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Abstract

We propose a new approach to designing visual markers (analogous to QR-codes,
markers for augmented reality, and robotic fiducial tags) based on the advances
in deep generative networks. In our approach, the markers are obtained as color
images synthesized by a deep network from input bit strings, whereas another
deep network is trained to recover the bit strings back from the photos of these
markers. The two networks are trained simultaneously in a joint backpropagation
process that takes characteristic photometric and geometric distortions associated
with marker fabrication and marker scanning into account. Additionally, a styl-
ization loss based on statistics of activations in a pretrained classification network
can be inserted into the learning in order to shift the marker appearance towards
some texture prototype. In the experiments, we demonstrate that the markers ob-
tained using our approach are capable of retaining bit strings that are long enough
to be practical. The ability to automatically adapt markers according to the usage
scenario and the desired capacity as well as the ability to combine information
encoding with artistic stylization are the unique properties of our approach. As
a byproduct, our approach provides an insight on the structure of patterns that
are most suitable for recognition by ConvNets and on their ability to distinguish
composite patterns.

1 Introduction

Visual markers (also known as visual fiducials or visual codes) are used to facilitate human-
environment and robot-environment interaction, and to aid computer vision in resource-constrained
and/or accuracy-critical scenarios. Examples of such markers include simple 1D (linear) bar
codes [31] and their 2D (matrix) counterparts such as QR-codes [9] or Aztec codes [18], which
are used to embed chunks of information into objects and scenes. In robotics, AprilTags [23] and
similar methods [3} 4} [26]] are a popular way to make locations, objects, and agents easily identi-
fiable for robots. Within the realm of augmented reality (AR), ARCodes [6] and similar marker
systems [13| 21] are used to enable real-time camera pose estimation with high accuracy, low la-
tency, and on low-end devices. Overall, such markers can embed information into the environment
in a more compact and language-independent way as compared to traditional human text signatures,
and they can also be recognized and used by autonomous and human-operated devices in a robust
way.

Existing visual markers are designed “manually” based on the considerations of the ease of pro-
cessing by computer vision algorithms, the information capacity, and, less frequently, aesthetics.
Once marker family is designed, a computer vision-based approach (a marker recognizer) has to be
engineered and tuned in order to achieve reliable marker localization and interpretation [1} [17} [25].
The two processes of the visual marker design on one hand and the marker recognizer design on the
other hand are thus separated into two subsequent steps, and we argue that such separation makes
the corresponding design choices inherently suboptimal. In particular, the third aspect (aesthetics)
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is usually overlooked, which leads to visually-intrusive markers that in many circumstances might
not fit the style of a certain environment and make this environment “computer-friendly” at the cost
of “human-friendliness”.

In this work, we propose a new general approach to constructing use visual markers that leverages
recent advances in deep generative learning. To this end, we suggest to embed the two tasks of the
visual marker design and the marker recognizer design into a single end-to-end learning framework.
Within our approach, the learning process produces markers and marker recognizers that are adapted
to each other “by design”. While our idea is more general, we investigate the case where the markers
are synthesized by a deep neural network (the synthesizer network), and when they are recognized
by another deep network (the recognizer network). In this case, we demonstrate how these two
networks can be both learned by a joint stochastic optimization process.

The benefits of the new approach are thus several-fold:

1. As we demonstrate, the learning process can take into account the adversarial effects that
complicate recognition of the markers, such as perspective distortion, confusion with back-
ground, low-resolution, motion blur, etc. All such effects can be modeled at training time
as piecewise-differentiable transforms. In this way they can be embedded into the learning
process that will adapt the synthesizer and the recognizer to be robust with respect to such
effect.

2. It is easy to control the trade-offs between the complexity of the recognizer network, the
information capacity of the codes, and the robustness of the recognition towards different
adversarial effects. In particular, one can set the recognizer to have a certain architecture,
fix the variability and the strength of the adversarial effects that need to be handled, and
then the synthesizer will adapt so that the most “legible” codes for such circumstances can
be computed.

3. Last but not least, the aesthetics of the neural codes can be brought into the optimization.
Towards this end we show that we can augment the learning objective with a special styl-
ization loss inspired by [[7, 18, 29]. Including such loss facilitates the emergence of stylized
neural markers that look as instances of a designer-provided stochastic texture. While such
modification of the learning process can reduce the information capacity of the markers, it
can greatly increase the “human-friendliness” of the resulting markers.

