Sum of harmonic oscillations xt =

∑s
k=1 ckeıωkt,

ωk ∈ [0, 2π) being all different, is another example; here, p(∆) =
∏s
k=1(1− eıωk∆).

We can now state an oracle inequality for the constrained recovery estimator; see [15, Appendix B].
Theorem 2.1. Let % ≥ 1, and let ϕo ∈ C(Zn0 ) be such that

‖ϕo‖∗n,1 ≤ %/
√
n+ 1.

Suppose that Assumption A holds for some s ∈ Z+ and κ < ∞. Then for any α, 0 < α ≤ 1, it
holds with probability at least 1− α:

‖x− x̂con‖n,2 ≤ ‖x− ϕo ∗ y‖n,2 + Cσ

√
s+ %

(
κ
√

ln [1/α] + ln [n/α]
)
. (7)

When considering simple signals, Theorem 2.1 gives the following.
Corollary 2.1. Assume that signal x is (m, ρ)-simple, ρ ≥ 1 and m ∈ Z+. Let n = 2m, % ≥ 2ρ2,
and let Assumption A hold for some s ∈ Z+ and κ <∞. Then for any α, 0 < α ≤ 1, it holds with
probability at least 1− α:

‖x− x̂con‖n,2 ≤ Cσρ2
√

ln[1/α] + C ′σ

√
s+ %

(
κ
√

ln [1/α] + ln [n/α]
)
.

Adaptation and price The price for adaptation in Theorem 2.1 and Corollary 2.1 is determined
by three parameters: the bound on the filter norm %, the deterministic error κ, and the subspace
dimension s. Assuming that the signal to recover is simple, and that % = 2ρ2, let us compare the
magnitude of the oracle error to the term of the risk which reflects “price of adaptation”. Typically (in
fact, in all known to us cases of recovery of signals from a shift-invariant subspace), the parameter
ρ is at least

√
s. Therefore, the bound (5) implies the “typical bound” O(σ

√
γρ2) = σs

√
γ for

the term ‖x − ϕo ∗ y‖n,2 (we denote γ = ln(1/α)). As a result, for instance, in the “parametric
situation”, when the signal belongs or is very close to the subspace, that is when κ = O(ln(n)),
the price of adaptationO

(
σ[s+ ρ2(γ +

√
γ lnn)]1/2

)
is much smaller than the bound on the oracle

error. In the “nonparametric situation”, when κ = O(ρ2), the price of adaptation has the same order
of magnitude as the oracle error.

Finally, note that under the premise of Corollary 2.1 we can also bound the pointwise error. We state
the result for % = 2ρ2 for simplicity; the proof can be found in [15, Appendix B].
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Theorem 2.2. Assume that signal x is (m, ρ)-simple, ρ ≥ 1 and m ∈ Z+. Let n = 2m, % = 2ρ2,
and let Assumption A hold for some s ∈ Z+ and κ < ∞. Then for any α, 0 < α ≤ 1, the
constrained recovery x̂con satisfies

|xn − [x̂con]n| ≤ C
σρ√
m+ 1

[
ρ2
√

ln[n/α] + ρ

√
κ
√

ln [1/α] +
√
s

]
.

3 Oracle inequality for penalized recovery

To use the constrained recovery estimator with a provable guarantee, see e.g. Theorem 2.1, one must
know the norm of a small-error linear filter %, or at least have an upper bound on it. However, if this
parameter is unknown, but instead the noise variance is known (or can be estimated from data), we
can build a more practical estimator that still enjoys an oracle inequality.

The penalized recovery estimator [x̂pen]t = [ϕ̂ ∗ y]t is an optimal solution to a regularized least-
squares minimization problem, where the regularization penalizes the `1-norm of the filter in the
Fourier domain:

ϕ̂ ∈ Argmin
ϕ∈C(Zn0 )

{
‖y − ϕ ∗ y‖2n,2 + λ

√
n+ 1 ‖ϕ‖∗n,1

}
. (8)

Similarly to Theorem 2.1, we establish an oracle inequality for the penalized recovery estimator.
Theorem 3.1. Let Assumption A hold for some s ∈ Z+ and κ < ∞, and let ϕo ∈ C(Zn0 ) satisfy
‖ϕo‖∗n,1 ≤ %/

√
n+ 1 for some % ≥ 1.

1o. Suppose that the regularization parameter of penalized recovery x̂pen satisfies λ ≥ λ,

λ := 60σ2 ln[63n/α].

Then, for 0 < α ≤ 1, it holds with probability at least 1− α:

‖x− x̂pen‖n,2 ≤ ‖x− ϕo ∗ y‖n,2 + C
√
%λ+ C ′σ

√
s+ (%̂+ 1)κ

√
ln[1/α],

where %̂ :=
√
n+ 1 ‖ϕ̂‖∗n,1.

