Supplementary Information

A Some Useful Technical Lemmas

Lemma 1. Suppose that ¢ € R™ has independent identically distributed components, each of which
has a sub-Gaussian distribution with parameter o2, then

2
(” lloo > z) < 2gexp <—22> (BeR”™, 2>0), (A.1)
2||Bll;
2
—log (1
]P’<”€”2221+z> < exp <”(z o8 ( +Z))) (2 >0). (A2)
no 2
Moreover; by (A.1) we have that for B € RY*", with probability not less than 1 — 2q/m?,
| Bell . < 20 -||B||y /1logm. (A3)
By (A.2) we have that with probability not less than 1 — exp(—4n/5),
lelly, < 20+v/n. (A4)

Proof. Asfor (A.1),let B = (B; j)gxn and 1 <14 < g, it is well-known that
B;.e = Bji€1 + Bioea + -+ + B €,

is also sub-Gaussian, with parameter b7 = (B, + - -- + B?,,)o”. Thus

22 2
PUBel > 2)<aq- P(|B;.€| > 2) <2 53 ) <2 “onmig |
(I1Bell o, = 2) < ¢ g%xq (|Bi,.el > 2) < (Jexp( 2b§> < qexp< 2||B||§>

As for (A.2), note that for 0 < ¢ < 1/2,

<|7|10|22 > 14 ) <P (exp (C(LZ'@) > exp (Cn(1+ Z»)
exp (4 |(|j€2||§>] = exp (—(n(1 + 2)) <1E [exp (CQ)D

<exp(—(n(l+2z))- (1_1%)”/2 :

Take ¢ = z/(2(1 + z)) € [0,1/2), and (A.2) follows. O
Lemma 2. Y g > 0 ifand only ifker(Dge) Nker(X) C ker(Dg).

<exp(—¢(n(l+2))E

Proof. Define Q = (D%, DL.,/vXT /\/n)T, and note that for any £ € R?,

()-eeare ()]

% ¢
= <O> (In —Q(QTQ) Q") (0) =S558 (AS)
, \0 0
If ker(Dge) Nker(X) C ker(Dg), then for any £ € R? satisfying (T3¢ s& = 0, (A.5) leads to
(€7,0,0)T = Qg for some 3, implying

§—Dgf=0,Dg.f=0, XB=0= 3 € ker(Dgc) Nker(X) C ker(Dg) = £ = Dgf8 = 0.
Therefore, X5 g > 0. Conversely, if ¥g g > 0, then for any 5 € ker(Dge) N ker(X), since

Dsﬁ ; DB\ |I? Dsf3
oo ss s =|(8) -e@ratar ()| < (74) -0
2
2

2

= min
B/

2
2

Dsp Dsp Dgp
0 ) 0 VX B/,
which implies Dgf8 = 0, i.e. 8 € ker(Dg). So ker(Dge) Nker(X) C ker(Dg). O
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Lemma 3. Adopt the notation from (2.9) to (2.11). B € L if and only if
B=VE+VViE, wheres =VT3, ¢ =VIVTS.
Proof. Note that
[=VVT+ V7T =vvT 4+ 7 (VT + 7 77

Right multiplying 3 on both side leads to

B=VS+VViE+ TV, (f/le/TB) . (A.6)
It suffices to show

ker (‘71TI7T) = L, which is equivalent to L’ := Im (V\Z) = Lt (= ker(X) Nker(D)).

For any 8 € L', we have X8 = 0, D = 0 since XVVi =0, DV =0,s0 3 € L*. Conversely, if

B € L*, left multiplying D on both sides of (A.6) leads to § = 0. Then left multiplying X on both
sides of (A.6) further leads to € = 0. Now (A.6) tellsthat 5 € L'. So L' = L. O

Lemma 4. Adopt the notation from (2.9) to (2.11). Define B := A? + VT X* (I — UlUlT) XV.
We have

1 N
DAY =UAB VT (I — \/ﬁXTUlAllvlTVT> ) (A7)
Consequently,
S = (I-DA'D") /v =(I-UAB'AUT) Jv. (A.8)

Proof. Note that

(vT) 4 (V f/) _ <A2 + VT X*XV VVTXTU1A1V1T/\/E)

VT vWIMUTXV/n vViAVE
B T (L VIXTU ATV [ (B 0
=QMQ", where QQ := (0 I, , M = 0 l/‘/iA%VlT

We can directly verify that (QMQT)" = (QT)"'MTQ ™1, thus

pat =0 (v.¥) ((fr) 4 (v V))T () —wa0 @) are ({r)

which comes to be the right hand side of (A.7). Now it is easy to verify (A.8). O]

Lemma 5. If
(B

(uT, UT) (éDT g) (5) > max (uT (P — QRTQT) u, vT (R — QTPTQ) v) . (A9)
Moreover, for 0 < )\ < 1, the following two statements are equivalent:
P —QR'QT = \P, (A.10)
R—QTP'Q = AR. (A.11)
And if (A.10) and (A.11) hold, then by (A.9) we have

then

(uTmT) (éDT %) (g) > max ()\uTPu7 )\vTRv)

2

2 2 A u
> s (Pl duinB)1018) = 3 [ () )

2
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Proof. Theorem 1.19 in [Zha06] tells that PPTQ = @, so it is easy to verify

o ( I 0\(P 0 I PfQ
—\QTPt 1)\0 R-QTPIQ)\0 I )
Thus

T
(u" ") K (Z) = (u + [;’TRv> (Ig R_ QOTPTQ> (u * ];TRU> > " (R—QTPIQ)w.

