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Let us recall the primal, dual and semi-dual problems

Wε(µ, ν)
def.
= min

π∈Π(µ,ν)

∫
X×Y

c(x, y)dπ(x, y) + εKL(π|µ⊗ ν), (Pε)

= max
u∈C(X ),v∈C(Y)

Fε(u, v)
def.
=

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)− ιεUc(u, v), (Dε)

= max
v∈C(Y)

Hε(v)
def.
=

∫
X
vc,ε(x)dµ(x) +

∫
Y
v(y)dν(y)− ε. (Sε)

1 Convergence of (Sε) as ε→ 0

The convergence of the solution of (Pε) toward a solution of (P0) as ε → 0 is proved in [1]. The
convergence of solutions of (Dε) toward solutions of (D0) as ε→ 0 is proved for the special case
of discrete measures in [2]. To the best of our knowledge, the behavior of (Sε) has not been studied
in the literature, and we propose a convergence result in the case where ν is discrete, which is the
setting in which this formulation is most advantageous.

Proposition 1.1. We assume that ∀y ∈ Y , c(·, y) ∈ L1(µ), that ν =
∑J
j=1 νjδyj , and we fix

x0 ∈ X ,. For all ε > 0, let vε be the unique solution of (Sε) such that vε(x0) = 0. Then (vε)ε is
bounded and all its converging sub-sequences for ε→ 0 are solutions of (S0).

We first prove a useful lemma.
Lemma 1.2. If ∀y, x 7→ c(x, y) ∈ L1(µ) then Hε converges pointwise to H0.

Proof. Let αj(x)
def.
= vj − c(x, yj) and j? def.

= arg maxj αj(x).
On the one hand, since ∀j, αj(x) ≤ αj?(x) we get

ε log(

J∑
j=1

e
αj(x)

ε νj) = ε log(e
αj? (x)

ε

J∑
j=1

e
αj(x)−αj? (x)

ε νj) ≤ αj?(x) + ε log(

J∑
j=1

νj) = αj?(x) (1)

On the other hand, since log is increasing and all terms in the sum are non negative we have

ε log(

J∑
j=1

e
αj(x)

ε νj) ≥ ε log(e
αj? (x)

ε νj?) = αj?(x) + ε log(νj?)
ε→0−→ αj?(x) (2)
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Hence ε log(
∑J
j=1 e

αj(x)

ε νj)
ε→0−→ αj?(x) and ε log(

∑J
j=1 e

αj(x)

ε νj) ≤ αj?(x).
Since we assumed x 7→ c(x, yj) ∈ L1(µ), then αj? ∈ L1(µ) and by dominated convergence we get
that Hε(v)

ε→0−→ H0(v).

Proof of Proposition 1.1. First, let’s prove that (vε)ε has a converging subsequence. With similar
computations as in Proposition 2.1 we get that vε(yi) = −ε log(

∫
X e

uε(x)−c(x,yi)
ε dµ(x)). We denote

by ṽε the c-transform of uε such that ṽε(yi) = minx∈X c(x, yi)− uε(x). From standard results on
optimal transport (see [4], p.11) we know that | ṽε(yi) − ṽε(yj) |≤ ω(‖yi − yj‖) where ω is the
modulus of continuity of the cost c. Besides, using once again the soft-max argument we can bound
| vε(y)− ṽε(y) | by some constant C.

Thus we get that :

| vε(yi)− vε(yj) | ≤ | vε(yi)− ṽε(yi) | + | ṽε(yi)− ṽε(yj) | + | ṽε(yj)− vε(yj) | (3)
≤ C + ω(‖yi − yj‖) + C (4)

Besides, the regularized potentials are unique up to an additive constant. Hence we can set without
loss of generality vε(y0) = 0. So from the previous inequality yields :

vε(yi) ≤ 2C + ω(‖yi − y0‖) (5)

So vε is bounded on RJ which is a compact set and thus we can extract a subsequence which
converges to a certain limit that we denote by v̄.

