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Abstract

This document contains a few proofs, which were omitted from our NIPS submis-
sion.

1 Proof of Lemma 1

Lemma 1 (Lyapunov Function Supermartingale Inequality). For all k ∈ N, let zk =
(xk, . . . , xk−τ ) ∈ H1+τ . Then for all ε ∈ R++, we have
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where for all j ∈ {1, . . . ,m}, we have wkj ∈ proxγk
j rj

(xkj − γkj (∇jf(xk−dk) + νkj )). In particular,
for σk = 0, we can take ε = 0 and assume the last line is zero.

We first prove a descent property of the objective function—up to some residuals which are the result
of asynchrony and noise:

Lemma 2. For all k ∈ N, we have
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.
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Proof. The standard upper bound [2, Lemma 1.2.3] for functions with Lipschitz continuous gradients
implies that
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And the definition of wkj as a proximal point implies that
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Given these two inequalities and the identity Ek
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]

= 0, we have

Ek
[
f(xk+1) + r(xk+1)

]
≤ 1

m

m∑
j=1

f(xk1 , . . . , w
k
j , . . . , x

k
m) +

m∑
j=1

(
1

m
rj(w

k
j ) +

(
1− 1

m

)
rj(x

k
j )

)

≤ f(xk) + r(xk)− 1

2m

m∑
j=1

(
1

γkj
− (1 + ε)Lj

)
Ek
[
‖wkj − xkj + νkj ν

k
j ‖2
]

+

m∑
j=1

γkj
2m

(
1 + (1 + ε−1)Ljγ

k
j

)
Ek
[
‖νkj ‖2

]
+

1

m
Ek
[
〈∇f(xk)−∇f(xk−dk), wk − xk〉

]
.

The residual due to asynchrony can be conveniently placed inside a sum that alternates up to a small
noise residual:

Lemma 3. For all k ∈ N and any ε ∈ Rm+ , we have
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Proof. The asynchronous term splits into the sum of two alternating terms and a third easily handled
term:1 for all C > 0, we have
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The proof is completed by noticing that Ek
[
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]
, combining

the two terms on the last line, and using the following inequality:
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Summing up the bounds in the Lemmas, we obtain the claimed decrease in the Lyapunov function.

2 Relaxed Assumptions on the Variance When r ≡ 0

It’s easy to modify the Lyapunov function in the case that r ≡ 0 to the following form:
Lemma 4 (Lyapunov Function Supermartingale Inequality). For all k ∈ N, let zk =
(xk, . . . , xk−τ ) ∈ H1+τ . Then for all ε ∈ R++, we have
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In particular, for σk = 0, we can take ε = 0 and assume the last line is zero.

Key to this inequality is that, at each iteration, the noise variance is multiplied by(γkj )2, rather than
by γkj . Following the proof of Theorem 1 yields the following theorem in the case that r ≡ 0:

Theorem 1 (SAPALM Convergence Rates (r ≡ 0)). Let {xk}k∈N ⊆ H be the SAPALM sequence
created by Algorithm 1 in the case that r ≡ 0. If, for all k ∈ N, {Ek

[
‖νk‖2

]
}k∈N is bounded (not

necessarily diminishing), and

(∃a ∈ (1,∞)) , (∀k ∈ N) , (∀j ∈ {1, . . . ,m}) γkj :=
1

a
√
k(Lj + 2Mτm−1/2)

,

1we use the same bound presented in [1, Theorem 4.1], but we reproduce it for completeness.
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then for all T ∈ N, we have

min
k=0,...,T

Sk ≤ Ek∼PT
[Sk] = O

(
m(L+ 2Lτm−1/2) +m log(T + 1)√

T + 1

)
,

where PT is the distribution {0, . . . , T} such that PT (X = k) ∝ k−1/2.

Now for the decrease of the Lyapunov function:

Proof of Lemma 4. The standard upper bound [2, Lemma 1.2.3] for functions with Lipschitz contin-
uous gradients implies that

f(x1, . . . , w
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The inner product term can be split into two further pieces
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The proof finished by combining this inequality with the inequality in Lemma 3.
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