Similarly we can obtain another inequality.
If (A.10) holds, then
PH2QRI/2 . RI2QT pit/2 < (1-— )\)pTl/QppTl/2 < (1=N1I
— RW/2QT pT/2. pfi2QRI/2 < (1-A\)I = RY?RM/2QTPTQRM/2R/2? < (1-)\)R.

By Theorem 1.19 in [Zha06] we have QRTY/2RY/? = @, thus QT PTQ < (1 — MR, ie. (A.11)
holds. Similarly (A.11) implies (A.10). L]
Lemma 6. Adopt the notation from (2.9) to (2.11). If (2.2) holds, then (2.6) holds for \s; = \g. On
the other hand, if (2.6) holds, then (2.2) holds for
_ AsAD

Ap+ (A% +AD) (1/ (WD) +1/ (vAY))

A

Proof. 1f (2.2) holds, note that

1 0 A/v 0
Hg,s),(8,5) = QMQ", where Q := (DZAT Is> , M = ( 0 Zs,s) . (A.13)

So the left hand side of (2.2) can be written as
B—ATDEys\" (Afv 0\ (B— ATDEqg
Vs 0 Xss Vs ’

Taking 8 = ATDT~g € L, it becomes 75X g s7v5, which is not less than Ay \|75||§ for any v5 € RS,
So ES,S t )\HI

On the other hand, if (2.6) holds, since
Hss — HsgHY yHg s = S5 = Anl = Ayv - Hgs, (A.14)
by (A.12) we have

(B7,75) - Hg,5).8.5) (i) > Asv - vEHs svs = As ||yslls -

By Lemma 3, let 8 = V§ + VV;€. By Lemma 5 and (A.14), we know Hp 5 — H,B,SH;SHS,B =
Asv - Hg g, and

(87,75) - Hip9).8.5) (i) > Asv - 1 Hp 33

s (67, €7) A+ VTX* XV wVIX* XV § — s (67, €7) P Q\/§
’ wWIVTX*XV  wVEIVTX*XVV ) \E) " ’ QT R)\¢)-

We have

22
P—QRIQT = A? TX* (I -UUNXV = A\pl = —5 2
QR'Q +oVIXH (I - U)XV = A, s

Thus by (A.12),
TP Q) (9o b 1 2 2
(%) (QT R) (f) by ww (o Eavswmiod (UERd G )

/\2
(VA% +AD) (1;)% +1/(vAD))

>

1813
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2 2
= 118115 + s 13
2

Concluding the results above, we get
1 vA% +A2) (1/0% +1/ (vA2

B
169
~ Ax )\% s

Thus (2.2) holds for
AnAZ,

M= 2 AL T AD) (1 08) £ 1/ (00

Lemma 7. When X5 ¢ > 0, we have

Hse 5.5 Hs.5) 5.5) = (fDSCAT + N 555 5 Ds AT, 2567325}5) . (A.15)

Consequently, for any p € [—1,1]°, we have

t 0
sup || Hge (3,9 H(g 5y 5,9 " <p>

pE(—1,1]°

= sup
0o pe[—1,1]¢

—1 —1
Yse,s¥g.5 PH = HESG,sEs,sH :
o0 o0

Proof. By (A.13), we know

Alv 0
rank (H(,B,S),(,@,S)) = rank <( 6 ES,S))

=rank(A) +rank (X5 g) = rank (Hg g) + rank (Hg g) .
Then by Theorem 1.21 in [Zha06], we have that
ot _ (VAT + Ai?gzg}sDSAT ATD”gi 1ESIS> .
(8,5),(8,5) N5 s Ds Al Y55
By Hge (3,5) = (—Dge/v,0) and —Dge ATDg /v = S ge g, we are done. O

B Proof of Theorem 1

Proof of Theorem 1. By definition, we have ICq > ||29sign(DgsS*)|ls > IC;. Now we prove
IRR(0) exists and IRR(0) = ICy. Let M := A~'VTX*(I — U;U{) XV A~'. When v is small, by
(A.8),

v =1—-UAB'AUT =1 —U (I +vM) " UT

=I-U(I-vM+0W?)U" =1-UU" +vUMU" + 0O (v?)

= v¥ge,5 = —Use UL +vUse MUE 4+ 0 (v?) , vE5,5 = [ —UsUL +vUsMUS + O (v°).
Let F :=1 — UgUZ and F = U’A'U’" be the “compact” eigendecomposition of F' (A’ - 0). Let
G :=UsMUZ. Suppose (U’,U’) is an orthogonal square matrix, and

_ Kl K2 o U/T ! TT!
K—<K2T K3> ‘_(U/T G (U,0).

By F' + vG > 0, we have K3 >~ 0. Now

~ AN +vK, vK. u'r
FtvG= (U/’U/) ( vKT ' VK?,) <I~J’T)'

Define Q, = K3 — vKI' (A" +vK;) 1Ky, R, = KI'(A'+vK;)™!, and we can calculate

B / -1 T -1 _pTNH-1 1T
(4 va) = (0, 07) (W) e SR (U).
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Note that Q,, — K3, R, — KI A’~1, and note that
UL UsUSU' = (1 -UEUS)ULU = UL (I -UsUE) U’ = ULU'N - U0 =0
— (USCUSTU’)T UsUTU" =0 = Us.ULT’' =0. (B.1)
Combining it with the representation of (F' + vG)~!,
—UsUSSgls = UseUS (F +vG) ™!

