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Abstract

This document contains a few proofs, which were omitted from our NIPS submis-
sion.

1 Proof of Lemmal/ll

Lemma 1 (Lyapunov Function Supermartingale Inequality). For all k € N, let zF =

(k... 2%~ ") € HYFT. Then for all € € R, 1, we have
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where for all j € {1,...,m}, we have w} € Prox,k,, (ah — ¥ (V; f(25=) + vF)). In particular,
for o, = 0, we can take € = 0 and assume the last line is zero.

We first prove a descent property of the objective function—up to some residuals which are the result
of asynchrony and noise:

Lemma 2. Forall k € N, we have
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Proof. The standard upper bound [2, Lemma 1.2.3] for functions with Lipschitz continuous gradients
implies that
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And the definition of wf as a proximal point implies that
1
rj(wi) < r(af) = (wy —af +fvf, Vif(ah™ d")%ﬁl\w —z + v j||2+ ||Vk 72,
J

Given these two inequalities and the identity Ej, [1*] = 0, we have

Es [f(xk+1) _|_r(xk+1)] < %Zf(q:’f, .. ,wf,...,xfn) + Z (;rj(wf) + (1 — ;) m(wf))
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The residual due to asynchrony can be conveniently placed inside a sum that alternates up to a small
noise residual:

Lemma 3. Forall k € N and any € € R, we have
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Proof. The asynchronous term splits into the sum of two alternating terms and a third easily handled
term{| for all C' > 0, we have
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The proof is completed by noticing that Ey, [||z*™! — 2%|?] = m™'E;, [||w* — 2*||?], combining
the two terms on the last line, and using the following inequality:
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Summing up the bounds in the Lemmas, we obtain the claimed decrease in the Lyapunov function.

2 Relaxed Assumptions on the Variance When r» = (

It’s easy to modify the Lyapunov function in the case that » = 0 to the following form:

Lemma 4 (Lyapunov Function Supermartingale Inequality). For all k € N, let zF =

(xF, ... 2% 7) € HYFT. Then for all e € R, |, we have
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In particular, for oy, = 0, we can take ¢ = 0 and assume the last line is zero.

Key to this inequality is that, at each iteration, the noise variance is multiplied by(’yj’?)Q, rather than
by 7]’?. Following the proof of Theorem 1 yields the following theorem in the case that r = 0:

Theorem 1 (SAPALM Convergence Rates (r = 0)). Let {2*}ren € H be the SAPALM sequence
created by Algorithm 1 in the case that r = 0. If, for all k € N, {Ey, [[|[v*|*] }ren is bounded (not
necessarily diminishing), and
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!we use the same bound presented in [I, Theorem 4.1], but we reproduce it for completeness.



then for all T € N, we have
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where Pr is the distribution {0, ..., T} such that Pr(X = k) oc k=1/2,
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Now for the decrease of the Lyapunov function:

Proof of Lemmald] The standard upper bound [2, Lemma 1.2.3] for functions with Lipschitz contin-
uous gradients implies that
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The inner product term can be split into two further pieces

Ei [(wf — 25,V f(2))] = Ex [(w] — 2§ +4Jvf, Vi f(@* )] + By, [(w] — 2%, V; f(a*) =V, f(a* )],
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where we’ve use the equality Ej, [;] = 0. Thus, owing to the equality w¥ — 2% + Fvk =
7§V, f(xF %), we have
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The proof finished by combining this inequality with the inequality in Lemma3}
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