Below, we introduce our approach and then briefly discuss the relation of this approach to prior art.
We then demonstrate several examples of learned marker families.

2 Learnable visual markers

We now detail our approach (Figure[I). Our goal is to build a synthesizer network S(b;0g) with
learnable parameters 6 that can encode a bit sequence b = {by, b, ... b, } containing n bits into
an image M of the size m-by-m (a marker). For notational simplicity in further derivations, we
assume that b; € {—1,+1}.

To recognize the markers produced by the synthesizer, a recognizer network R(I; 6 ) with learnable
parameters 6 is created. The recognizer takes an image I containing a marker and infers the real-
valued sequence r = {rq,r2,...,7,}. The recognizer is paired to the synthesizer to ensure that
signr; = b;, i.e. that the signs of the numbers inferred by the recognizers correspond to the bits
encoded by the synthesizer. In particular, we can measure the success of the recognition using a
simple loss function based on element-wise sigmoid:
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where the loss is distributed between —1 (perfect recognition) and 0.

In real life, the recognizer network does not get to work with the direct outputs of the synthesizer.
Instead, the markers produced by the synthesizer network are somehow embedded into an environ-
ment (e.g. via printing or using electronic displays), and later their images are captioned by some
camera controlled by a human or by a robot. During learning, we model the transformation between



input bit string g
‘N B EN == | synthesizer network | ™= ’ g peniE]

ConvNet
i ee—— -
decodin, rendering l
SS © network
loss .
UUU N o backpropagatzgn_ v l l
(NTEEE = [ recognizer network ] <= Gram <:telxotstére =y Gram |

. ! .
decoded input matrix :Llnatnxl

Figure 1: The outline of our approach and the joint learning process. Our core architecture con-
sists of the synthesizer network that converts input bit sequences into visual markers, the rendering
network that simulates photometric and geometric distortions associated with marker printing and
capturing, and the recognizer network that is designed to recover the input bit sequence from the
distorted markers. The whole architecture is trained end-to-end by backpropagation, after which
the synthesizer network can be used to generate markers, and the recognizer network to recover the
information from the markers placed in the environment. Additionally, we can enforce the visual
similarity of markers to a given texture sample using the mismatch in deep Gram matrix statistics in
a pretrained network [7]] as the second loss term during learning (right part).

a marker produced by the synthesizer and the image of that marker using a special feed-forward net-
work (the renderer network) T (M ¢), where the parameters of the renderer network ¢ are sampled
during learning and correspond to background variability, lighting variability, perspective slant, blur
kernel, color shift/white balance of the camera, etc. In some scenarios, the non-learnable parame-
ters ¢ can be called nuisance parameters, although in others we might be interested in recovering
some of them (e.g. the perspective transform parameters). During learning ¢ is sampled from some
distribution ® which should model the variability of the above-mentioned effects in the conditions
under which the markers are meant to be used.

When our only objective is robust marker recognition, the learning process can be framed as the
minimization of the following functional:

f(0s,0r) =Epvym) L (b, R (T(S(b;9s); ) ; 93) ) : (2)

o~

Here, the bit sequences b are sampled uniformly from U(n) = {—1;+1}", passed through the
synthesizer, the renderer, and the recognizer, with the (minus) loss (T)) being used to measure the
success of the recognition. The parameters of the synthesizer and the recognizer are thus optimized
to maximize the success rate.

The minimization of (Z) can then be accomplished using a stochastic gradient descent algorithm,
e.g. ADAM [14]. Each iteration of the algorithm samples a mini-batch of different bit sequences as
well as different rendering layer parameter sets and updates the parameters of the synthesizer and
the recognizer networks in order to minimize the loss (T)) for these samples.

Practical implementation. As mentioned above, the components of the architecture, namely the
synthesizer, the renderer, and the recognizer can be implemented as feed-forward networks. The
recognizer network can be implemented as a feedforward convolutional network [16] with n output
units. The synthesizer can use multiplicative and up-convolutional [5][34] layers, as well as element-
wise non-linearities.