AN 4+vK)"' +vRYQ,'R, —RTQ;"\ (UT
= — (UsULU',0) <( 1—)Q;13y © *Q T

U/T

— (~UseUSU'N =Y U ULU'N T Ko K5 Y ( o > = Us.UTU'A (U’T - KQK;U’T) .

Besides,
vUse MU Y5y = Use MUZ - v (F +vG) ™" = Use MUFU'K3' U™
So whenv — 0,
Sse,s855 = —UseUSU'N ! (U'T - Kngll?'T> +Use MULU'K31OU'T
= —UsUU'N'U'T + Uge (USU'N'UTUg + 1) MUSU' KU
= D VATUIUNT'UT + Dge VAT (I + ULUNT'UTUs) MUSU' KU
The infinity norm of the right hand side is IRR(0). On the other hand,
ICo = || Dse (D& Dse)" (X Xw (W x*xw) ' w” — 1) DE| .
In order to prove IRR(0) = ICy, it suffices to show
(X*XW (wTxxw) w? - 1) DT = DL Dg.VAUFU AN UT
+ DEDg VAT (I +USU'N U Us) MULU' KU
The first term of the right hand side is
— VAUSUsUSU'N U™ = —VA (I - USUs) USU'N U™
=-VAUS (I -UsUS)U'N U = —VAUSU'NUTU'N U = -DSU'U'T,
while by the fact that
(I-USUs) (I+USU'N U US)
=1-UsUs+UIU'N U Us — UEUSUTU'N U U
=1-UlUs+ UL (I-UsUS)U'N U Us
=1 -UrUs+ULU'UTUs =1 - ULU'U'"Us,
the second term becomes
VAUEUse (I+UEU'N'U"TUs) MULU K51 U
=VA(I-USUs) (I+USU'N'U"TUs) MULU' K5 ' U'T
= VA (1-U§0'0""Us) MUZO KGO
= VAMULU'K;'U'T —vAULO - UTUsMULT' - K310
=X*"(I-UU7) XVAT'UEU'K;'U' — DU’ - K - K5 ' U
= X" (I-U,U07) XVAT'ULU'K; 0" — DEU'O™.

14



So it suffices to show
X*Xw (WTx*xw)' wTpL = x* (1 - v,UT) XVA UL U K507
which is equivalent to
X (Xww X)) XwwT DL = x* (I - U,UT) XVA- UL K507 (B.2)
First we prove
ker (Us) = Im (Ugfj') . (B.3)

In fact, by (B.1) we have Im(UU") C ker(Use). For any ¢ € ker(Us.), we have (I — UEUs)¢ =
ULUse¢ = 0. Let

(=U&G + G, G2 € ker(Us),
then

0=(I-UlU)(ULC + ) =G+ (I —USUs) UL = G+ UL (I - UsUL)¢,
which implies ¢» € Im(UY). But (s € ker(Us), then (» = 0, and 0 = (I — ULUs)UL ¢ =
UE(I —UsUD)¢ = UTU'NUT¢,. Assume that ¢ = U’C3 4 U'C, then UL U'A’C3 = 0. Thus

0=UsUSU'N G =T -UNUT)UNG=UNIT-N)GG=(I-N)&=0
— UsULU' G =U' (I = N') G = 0 = (ULU'¢s)" USU'Gy = 0 = ULU'¢s = 0

— B=ULG = ULU G+ US0'Gy = UE0'G € Tm (UZT).
So (B.3) holds. Now for any 5 € RP, let 8 = V5:|— V4, then 3 € ker(Dge) if and only if Ugc A§ = 0,
which means § € A~ ker(Use) = Im(A’lUgU'). So

ker (D) =Im (J) + Im (V') , where J := VA~ UZ 0",
Since VTV = 0, the linear subspaces spanned by J and V are orthogonal, and we have
ww?T =g (TN T vV
Noting VTV =0, VT X*(I — U,UT) = 0, we have
X (xwwTx) xwwT DL U7 K,

= x* (xwwTx)) " x7 (TN ITVAULT T K
= x* (xww?x)' x (TN oTus UL 0T UsMULT
= x* (xwwTx)) ' x7 (TN oTusMUED
= x* (xww”x*)' xJ (J70) ST X (1 - 0, UT) XVATUED
= x* (XwwTx) (xwwTx*) (1 -v,07) X J.

Since (XWWTX*)T(XWW?'X*) is the projection matrix onto the linear subspace Im(X W) =
Im(XV) +Im(XJ) = Im(Uy) + Im(X J), and (I — Uy U)X J = XJ — Uy - UL X J lies in this
subspace, the last term above becomes X * (I - U 1T ) X J. Therefore, we get

X (XwwTx)' xwwTDLo' Ky = X* (I - U,UT) XJ
— X (XWwWTx*)' xwwTDL0’ = X* (I - U, UT) XVA UL K3,
Now to prove (B.2), it suffices to show
X (XWWTX*) XWWTDE (1-0'0T) = 0 = wwDEU'v'"™ =0
—J (JTJ)T JIDLU =0 = JTDIU =0 = U"TUsA VT . VAULU =0
= UTUsUSU =0«=U" (I-UNUT)U' =0
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which is surely true since U'7U’ = 0. Then IRR(0) = ICj is proved.

Now we turn to IRR(c0). Let M = U”A”U"T be the compact eigendecomposition of M, and
(U”,U") is an orthogonal square matrix. Then

v =1-U({I+vM) U
- nT - -1 nT
=1-v(v".0") ((ZT) (1 +vM) (U7, U)) (gT) 7

—1
- IT+vA” 0 Ut
=1-u(U"0) ( 0 I> <UT T
= I-uy" (I + VA”)_l U//TUT _ UU//U//TUT N UUNUHTUT
when v — +00. Besides, vs.5 — I — UsU”U"TUE, and this limit == v% 5 > 0 for any v > 0.

