8 Supplementary Material for Graph Clustering: Block-models and model
free results

Proof of Proposition 2

1. Proof by verification.

2. LY = YAYTY + (BBT)L(BBT)Y = YA. Since B is the orthogonal complement of
Y, it follows that it is a stable subspace as well.

3. This is a well known result; see for example [19].

The celebrated Sinus Theorem is reproduced here for completeness.

Theorem 13 (Sinus Theorem of Davis-Kahan, from [19], Theorem V.3.6) Let L be a Hermi-
tian matrix with spectral resolution given by (4), Y be any n x K matrix with orthonormal

columns, and M any symmetric K x K matrix with eigenvalues pi1.x. Let R = LY —YM
and A = LN [N — u| > 0. Then, for any unitarily invariant norm |
R||

|| diag(sin 01,5 (Y, Y))|] < HT? where 01,5 are the canonical angles between R(Y') and R(Y).

’

Proof of Proposition 5 This is a corollary of Theorem 3.6 in [19]. If eigenvalues are sorted by their
absolute values, then 5\K+1:n S [—‘5\[(+1|, |5\K+1 H and p1.x € R\ (_|5\K+1| —A, |5\K+1 | + A) If
we set M = A, sothat A\.x € R\ (—|Ag 11| — A, A 11|+ A). Now we view Y as a perturbation
of Y, hence

R = LY-YA = LY-LY+ (LY -YA) = (L-L)Y (11)
IR = (L=L)Y] < [IL-L|IIY]] < = (12)
From Theorem 13 the result follows. O
Proof of Proposition 6 For 1:
I|F||2 = trace FFT = traceULVIVEUT = traceUTUSZVIVYE = trace¥?

K K K
= 1+ cos’f = 1+ Y (1—sin’6) = K —» _sin’ 6 since 6y = 0 (13)
k=2 k=2

k=2
> K — (K —1)&"? (14)
For 2: Denote trace MTM =< M,M >p. Then ||M — M|% = ||M||% + ||M]||% -2 <
M,M>p< K+ K —2(K — (K — 1)) = 2(K — 1)¢’2. O

Proof of Proposition 7 We have that | < M — M, M’ — M >p | < ||M — M||p||M’' — M||r.
From Proposition 6 the r.h.s is no larger than 2(K — 1)&’2.

—<M—-MM —M>p < |IM—M|p||M —M|p < 2(K —1)e" (15)
—<M,M'>p + <M,M>p+<MM >p—||M||% < 2(K—-1)¢? (16)

<M,M >p > <M,M>p+<MM >p—K—2(K—1)" (17)

> 2K —2(K —1)e? - K —2(K —1)e” = K —4(K — 1)4t8

Now, note that trace MM’ = traceYYTY'(Y')T = trace((Y)TY))(YTY') = ||[YTY'|3.
Moreover, by (7), Yz and Y differ by a unitary transformation. Since || ||z is unitarily invariant,
the result follows.

Proof of Theorem 4 We apply Theorem 9 of [13] with Ax = Z, Ax: = Z', and Ax =Y, Ay =
Y'. It follows that pxy,,, = > ;crrw di/ 2 iy di- Hence, the point weights are proportional to
czl;n. Also, evidently, pmin/Pmaz = 00, and the result follows.

Note that we use the fact that both PFM’s have degrees equal to dy., to obtain this proof. O

Proposition 14 Assumptions 3 and 4, imply || diag(sin 61.x (Y, Y))|| < e/|A\&| = &/, where A\
is the K-th eigenvalue of A.
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Proof of Proposition 14 We consider Aa perturbation of A, its eigenvectors Y as the perturbed
eigenvectors of A and M = A. Then, R = AY — YA

IR = [|AY = YA (19)
= ||(AY — AY) + (AY —YA)|| (20)
< A=Ay Q1)
< JJA-A[IY] < e (22)

The separation between A and the residual spectrum of A is \5\ k|- From the main Davis-Kahan
theorem 13 the result follows. O

Proof of Proposition 8 The proofs of 1 and 2 are straightforward. To show 3, note that A =
ZC1ZTAZCZT = YzCY?BCY?*Y} = Y,UAUTY} = YAYT. The definition of B
above shows that this is the Maximum Likelihood estimator of B given the clustering C.

#edges from cluster k to cluster [

& DBi = (23)

neEng

Proof of Theorem 9 We now follow the steps outlined in section 3 with €’ from Proposition 14 to
obtain our main stability result.

Proof of Proposition 10 In the Proof of Proposition 7, we replace the bounds corresponding to
< M, M >p,||M — M]||r by the actual values computed from M, M. We obtain

<M, M' >p>< M, M >p —(K —1)(£')? = 20/2(K — 1)¢'|| M — M]||p. (24)

Proof of Proposition 3

From the Proof of this theorem, we have that ||L* — L|| = o(1), ||(D*)Y/2 — DY/2|| = o(1),
IA* = Al| = o(1), and ||[Y — Y*|| = o(1). Let Z be the indicator matrix of C*. The principal
eigenvectors of L* are Y* = (D*)/2Z(C*)~'/2. 1t follows then that ||ZTDZ — ZTD*Z|| =
o(1), and since C = ZTDZ, Y, = DY2ZC~'/2 we have that ||Y; — Y*|| = o(1), ||F* —
F|| = o(1) where F* = YTY*. Moreover, since ||Y — Y*|| = o(1), ||F — I|| = o(1) Hence
[JUVT — I|| = o(1). Since the choice of B depends only on R(Y7), it follows immediately that
|BBTLBTB — B*(B*)TL*(B*)TB*|| = o(1). Now, L = Y,UVTAVU"Y} + BBTLB" B,
and L* = Y*A*(Y*)T + B*(B*)T L*(B*)” B*, which completes the proof. O
perturbation of the PFM model To obtain a noisy PFM model A, we calculate the first K piecewise

constant [14] eigenvectors V' of the transition matrix P = D~ A, from which we obtain V* by
perturbing each entry in V' with a noise € ~ unif(0,10~%). The perturbed similarity matrix A is

then obtained as A = D'/2(DY/2y*Av*T D1/2 4 Ylow[\lowﬁgu)pl/?. An adjacency matrix A is
generated from A. In figure 2, we show the perturbed graphs A and A.

A A

Figure 2: Left: the visualization of the perturbed A. Right: the visualization of the perturbed A
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