Implementing the renderer 7 (M ; ¢) (Figure [2) requires non-standard layers. We have implemented
the renderer as a chain of layers, each introducing some “nuisance” transformation. We have im-
plemented a special layer that superimposes an input over a bigger background patch drawn from
a random pool of images. We use the spatial transformer layer [[11] to implement the geometric
distortion in a differentiable manner. Color shifts and intensity changes can be implemented us-
ing differentiable elementwise transformations (linear, multiplicative, gamma). Blurring associated
with lens effect or motion can be simply implemented using a convolutional layer. The nuisance
transformation layers can be chained resulting in a renderer layer that can model complex geometric
and photometric transformations (Figure 2).
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Figure 2: Visualizations of the rendering network 7 (M; ¢). For the input marker M on the left the
output of the network is obtained through several stages (which are all piecewise-differentiable w.r.t.
inputs); on the right the outputs 7 (M ¢) for several random nuisance parameters ¢ are shown. The
use of piecewise-differentiable transforms within 7" allows to backpropagate through 7.

Controlling the visual appearance. Interestingly, we observed that under variable conditions, the
optimization of (2) results in markers that have a consistent and interesting visual texture (Figure[3).
Despite such style consistency, it might be desirable to control the appearance of the resulting mark-
ers more explicitly e.g. using some artistic prototypes. Recently, [7] have achieved remarkable
results in texture generation by measuring the statistics of textures using Gram matrices of convolu-
tional maps inside deep convolutional networks trained to classify natural images. Texture synthesis
can then be achieved by minimizing the deviation between such statistics of generated images and
of style prototypes. Based on their approach, [12} have suggested to include such deviation as
a loss into the training process for deep feedforward generative neural networks. In particular, the
feed-forward networks in [29] are trained to convert noise vectors into textures.

We follow this line of work and augment our learning objective (2) with the texture loss of [[7]. Thus,
we consider a feed-forward network C(M;~) that computes the result of the ¢-th convolutional
layers of a network trained for large-scale natural image classification such as the VGGNer [28].
For an image M, the output C(M;~) thus contains k& 2D channels (maps). The network C uses
the parameters ~y that are pre-trained on a large-scale dataset and that are not part of our learning
process. The style of an image M is then defined using the following k-by-k Gram matrix G(M; )
with each element defined as:

Gij(M;7y) = (Ci(M;7),Ci(M;7) ), 3)

where C; and C; are the i-th and the j-th maps and the inner product is taken over all spatial locations.
Given a prototype texture M©, the learning objective can be augmented with the term:

faye(0s) = Ep vy || G(S(b;0s);7) — G(MP; ) H2 . )

The incorporation of the term (E[) forces the markers S(b; 6s) produced by the synthesizer to have
the visual appearance similar to instances of the texture defined by the prototype My [7].

3 Related Work

We now discuss the classes of deep learning methods that to the best of our understanding are most
related to our approach.

Our work is partially motivated by the recent approaches that analyze and visualize pretrained deep
networks by synthesizing color images evoking certain responses in these networks. Towards this
end [27] generate examples that maximize probabilities of certain classes according to the network,
[33]] generate visual illusions that maximize such probabilities while retaining similarity to a prede-
fined image of a potentially different class, [22]] also investigate ways of generating highly-abstract
and structured color images that maximize probabilities of a certain class. Finally, [20] synthesize
color images that evoke a predefined vector of responses at a certain level of the network for the
purpose of network inversion. Our approach is related to these approaches, since our markers can be
regarded as stimuli invoking certain responses in the recognizer network. Unlike these approaches,
our recognizer network is not kept fixed but is updated together with the synthesizer network that
generates the marker images.

Another obvious connection are autoencoders [2]], which are models trained to (1) encode inputs into
a compact intermediate representation through the encoder network and (2) recover the original input
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Figure 3: Visualization of the markers learned by our approach under different circumstances shown
in captions (see text for details). The captions also show the bit length, the capacity of the result-
ing encoding (in bits), as well as the accuracy achieved during training. In each case we show six
markers: (1) — the marker corresponding to a bit sequence consisting of —1, (2) — the marker corre-
sponding to a bit sequence consisting of +1, (3) and (4) — markers for two random bit sequences that
differ by a single bit, (5) and (6) — two markers corresponding to two more random bit sequences.
Under many conditions a characteristic grid pattern emerges.

by passing the compact representation through the decoder network. Our system can be regarded
as a special kind of autoencoder with the certain format of the intermediate representation (a color
image). Our decoder is trained to be robust to certain class of transformations of the intermediate
representations that are modeled by the rendering network. In this respect, our approach is related
to variational autoencoders [[13] that are trained with stochastic intermediate representations and to
denoising autoencoders [30] that are trained to be robust to noise.