Thus Ege s¥ 5 has limit when v — +oc.

Now we study when IRR (c0) = 0. The underlying existence of Eg’ls requires X g g > 0, which is
equivalent to ker(Dg<) Nker(X) C ker(Dg) by Lemma 2. Let

DL = XTC, + DEL.Cy, which implies UL = A~'VTXTCy + UL.Cs.

Then 0 = VI DL = VTXTCy + 0 = /nVi A UYL Cy, which implies U{ C; = 0. So for N =
AYWTXT(I — U, UTL)//n, we have

NC, = A~'VIXTCy )y /n.
Then TRR(00) = 0 <= ~UsU"U"TUL = 0 <= ~Use(I - MMY)UL =0. By M = NN,
the equation is further equivalent to
—Usge (I - NN")UE =0+ —Us: (I - NN') (A"'VTXC, +ULC2) =0
> —Uge (I = NN') (VaNCy + Ud.Cy) =0
> —Uge (I - NNV UECy =0+ C]Use (I - NN')- (I - NN UL.C, =0
> (I - NNNULCy =0 <= Im(US.C) C Im(N).
It suffices to show that the last property holds if and only if ker(X) C ker(Dg) or, equivalently,
Im(DL) € Im(XT). In fact, if Im(DL) C Im(XT), then Cs can be set 0 in the beginning, and
Im(UZ.Cs) = Im(0) C Im(N). If Im(UZ.C2) C Im(N), let UL.Cy = NCs, then
DL.Cy = VAULCo =VVTXT (I -UUT) C3/vn
= (Vv VU)X (1= 0T Cy/v/m = X7 (1= 0OT) Gy v/,

and hence DY = XTC) + DL.Cy = X7 (Cy + (I — U U)C3/+/n), which implies Im(D%) C
Im(X 7). We have finished the proof of that IRR(c0) = 0 if and only if ker(X) C ker(Dg). [

C Split Linearized Inverse Scale Space (Split LBISS) as the Limit Dynamics
of Split LBI

Now we focus on a differential inclusion called Split Linearized Bregman Inverse Scale Space (Split
LBISS), the limit dynamics of Split LBI when the step size « — 0. This dynamics helps us understand
the behavior of Split LBI, and the proof on sign consistency as well as ¢5 consistency of Split LBISS
can be rewritten into a discrete version then applied to Split LBI with slight modifications.

First, noting that

ped|Vly, z=p+/k = v =rS(z,1), p=2-8(z1), (C.1)
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we have an equivalent form of Split LBI as follows.

Brt1/k = Br/k — aV sl (B, Vi) (C.2a)
Prt1 + Ves1/k = pr + /K5 — VAl (Br, k), (C.2b)
PRTIEAN (C2¢)

where po = v = 0 € R™, fy = 0 € RP. By letting p(ka) = pg, v(ka) = v, B(ka) = By and
o — 0, the iteration above can be viewed as a forward Euler discretization to the following inclusion
called Split Linearized Bregman Inverse Scale Space (Split LBISS).

B(t)/k ==Vl (B(t),y(t) = —X* (XB(t) —y) — DT (DB(t) — (1)) /v, (C3a)
p(t) +5(t)/k = =V L(B(t),~(t) = — (v(t) — DB(t)) /v, (C.3b)
p(t) € Oyl s (C.3¢)

where p(t), 3(t),y(t) are right continuously differentiable, with p(¢), 8(¢), ¥(¢) denoting the right
derivatives in ¢ of p(t), 5(t), v(t) respectively, and p(0) = v(0) = 0 € R™, 5(0) = 0 € RP.

The following inclusion called Split Inverse Scale Space (Split ISS) can be viewed as the limit of Split
LBISS when kK — +o0.

0=—=Vgl(B(t),7(t) = —X* (XB(t) —y) — DT (D(t) — (1)) /v, (C.4a)
p(t) = =V L(B(t), (1) = — (v(t) — DB(1)) /v, (C.4b)
p(t) € vl (C.4¢)

where p(t) is right continuously differentiable, 3(¢), v(t) are right continuous, and p(0) = v(0) =
0 € R™, 5(0) = 0 € RP. Besides, we require “3(t) € L”, since replacing 3(t) with “the projection
of A(t) onto L” does not disturb (C.4a) to (C.4c). (C.4) coincides with the differential inclusion
proposed in Chapter 8 of [Moe12], there the authors introduced it from another aspect.

The following propositions establish the solution existence and uniqueness of Split (LB)ISS, in almost
the same way as [Osh+16].
Proposition 1 (Solution existence and uniqueness for Split (LB)ISS).

1. As for Split ISS (C.4), assume that p(t) is right continuously differentiable and ((t),y(t)
is right continuous. Then a solution exists for t > 0, with piecewise linear p(t) and
piecewise constant 3(t),(t). Besides, p(t) is unique. If additionally X5 sy = 0 for
0 <t <7, where ¥ is defined in (2.5) and S(t) := supp(~(t)), then B(t),y(t) are unique
for0 <t <T.

2. As for Split LBISS (C.3), assume that p(t), 5(t) are right continuously differentiable. Then
a solution exists fort > 0.