2o. Moreover, if κ ≤ κ̄,

κ̄ :=
10 ln[42n/α]√

ln [16/α]
,

and λ ≥ 2λ, one has

‖x− x̂pen‖n,2 ≤ ‖x− ϕo ∗ y‖n,2 + C
√
%λ+ C ′σ

√
s.

The proof closely follows that of Theorem 2.1 and can also be found in [15, Appendix B].

4 Discussion

There is some redundancy between “simplicity” of a signal, as defined by (3), and Assumption
A. Usually a simple signal or image x is also close to a low-dimensional subspace of C(Z) (see,
e.g., [10, section 4]), so that Assumption A holds “automatically”. Likewise, x is “almost” simple
when it is close to a low-dimensional time-invariant subspace. Indeed, if x ∈ C(Z) belongs to S,
i.e. Assumption A holds with κ = 0, one can easily verify that for n ≥ s there exists a filter
φo ∈ C(Zn−n) such that

‖φo‖2 ≤
√
s/(n+ 1), and xτ = [φo ∗ x]τ , τ ∈ Z . (9)

See [15, Appendix C] for the proof. This implies that x can be recovered efficiently from observa-
tions (1): [

E
{
|xτ − [φo ∗ y]τ |2

}]1/2 ≤ σ√ s

n+ 1
.

In other words, if instead of the filtering problem we were interested in the interpolation problem of
recovering xt given 2n+ 1 observations yt−n, ..., yt+n on the left and on the right of t, Assumption
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A would imply a kind of simplicity of x. On the other hand, it is clear that Assumption A is not
sufficient to imply the simplicity of x “with respect to the filtering”, in the sense of the definition
we use in this paper, when we are allowed to use only observations on the left of t to compute the
estimation of xt. Indeed, one can see, for instance, that already signals from the parametric family
Xα = {x ∈ C(Z) : xτ = cατ , c ∈ C}, with a given |α| > 1, which form a one-dimensional
space of solutions of the equation xτ = αxτ−1, cannot be estimated with small risk at t using only
observations on the left of t (unless c = 0), and thus are not simple in the sense of (3).

Of course, in the above example, the “difficulty” of the family Xα is due to instability of solutions
of the difference equation which explode when τ → +∞. Note that signals x ∈ Xα with |α| ≤ 1
(linear functions, oscillations, or damped oscillations) are simple. More generally, suppose that x
satisfies a difference equation of degree s:

0 = p(∆)xτ

[
=

s∑
i=0

pixτ−i

]
, (10)

where p(z) =
∑s
i=0 piz

i is the corresponding characteristic polynomial and ∆ is the right shift op-
erator. When p(z) is unstable – has roots inside the unit circle – (depending on “initial conditions”)
the set of solutions to the equation (10) contains difficult to filter signals. Observe that stability of
solutions is related to the direction of the time axis; when the characteristic polynomial p(z) has
roots outside the unit circle, the corresponding solutions may be “left unstable” – increase exponen-
tially when τ → −∞. In this case “right filtering” – estimating xτ using observations on the right
of τ – will be difficult. A special situation where interpolation and filtering is always simple arises
when the characteristic polynomial of the difference equation has all its roots on the unit circle. In
this case, solutions to (10) are “generalized harmonic oscillations” (harmonic oscillations modulated
by polynomials), and such signals are known to be simple. Theorem 4.1 summarizes the properties
of the solutions of (10) in this particular case; see [15, Appendix C] for the proof.
Theorem 4.1. Let s be a positive integer, and let p = [p0; ...; ps] ∈ Cs+1 be such that the polynomial
p(z) =

∑s
i=0 piz

i has all its roots on the unit circle. Then for every integer m satisfying

m ≥ m(s) := Cs2 ln(s+ 1),

one can point out q ∈ Cm+1 such that any solution to (10) satisfies

xτ = [q ∗ x]τ , ∀τ ∈ Z,

and
‖q‖2 ≤ ρ(s,m)/

√
m where ρ(s,m) = C ′min

{
s3/2
√

ln s, s
√

ln[ms]
}
. (11)

5 Numerical experiments

We present preliminary results on simulated data of the proposed adaptive signal recovery meth-
ods in several application scenarios. We compare the performance of the penalized `2-recovery of
Sec. 3 to that of the Lasso recovery of [1] in signal and image denoising problems. Implementation
details for the penalized `2-recovery are given in Sec. 6. Discussion of the discretization approach
underlying the competing Lasso method can be found in [1, Sec. 3.6].