Let v? ∈ arg maxvH0. To prove that v̄ is optimal, it suffices to prove that H0(v?) ≤ H0(v̄).
By optimality of vε,

Hε(v
?) ≤ Hε(vε) (6)

The term on the left-hand side of the inequality converges to H0(v?) since Hε converges pointwise
to H0. We still need to prove that the right-hand term converges to H0(v̄).

By the Mean Value Theorem, there exists ṽε
def.
= (1− tε)vε + tεv̄ for some tε ∈ [0, 1] such that

| Hε(vε)−Hε(v̄) |≤ ‖∇Hε(ṽε)‖ ‖vε − v̄‖ (7)

The gradient of Hε reads
∇vHε(v) = ν − π(v) (8)

where πi(v) =
∫
X e

vi−c(x,yi)
ε νidµ(x)∫

X
∑J
j=1 e

vj−c(x,yj)
ε νjdµ(x)

It is the difference of two elements in the simplex thus it is bounded by a constant C independently
of ε.

Using this bound in (7) get

Hε(v̄)− C ‖vε − v̄‖ ≤ Hε(vε) ≤ Hε(v̄) + C ‖vε − v̄‖ (9)

By pointwise convergence of Hε we know that Hε(v̄)→ H0(v̄), and since v̄ is a limit point of vε
we can conclude that the left and right hand term of the inequality converge to H0(v̄). Thus we get
Hε(vε)→ H0(v̄).

2 Discrete-Discrete Setting

The list of authors we consider is: KEATS, CERVANTES, SHELLEY, WOOLF, NIETZSCHE,
PLUTARCH, FRANKLIN, COLERIDGE, MAUPASSANT, NAPOLEON, AUSTEN, BIBLE, LIN-
COLN, PAINE, DELAFONTAINE, DANTE, VOLTAIRE, MOORE, HUME, BURROUGHS, JEF-
FERSON, DICKENS, KANT, ARISTOTLE, DOYLE, HAWTHORNE, PLATO, STEVENSON,
TWAIN, IRVING, EMERSON, POE, WILDE, MILTON, SHAKESPEARE.
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Figure 1: Comparisons between the Sinkhorn algorithm and SAG, tuned with different stepsizes,
using different regularization strengths. The setting is identical to that used in Figure 1. Note that to
prevent numerical overflow when using very small regularizations, the metric is thresholded such that
rescaled costs c(x, yj)/ε are not bigger than log(10200).

3 Proof of convergence of stochastic gradient descent in the RKHS

The SGD algorithm applied to the regularized continuous OT problem reads, starting with u0 = 0
and v0 = 0,

(uk, vk)
def.
= (uk−1, vk−1) +

C√
k
∇fε(xk, yk, uk−1, vk−1) ∈ H × G, (10)

where (xk, yk) are i.i.d. samples from µ⊗ ν. The following proposition shows that these (uk, vk)
iterates can be expressed as finite sums of kernel functions, with a simple recursion formula.
Proposition 3.1. The iterates (uk, vk) defined in (10) satisfy

(uk, vk)
def.
=

k∑
i=1

αi(κ(·, xi), `(·, yi)), where αi
def.
= ΠBr

(
C√
i

(
1− e

ui−1(xi)+vi−1(yi)−c(xi,yi)
ε

))
,

(11)
where (xi, yi)i=1...k are i.i.d samples from µ⊗ ν and ΠBr is the projection on the centered ball of
radius r. If the solutions of (Dε) are in the H × G and if r is large enough, the iterates (uk,vk)
converge to a solution of (Dε).

Proof. Rewriting u(x) and v(y) as scalar products in fε(X,Y, u, v) yields

fε(x, y, u, v) = 〈u, κ(x, ·)〉H + 〈v, `(y, ·)〉G − ε exp
( 〈u, κ(x, ·)〉H + 〈v, `(y, ·)〉G − c(x, y)

ε

)
.

Plugging this formula in iteration (10) yields : (uk, vk) = uk−1 +αk(κ(·, xk), `(·, yk)) ,where αk is
defined in (11). Since the parameters (αi)i<k are not updated at iteration k, we get the announced
formula. Putting a bound on the iterates of α by projecting on Br ensures convergence [3].
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