Proof of proposition 1. For Split ISS, by (C.4a) and the fact that 3(t) € L = Im(X7T) + Im(DT) =
Im(A) = Im(AT), we can solve 3(t) = AT (vX*y+ DT~(t)) which is determined by (). Plugging
it into (C.4b) we have
§(1) +4(0) /s = —Sn(t) + DATX*y.
Taking M = I,y — (/v/nXT, DT)T(\/v/nXT, DT) in Theorem 1.19 in [Zha06] leads to
DATX* = ¥51 (DATX*) = 21/2511/2 (DAX™).
The inclusion becomes
PO + 30/ = =V/2 (81/2y(t) - SP2DATX "),

which is a standard ISS (on (t)) and has been sufficiently discussed in [Osh+16] (let X, y in that
paper take /nX'/? and /nX1/2D At X*y in this paper). Specifially, there exists a solution with
piecewise linear p(t) and piecewise constant 5(t), y(t). Besides, p(t) is unique. If additionally, when
Ys(t),s() = 0, we have that ¥, g4 has full column rank, and (#) (hence 3(t)) is unique.

For Split LBISS, letting z(t) = p(t) +(t)/x and noting (C.1), the Split LBISS (C.3) is equivalent to

(B(t)) _ (—mX (XB(t) —y) — DT (DB(t) — wS(=(t),1)) /v) ,
Z(t) — (8S(2(1),1) = DB(1)) /v

The Picard-Lindel6f Theorem implies that this ODE has a unique solution (5(¢), z(¢)), so there exists
a unique solution to the Split LBISS (C.3). O
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Besides, for the loss function defined in (1.3), we have the following property.

Proposition 2 (Non-increasing ¢ along the solutions of Split (LB)ISS and LBI).
1. For a solution (p(t), B(t),v(t)) of Split ISS (C.4), £(3(t),v(t)) is non-increasing in t.
2. For a solution (p(t), B(t),v(t)) of Split LBISS (C.3), £(3(t),~(t)) is non-increasing in t.
3. For a solution (py, Br, k) of Split LBI (C.2), {(Bk, V) is non-increasing in k, if
rafH|ls < 2. (&)
Moreover, one can prove || H ||, < 2 (1+vA% + A%) /v, so (C.5) holds if

ka <v/(1+vA% +A). (C.6)

Proof of proposition 2. For Split ISS, one can easily imitates the technique in the proof of Theorem
2.1 in [Osh+16] to show that (5(t),y(t)) is the solution of the following optimization problem.

min £ (B(t),v(t))
By
v =20, ifpi(t) =1, (C7)
subject to v; <0, if p;(t) = —1,
v =0, ifp;(t) € (~1,1).

for any ¢ > 0, due to the continuity of p(-), there is a small neighborhood of ¢, on which every 7
satisfies

p; (1) > —Lhencevy; (1) >0 if p;(t) =1,
p; () < 1hence ~y; (T )ZO if p; (t) = —1,
pj () € (=1,1) hence v; (1) = 0, if p;(t) € (=1,1).

That is to say, (3(7),v(7)) satisfies the constraints in (C.7), so the value of £(3(7), (7)) is not less
than £(3(t),v(¢)), namely the minimum of (C.7). This implies that any ¢ > 0 is a local minimal point
of a right continuous function ¢(3(-),v(+)). Then by standard techniques in mathematical analysis,
we have that ¢(5(t),~y(t)) is non-increasing.

For Split LBISS, by (C.3¢), we have () - p;(t) = 0 for each j, so ¢ is non-increasing since
S - ((40). (226079
=((50)- o)) =168

For Split LBI, noting (pr+1 — pr) (Ve+1 —V&) = llok+1llt — (o1, ve) + k1 lls — (ors Yet1) >0,
we have

— aVl (B, )" (ﬂkﬂ - 5k)

Ve+1 — Yk

:(< 0 )+1(5k+1—5k)> (5k+1—ﬁk>>1
Pk+1 — Pk K \VE+1 — Tk Ye+1 =V ) T K

By ka| H||2 < 2, we have

2
<0.

2

2
Br+1 — Br
Ye+1 — Vk 9

C(Bra1, Yes1) — € (BryTr)
= VI (B, )" <Bk+1 B 6k> + % (Biy — 51€Ta’YkT+1 — AT H <5k+1 - ﬂk)

Ye+1 — Yk Ve+1 — Yk
2
Br+1 — B + |HH2 Br+1 — B
Ve+1 — Vi -
18

1
< -
Ko

Ve4+1 — Yk



Moreover, it is easy to verify that

1 1 2 2
(a1 (8) = 2ixsi+ 2108 - < 2ixsi+ 2108l +2 g

g
L 2(1+vA% +43) H(ﬁ) ’ ((6) ERm-&-p)’
7)1l \\v

14

2 (14+vA% +A3)

= ||H|, <

D Oracle Properties: the Key to Prove Consistency

(C.8)

O

The key to our analysis for Split LBISS and LBI is to deal with the Oracle properties, i.e. properties

assuming S is known. First, let (8°,~°) form an Oracle solution of minimizing ¢, namely

(B%,7°) € arg I}gli»? C(B,7)-
Yge=0

which implies
Vsl (8°79°) = X* (XB° —y) + D" (DB° =7°) /v =0,
Vsl (8°,7°) = (7§ — DspB?) /v =0.
Obviously ¢(Pp3°,v°) = £(8°,~°), thus we can assume that 3° € L, and actually

(8°,7°) € arg min £(B,7).
BEL, yse=0

D.1 Oracle Dynamics of Split LBISS
Define the Oracle Dynamics of Split LBISS (C.3) as
Pse(t) = 75e(t) =0,
B'(t)/k=—X"(XB'(t) —y) - DT (DB'(t) =+ (1)) /v,

ps(t) +4s(t)/k = = (Vs(t) — DsB'(2)) /v,
ps(t) € 0llvs @y

(D.1)