We follow the same methodology in both signal and image denoising experiments. For each level of
the signal-to-noise ratio SNR ∈ {1, 2, 4, 8, 16}, we perform N Monte-Carlo trials. In each trial,
we generate a random signal x on a regular grid with n points, corrupted by the i.i.d. Gaussian noise
of variance σ2. The signal is normalized: ‖x‖2 = 1 so SNR−1 = σ

√
n. We set the regularization

penalty in each method as follows. For penalized `2-recovery (8), we use λ = 2σ2 log[63n/α] with
α = 0.1. For Lasso [1], we use the common setting λ = σ

√
2 log n. We report experimental results

by plotting the `2-error ‖x̂ − x‖2, averaged over N Monte-Carlo trials, versus the inverse of the
signal-to-noise ratio SNR−1.

Signal denoising We consider denoising of a one-dimensional signal in two different scenarios,
fixing N = 100 and n = 100. In the RandomSpikes scenario, the signal is a sum of 4 harmonic
oscillations, each characterized by a spike of a random amplitude at a random position in the con-
tinuous frequency domain [0, 2π]. In the CoherentSpikes scenario, the same number of spikes is
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Figure 1: Signal and image denoising in different scenarios, left to right: RandomSpikes, Coher-
entSpikes, RandomSpikes-2D, and CoherentSpikes-2D. The steep parts of the curves on high noise
levels correspond to observations being thresholded to zero.

sampled by pairs. Spikes in each pair have the same amplitude and are separated by only 0.1 of
the DFT bin 2π/n which could make recovery harder due to high signal coherency. However, in
practice we found RandomSpikes to be slightly harder than CoherentSpikes for both methods, see
Fig. 1. As Fig. 1 shows, the proposed penalized `2-recovery outperforms the Lasso method for all
noise levels. The performance gain is particularly significant for high signal-to-noise ratios.

Image Denoising We now consider recovery of an unknown regression function f on the regular
grid on [0, 1]2 given the noisy observations:

yτ = xτ + σζτ , τ ∈ {0, 1, ...,m− 1}2 , (12)

where xτ = f(τ/m). We fix N = 40, and the grid dimension m = 40; the number of samples
is then n = m2. For the penalized `2-recovery, we implement the blockwise denoising strategy
(see Appendix for the implementation details) with just one block for the entire image. We present
additional numerical illustrations in the supplementary material.

We study three different scenarios for generating the ground-truth signal in this experiment. The
first two scenarios, RandomSpikes-2D and CoherentSpikes-2D, are two-dimensional counterparts of
those studied in the signal denoising experiment: the ground-truth signal is a sum of 4 harmonic
oscillations in R2 with random frequencies and amplitudes. The separation in the CoherentSpikes-
2D scenario is 0.2π/m in each dimension of the torus [0, 2π]2. The results for these scenarios are
shown in Fig. 1. Again, the proposed penalized `2-recovery outperforms the Lasso method for all
noise levels, especially for high signal-to-noise ratios.

In scenario DimensionReduction-2D we investigate the problem of estimating a function with a
hidden low-dimensional structure. We consider the single-index model of the regression function:

f(t) = g(θT t), g(·) ∈ S1β(1). (13)

Here, S1β(1) = {g : R → R, ‖g(β)(·)‖2 ≤ 1} is the Sobolev ball of smooth periodic functions on
[0, 1], and the unknown structure is formalized as the direction θ. In our experiments we sample
the direction θ uniformly at random and consider different values of the smoothness index β. If
it is known a priori that the regression function possesses the structure (13), and only the index is
unknown, one can use estimators attaining ”one-dimensional” rates of recovery; see e.g. [12] and
references therein. In contrast, our recovery algorithms are not aware of the underlying structure but
might still adapt to it.

As shown in Fig. 2, the `2-recovery performs well in this scenario despite the fact that the available
theoretical bounds are pessimistic. For example, the signal (13) with a smooth g can be approxi-
mated by a small number of harmonic oscillations in R2. As follows from the proof of [9, Proposi-
tion 10] combined with Theorem 4.1, for a sum of k harmonic oscillations in Rd one can point out a
reproducing linear filter with %(k) = O(k2d) (neglecting the logarithmic factors), i.e. the theoretical
guarantee is quite conservative for small values of β.

6 Details of algorithm implementation

Here we give a brief account of some techniques and implementation tricks exploited in our codes.