Finally, our approach for creating textured markers can be related to steganography [24]], which aims
at hiding a signal in a carrier image. Unlike steganography, we do not aim to conceal information,
but just to minimize its “intrusiveness”, while keeping the information machine-readable in the
presence of distortions associated with printing and scanning.

4 Experiments

Below, we present qualitative and quantitative evaluation of our approach. For longer bit sequences,
the approach might not be able to train a perfect pair of a synthesizer and a recognizer, and therefore,
similarly to other visual marker systems, it makes sense to use error-correcting encoding of the
signal. Since the recognizer network returns the odds for each bit in the recovered signal, our
approach is suitable for any probabilistic error-correction coding [[19].

Synthesizer architectures. For the experiments without texture loss, we use the simplest synthe-
sizer network, which consists of a single linear layer (with a 3m? x n matrix and a bias vector)
that is followed by an element-wise sigmoid. For the experiments with texture loss, we started with
the synthesizer used in [29], but found out that it can be greatly simplified for our task. Our final
architecture takes a binary code as input, transforms it with single fully connected layer and series
of 3 x 3 convolutions with 2x upsamplings in between.

Recognizer architectures. Unless reported otherwise, the recognizer network was implemented as
a ConvNet with three convolutional layers (96 5 x 5 filters followed by max-pooling and ReL.U),
and two fully-connected layer with 192 and n output units respectively (where n is the length of
the code). We find this architecture sufficient to successfully deal with marker encoding. In some
experiments we have also considered a much smaller networks with 24 maps in convolutional layers,
and 48 units in the penultimate layer (“thin network™). In general, the convergence on the training
stage greatly benefits from adding Batch Normalization [10] after every convolutional layer. During
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Figure 4: Examples of textured 64-bit marker families. The texture protototype is shown in the first
column, while five remaining columns show markers for the following sequences: all —1, all +1,
32 consecutive —1 followed by 32 —1, and, finally, two random bit sequences that differ by a single
bit.

our experiments with texture loss, we used VGGNet-like architecture with 3 blocks, each consisting
of two 3 x 3 convolutions and maxpooling, followed by two dense layers.

Rendering settings. We perform a spatial transform as an affine transformation, where the 6 affine
parameters are sampled from [1, 0, 0,0, 1,0]+A (0, o) (assuming origin at the center of the marker).
The example for o = 0.1 is shown in Fig. 2] We leave more complex spatial transforms (e.g. thin
plate spline [11]]) that can make markers more robust to bending for future work. Some resilience to
bending can still be observed in our qualitative results.

Given an image x, we implement the color transformation layer as c;x“? 4 c3, where the parameters
are sampled from the uniform distribution U[—§, 6]. As we find that printed markers tend to reduce
the color contrast, we add a contrast reduction layer that transforms each value to kz + (1 — &)[0.5]
for a random k.

Quantitative measurements. To quantify the performance of our markers under different circum-
stances, we report the accuracy p to which our system converges during the learning under different
settings (to evaluate accuracy, we threshold recognizer predictions at zero). Whenever we vary the
signal length n, we also report the capacity of the code, which is defined as C' = n(1— H(p)), where
H(p) = —plogp — (1 — p)log(1 — p) is the coding entropy. Unless specified otherwise, we use
the rendering network settings visualized in Figure 2] which gives the impression of the variability
and the difficulty of the recovery problem, as the recognizer network is applied to the outputs of this
rendering network.