D.2)

(D.3)

(D.4a)
(D.4b)
(D.4c)
(D.4d)

where p's(0) = v4(0) = 0 € R®, 8'(0) = 0 € RP. Besides, we require “$’(¢t) € L”. This dynamics
can be viewed as an Oracle version of Split LBISS (C.3), with S known and pge(t), 7ys<(t) set to be

0. We first expect and prove (3'(t),~(t)) converges to (3°,~°) as t evolves. Let

d(t) :=B'(t) = B°, dy(t) := /() =%, d(t) = \/Hd%S(t)Hg + llds (®)5-

Adding (D.2) to (D.4b) and (D.4c), the Oracle Dynamics can be reformulated as
Pse(t) =v5:(t) =0,
(st0) * & (50) = ~#ssncom (3250
ps(t) € Ollvs (@)l
Define the potential function of the Oracle Dynamics (D.6) as
U(t) := D50 (73, 95(8)) + d(t)*/ (26),
where d(t) is defined in (D.5), and the Bregman distance

(D.5)

(D.6a)
(D.6b)

(D.6¢)

DO (38, 45(8)) = 178l = s @)l — (1§ = 50, p5®) = 178l — (18, P (D)) -
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Lemma 8 (Generalized Bihari’s inequality). For all t > 0 we have

d _
L) < P (@00,
where 70, == min(|y¢] 1 7§ #0), and
07 0<z< (7&in)27
F(il') 27 + zx/’Ymm’ (7311n)2 Sz < S(’Yronin)2a
2\/ ST, > S(A/g'lin)2a

F~H(a) =inf(y: F(y) >x) (y > 0).
Proof of Lemma 8. Since
/B/ (t) Bo S m— S
(’7’(t>> ) < > e LoR’® {0}
by (D.3) and Pythagorean Theorem,

(0)- (5 D9

2

1

LF WA 0) = 5

:;t<— iwD E)(gg>_<— iWD @)(g)z
“a|(8) - Cam n) (),
— L(t) + constant (independent of t), (D.7)
where
L) = % <—\/%D I?n) (ng%) z: % (ds(®)",dy(t)") H (ngg)

= 5 (dﬂ(t)T,d’va(t)T) H(g,s),(,@,S) <d6’iﬁé8)) . (D.8)

Noting v;(¢) - p;(t) = 0 for each 7, by (D.6¢) and (D.8) we have

(1) = (=98, s () + dys () A5 (1) /5 + dg(t)T 5 (1) /

dt
() () 2 (i) = o

(D.9)

Thus it suffices to show

2
F <L(t) > (1)
Am
Since [|7g |11 — (78, pis(t)) = 0if [[v5(t) — Vf’qH% < (Yhin)? and
1981l — (78, ps () <2 Y 9| (N(t) == {5 : sign (v} (1)) # sign (19)})
JEN(t)
2 2 o
o= 2 (9 < = Ils() =5l
2
2 s 57 (49 < 2¢/s I (0) — 72
JEN(t)

Thus
(1) — 5 (s OI2+ 1ds@12) < F (IsO2) — 5 Iy, s @
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It suffice to show ) .
I > 2 L 2
F(520) = F (I s0)13) + g 013,

which is true since by Assumption 1

2L(t) = (ds(t)",dys(1)") - Hip,s),(8.5) - (d?ﬁ?t)) > A - d(t)?, (D.10)

andby F(-+x) > F(-) + x/(2K)

F () = F (ls Ol + I, s0)12) = F (I s@IZ) + 5 Ida (@)1

O
Proposition 3. Let 5, := min(|7?] : 7§ # 0). For
1 1 21 44 d(0
E2 r() = log 4 208 FATAO/R () D.11)
KAH [ AH Ymin
we have
A1) < prsn (— sign (¥5(1)) = sign (12)), if+7 # 0for j € 5. (D.12)
Fort > 0, we have
4 d 2(1 A2 + A2
d(t) < min | LEEAO/K 2L+ VAL FAD) ) (D.13)
Agt DNz e%

Proof of Proposition 3. Noting (D.7) and that ¢(5'(t),~'(t)) is non-increasing, we know L(t) is
non-increasing. (D.9) tells that W(¢) is non-increasing since L(t) > 0. If L(t) = 0 for t = 7o, (1),
by (D.10) and the fact that L(t) is non-increasing, we have

2
(1 < L(1)? = 0 (£ 2 oo ()
AH
Therefore (D.12) holds for ¢ > 7., (). Now assume that L(t) > 0 for ¢ = 7, () (and hence for
0 <t < Too(p)), then W(t) is strictly decreasing on [0, 7o (1t)]. Besides, F is strictly increasing and
continuous on [(v2;,)?, +00). Moreover,

F(d(0)) 2 F (In813) + 18713 /(2x) = w(0),

d(0)” = |85 = s ()
If there does not exist some ¢ < 7, () satisfying (D.12), then for 0 < ¢ < 7 (p),
e d(t)* /(26) > 12 (Youm)® /(26) > 0, if & < +o00,
>0, if & = 400,
which also implies that F~1(¥(¢)) > 0. By Lemma 8,

Teo() Ay (¢) v(0) dz
AHToo (1) S/ dtidt:/ —
0 F=H(0(1) W(roo(u)) £ (@)

(viin)*/ (28) F((rin)?) Fs(im)?)  pF(d0)?) da
[ Y S A b
12(15:)°/2R) () JE(()?) T P(s(i)?) ()