Solving the optimization problems Note that the optimization problems (2) and (8) underlying
the proposed recovery algorithms are well structured Second-Order Conic Programs (SOCP) and
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Figure 2: Image denoising in DimensionReduction scenario; smoothness decreases from left to right.

can be solved using Interior-point methods (IPM). However, the computational complexity of IPM
applied to SOCP with dense matrices grows rapidly with problem dimension, so that large problems
of this type arising in signal and image processing are well beyond the reach of these techniques. On
the other hand, these problems possess nice geometry associated with complex `1-norm. Moreover,
their first-order information – the value of objective and its gradient at a given ϕ – can be computed
using Fast Fourier Transform in time which is almost linear in problem size. Therefore, we used first-
order optimization algorithms, such as Mirror-Prox and Nesterov’s accelerated gradient algorithms
(see [14] and references therein) in our recovery implementation. A complete description of the
application of these optimization algorithms to our problem is beyond the scope of the paper; we
shall present it elsewhere.

Interpolating recovery In Sec. 2-3 we considered only recoveries which estimated the value xt
of the signal via the observations at n + 1 points t − n, ..., t “on the left” (filtering problem). To
recover the whole signal, one may consider a more flexible alternative – interpolating recovery –
which estimates xt using observations on the left and on the right of t. In particular, if the objective
is to recover a signal on the interval {−n, ..., n}, one can apply interpolating recoveries which use
the same observations y−n, ..., yn to estimate xτ at any τ ∈ {−n, ..., n}, by altering the relative
position of the filter and the current point.

Blockwise recovery Ideally, when using pointwise recovery, a specific filter is constructed for
each time instant t. This may pose a tremendous amount of computation, for instance, when recov-
ering a high-resolution image. Alternatively, one may split the signal into blocks, and process the
points of each block using the same filter (cf. e.g. Theorem 2.1). For instance, a one-dimensional
signal can be divided into blocks of length, say, 2m + 1, and to recover x ∈ C(Zm−m) in each
block one may fit one filter of length m + 1 recovering the right “half-block” xm0 and another filter
recovering the left “half-block” x−1−m.

7 Conclusion

We introduced a new family of estimators for structure-blind signal recovery that can be computed
using convex optimization. The proposed estimators enjoy oracle inequalities for the `2-risk and for
the pointwise risk. Extensive theoretical discussions and numerical experiments will be presented
in the follow-up journal paper.
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A Additional numerical illustrations

In these demonstration experiments, we compare the penalized `2-recovery of Sec. 3 to the Lasso
as in [1]. We use the same setting of the penalization parameters as in the Monte-Carlo experiments
Sec. 5 with regularization parameters set to the theoretically recommended value [1].

2-D harmonic oscillations In this experiment (see Fig. 3) we recover a sum of 4 harmonic oscil-
lations in R2 with random frequencies, observed with SNR = 0.5 (the signal is normalized in the
`2-norm).

Dimension reduction Here we illustrate denoising of a single-index signal (13), SNR = 1, with
the direction θ close to the diagonal (1, 1), for two values of the smoothness index β ∈ {1, 2}. The
results are presented in Fig. 4. One can see that Lasso tends to over-smooth the signal.

True signal Observations Penalized recovery Lasso

Figure 3: Recovery of a sum of 4 harmonic oscillations observed with SNR = 0.5, i.e. ‖y−x‖2 ≈ 2.
2nd row: magnified upper left corner of the image. `2-error: 0.18 for the penalized `2-recovery, 0.45
for the Lasso [1].

True signal Observations Penalized recovery Lasso

Figure 4: Recovery of a single-index signal (13), observed with SNR = 1, for β = 2, first row, and
β = 1, second row. `2-error (`2-recovery vs. the Lasso): 0.07 vs. 0.13 for β = 2; 0.25 vs. 0.31 for
β = 1.
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Denoising textures In this experiment, we apply the proposed recovery methods to denoise two
images from the original Brodatz texture database, observed in white Gaussian noise. We set SNR =
1. We use the blockwise implementation of the constrained `2-recovery algorithm, as described in
Sec. 6. We set the constraint parameter to % = 4, and we use the adaptation procedure of [4,
Sec. 3.2] to define the estimation bandwidth. As in the above experiments, we use the Lasso [1]
with λ = σ

√
2 log n, n being the number of pixels. The resulting images are presented in Fig. 5.

Despite comparable quality in the mean square sense, the two methods significantly differ in their
local behaviour. In particular, the constrained `2-recovery better restores the local signal features,
whereas the Lasso tends to oversmooth.

True signal Observations Constrained recovery Lasso

Figure 5: Recovery of two instances of the Original Brodatz database, cut by half to 320× 320 and
observed with SNR = 1. `2-error: 1.35e4 for the constrained `2-recovery 1.25e4 for the Lasso in
the first row (inst. D73); 1.97e4 for the constrained `2-recovery, 2.02e4 for the Lasso method in the
second row (inst. D75).
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