Experiments without texture loss. The bulk of experiments without the texture loss has been
performed with m = 32 i.e. 32 x 32 patches (we used bilinear interpolation when printing or visu-
alizing). The learned marker families with the base architectures as well as with its variations are
shown in Figure 3] It is curious to see the emergence of lattice structures (even though our syn-
thesizer network in this case was a simple single-layer multiplicative network). Apparently, such
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Figure 5: Screenshots of marker recognition process (black box is a part of the user interface and
corresponds to perfect alignment). The captions are in (number of correctly recovered bits/total
sequence length) format. The rightmost two columns correspond to stylized markers. These marker
families were trained with spatial variances o = 0.1,0.05,0.1,0.05,0.05 respectively. Larger o
leads to code recovery robustness with respect to affine transformation.

lattices are most efficient in terms of storing information for later recovery with a ConvNet. It can
also be seen how the system can adapt the markers to varying bit lengths or to varying robustness de-
mands (e.g. to increasing blur or geometric distortions). We have further plotted how the quantitative
performance depends on the bit length and and on the marker size in Figure[d]

Experiments with texture loss. An interesting effect we have encountered while training synthe-
sizer with texture loss and small output marker size is that it often ended up producing very similar
patterns. We tried to tweak architecture to handle this problem but eventually found out that it goes
away for larger markers.

Performance of real markers. We also show some qualitative results that include printing (on a
laser printer using various backgrounds) and capturing (with a webcam) of the markers. Character-
istic results in Figure ff] demonstrate that our system can successfully recover encoded signals with
small amount of mistakes. The amount of mistakes can be further reduced by applying the system
with jitter and averaging the odds (not implemented here).

Here, we aid the system by roughly aligning the marker with a pre-defined square (shown as part
of the user interface). As can be seen the degradation of the results with the increasing alignment
error is graceful (due to the use of affine transforms inside the rendering network at train time). In
a more advanced system, such alignment can be bypassed altogether, using a pipeline that detects
marker instances in a video stream and localizes their corners. Here, one can either use existing
quad detection algorithms as in or make the localization process a deep feed-forward network
and include it into the joint learning in our system. In the latter case, the synthesizer would adapt to
produce markers that are distinguishable from backgrounds and have easily identifiable corners. In
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Figure 6: Left — dependence of the recognition accuracy on the size of the bit string for two variants
with the default networks, and one with the reduced number of maps in each convolutional layer.
Reducing the capacity of the network hurts the performance a lot, while reducing spatial variation in
the rendering network (to o = 0.05) increases the capacity very considerably. Right — dependence
of the recognition accuracy on the marker size (with otherwise default settings). The capacity of the
coding quickly saturates as markers grow bigger.

such qualitative experiments (Figure[d), we observe the error rates that are roughly comparable with
our quantitative experiments.

Recognizer networks for QR-codes. We have also experimented with replacing the synthesizer
network with a standard QR-encoder. While we tried different settings (such as error-correction
level, input bit sequence representation), the highest recognition rate we could achieve with our
architecture of the recognizer network was only 85%. Apparently, the recognizer network cannot
reverse the combination of error-correction encoding and rendering transformations well. We also
tried to replace both the synthesizer and the recognizer with a QR-encoder and a QR-decoder. Here
we found that standard QR-decoders cannot decode QR-markers processed by our renderer network
at the typical level of blur in our experiments (though special-purpose blind deblurring algorithms
such as [32] are likely to succeed).

5 Discussion

In this work, we have proposed a new approach to marker design, where marker design and their rec-
ognizer are learned jointly. Additionally, an aesthetics-related term can be added into the objective.
To the best of our knowledge, we are the first to approach visual marker design using optimization.

One curious side aspect of our work is the fact that the learned markers can provide an insight into
the architecture of ConvNets (or whatever architecture is used in the recognizer network). In more
details, they represent patterns that are most suitable for recognition with ConvNets. Unlike other
approaches that e.g. visualize patterns for networks trained to classify natural images, our method
decouples geometric and topological factors on one hand from the natural image statistics on the
other, as we obtain these markers in a “content-free” manne

As discussed above, one further extension to the system might be including marker localizer into
the learning as another deep feedforward network. We note that in some scenarios (e.g. generating
augmented reality tags for real-time camera localization), one can train the recognizer to estimate
the parameters of the geometric transformation in addition or even instead of the recovering the
input bit string. This would allow to create visual markers particularly suitable for accurate pose
estimation.

!The only exception are the background images used by the rendering layer. In our experience, their statis-
tics have negligible influence on the emerging patterns.
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