IN

min min min min

(Vi) 2/ (26) 4 F(mw)?) sOmin)® qF () A0 qp(z)
/ o : /
I ( E

— ——dx
o 2
Q(W&in)Q/(QH) 2Kk 'fo)nn)2/(2“) (Vmin) ('annf z (’Yt())':in)z z

1 1 2 5(Yin)® 1 ) d(0)? 1 Vs
— log — + — —_— d — d
2 & u2 * yo. +/( o) (2/@ i ’yfninx> I+/S(,Yo ) (2595 * ;U\/E) v

Ymin min

IN

+

1 1 1 d(0)2 2log s 2
< g-log— + ——+ 5 log st —— 1+

2K H Ymin 2K (FYIonin) Ymin Ymin
< llogi N 2log s +f1):+ al(())/#a7

K H Ymin
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contradicting with the definition of 7o (). Thus (D.12) holds for some 0 < 7 < 7o (). If K = 400,
we see that for ¢ > 7o (u), U(t) < U(7) = 0. Then —2L(¢), the derivative of ¥(¢), is 0 (which
means d(t) = 0) when ¢ > 7o, (1), and (D.12) holds. If k < 400, just note that for ¢ > T,

d(t)?/(2k) < (1) < V(1) = d(7)?/(2r) = d(t) < d(T) < -
So (D.12) holds for t > 7, ().

For any t > 0, if L(t) = 0, then d(¢) = 0 and (D.13) holds. If L(¢) > 0, let C' = \/2L(¢)/Ag > 0,
then for any 0 < t/ < t,

%\1/ (') = —2L (') < —2L(t) = —AgC=.

Besides, for F'(x) = x/(2k) 4+ 2\/sx > F(x), by Lemma 8 we have

d .

el () < AgF L (@) < AgF~ (T ().
By (D.9) and the fact that

F(d(0)?) = F (I813) + 187113 /(2x) > w(0),

we have that, if d(0) > C, then

t _A/\I/ t/ v (0)
/\Htg/ di’ ) dt’:/ de
0 max (02,F—1 (¥ (t’))) ¥(H) max (02,F—1(x))
F(d(0)%) dz P(C*) dx 4(0)? dF(x)
I e e
F0)  max (02,F—1(:c)) o) O Joer @

_ 02/(25);r2¢§c +/d<o>2 < 1 Vs ) &

C o2 2k xN\T

45 1 d(0)2> < 4\/§+d(0)//€.

<+(1+10g

- C 2K c? c

If d(0) < C, then similarly

F(d(0)?) dr F(d(0)?) de
/\HtS/ S/ —5

F(0) max (C’Q, ﬁ‘*l(m)) F(0) c?
d(0)?/(2k) 4+ 2/s - d(0) < 4/s + d(O)/H.

C? C
Combining it with (D.10), we have
2 . 2
d(t)zglL(t):l~>\HC < 4/s+ M -d(0)/k .
Al Al 2 Agt

Besides, noting (C.8), we have

> 2(1+vA% +4%)

2L(0) = (ds(0)",dy,5(0)") Hg,5),(5.5) (d%%))
d
d

0
< HI., - 5 - d(0)2.
_MHQWQ2_ . 0)
Thus ) )

2 (1 A A

ae? < 2Ly < 2ro) < 2R HAD) 0
H H AgV

Thus (D.13) holds. O



D.2 Oracle Iteration of Split LBI

Similarly, we define the Oracle Iteration of Split LBI as an Oracle version of Split LBI (C.2), with S
known and py, s<, Y, s¢ set to be 0. Define

Uy =[98l = (78 pr.s) + llvm,s — 8115/ (26) + 18 — B°115/(2+).
Then we have

Lemma 9 (Discrete Generalized Bihari’s inequality). Suppose ka||H|2 < 2 and Ny = A (1 —
kal||H||2/2). For all k we have

Upi1 — Up < —aXg F71H (W),

where Y0, F(x), F~1(x) are defined the same as in Lemma 8.

Proof of Lemma 9. The proof is almost a discrete version of the continuous case. The only non-trivial
thing is to show that

Upy1 — Uy < —2a(1 — ka||H||2/2) Ly, where

Ll di.g deg \ . ( B, —B8°
Ly = 3 (dk,ﬁadk ~,8 )H(g S),(8,S) (dk,'y,s Ndess) = 'Y}/c,s )

By (C.2), we have

di.3 0 L Bri1i— By
J— H I — — +1 k
GH8,9),8,9) <dv,k75) <P§€+1,s - PZ,S * K %/gﬂ,s Vi .S

Noting (0}, 1.5 = Pr.s) Ver1,s > 0 and multiplying (dff 5,d7 ;. ) on both sides, we have

14 Brs1 — By
= 2oLy = dy ks (Prrrs = Phs) + - ( "o ) ( EYi

di.,y,8 ’Yk+1 s~ Vk,s

> - (p;chl,S - P?ms)T (’Yl/e+17$ - 71/@,5) - (Pk+17s - P%,S)T’Yg

T
1 dk’ﬁ /ﬂ]lﬁLl - Bgc
K \ k.S Yet1,8 — Vk,s)

dk B
k 7,8
T
/ 1 \T _o 1 BI/chl - 51@ ﬂI/chl - 51@ di.p
= — — J— 2 ’
(Pk+1,s Ps,k) st 2K (71’#1,3 *71;,5 71’#1,3 *71;,5 * dk,w S
| fen =5
26 || \Vk+1,5 — 'Yk S
K 0 1 6/ _ /6/
< —2alp+ - + - kel F
- T H <p;g+1,s - PZ,S) K ('712-1-1,5 - '71273 9
2
T T RQ” o dy.p
— (dk,gr Ay 5) (aﬂ(ﬁ,S),(ﬁ,S> - 2H<ﬂ,5>,<6,5>> (dk N S>

Ko d
<-a (1 - HH(B,S)A,(B,S)HQ) (k.50 i) His,9).(8.9) ( o )

Thus

i1,
i1 = Vg = = (Phrr,s — P/Sk s + (H (dk+1,v{35

< —2ali + (pig,;.ﬁul - pfs‘,lc)T (’WICJrl,S o rﬁ“vs) +

dk,'y,S
< —2a(1 — ka||H|2/2) L

Proposition 4. Suppose ka||H|l2 < 2 and Ny = A (1 — ka||H||2/2). Let
Tmin = min([77| 77 #0),
g = By — B, diyy =7 =% di = \/\

2 2
+ [|dk,y,515-
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Then for any k such that

1 1 21 4 4+ d,
ko> (1) = ——log — + —28IF 2 0/5 4 40 (0 < p< 1), (D.14)
HAH K )\H Ymin
we have
di < pymin (= sign (v,,5) = sign (18)) , if 7 #0forj € S. (D.15)
For any k, we have
4 d 2(1 A2 + A2
Ny ka Nyv

Proof of Proposition 4. The proof is almost a discrete version of the continuous case. The only
non-trivial thing is described as follows. First, suppose there does not exist & < 77_(u)/« satisfying
(D.15), then for any 0 < ka < 7._(p), we have Uy, > p?(v2,.)?/(2k). Letting ko = 0, then
Uy, = Vg < F(d2). Suppose that

F (d%) 2 \Ilko’ ERR) \Ilk'l—l > F (5 ('Yr(;ﬁn)Q) > \Iij' EE) \I’kz—l >F ((’ygﬁn)Q)

= R o (’Yronin)2 /(25) 2> Wy ooy Uyt > ILL2 (Vl?min)z /(2’%) 2 Whysoon
Then kg > 7/ (). Besides, by Lemma 9,
U, —
o< Tk Wit
T AN
Thus A, (k4 — 4)c is not greater than

(0 < ka < 74, (1).

ka2  k3—2 ks—2 ki— kae fon—
k—ks k—ks k—k1 k—Fk _kfk 2K, s (Vi)
3 2 1 0 =ks3 =ko
ka—2 ki —2
F(AL) — F(A F(AL) — F(A
S (Ax) < (Bkt1) T (Ar) - (Akt1) (A = F1(0,))
k k
=k k=ko
ha— ks — ko —
_ 42:2 Uy — Wppa n 3232 Uy — Wy n 2232 <Ak — Agq1 n 2(Ag — Ak+1)>
- P 2 )
k=ks3 QH\Ilk k=ko ( min) k=kq 2KAk ,yminAk
n kif Ap — Apt 2\[ (VAL — /Ari1)
Py QIQA]C Ak
ae]

By (u — v)/u < log(u/v) and (v/u — /v)/u < 1/y/v — 1/y/u for u > v > 0, the quantity above
is not greater than

log (Wg, /W, 1) | Wp, — Wy g

2K (’yr(ilin)2
N log (Agy/Aky—1) N 2log (Ak, /Aky—1) L2s 1
25 min \/7 Ako
2
log (1/M2) 2")/31“1 1Og (d%/ ’len) ) 2 log S 2\/§
< 2 LVIEVI 5 .
k (rymin) K ’len s (’yr%in)z

Therefore we get

1 1 21 44 d,
)\}{(Téo(u)—éla)<)\}1(k4—4)a<glog;+ Ogs:: + O/Ii

a contradiction with the definition of 7/_(u). So there exists some k < 7/_(u)/« satisfying (D.15).
Then continue to imitate the proof in the continous version, we obtain (D.15) for all ¢ > 7/_(u). The
proof of (D.16) follows the same spirit.
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E Proofs of Consistency of Split LBI

Proof of Theorem 2 and 3. They are merely discrete versions of proofs of the following Theorem 4
and 5, but applying Lemma 9 and Proposition 4 instead of Lemma 8 and Proposition 3. O

Theorem 4 (Consistency of Split (LB)ISS). Under Assumption I and 2, suppose & is large enough
to satisfy (2.12). Let

F:l.)\iD
" 80 Ax \/logm

(E.1)

Then with probability not less than 1 — 6/m — 3exp(—4n/5), we have all the following properties.

1. No-false-positive: The solution has no false-positive, i.e. supp(y(t)) C S, for0 < ¢ < 7.

2. Sign consistency of y(t): Once the v%,;,, condition

160 AxA logm
Yonin 7= (DsB) iy = - S (2log s + 5+ log(84p)) ||~ (E2)
D

NAH
holds, then v(t) has sign consistency at 7, i.e.

sign (v(7)) = sign (DG"),,

3. {5 consistency of v(t): For0 <t < 7,

N 5s 20 Ax /slogm
ty—D < Y-
_ 420 Ax [slogm
— DB ||, < — . ~—1/ .
||’Y (T) B ||2 — nAH /\D n

4. {5 consistency of 3(t): For0 <t < 7,

5 20 MA +A2 slo m U r’logm
IBie) = 57l < 35 + - MELX o8 :
H 1 A n

Consequently,

AMA A?
+V.2U.th

AAG

Consequently,
. 420 )\1AX(1+)\D )+ A% slogm 20 r'logm
||B( ) ﬂ ||2 — A )\2
H 1 1 n

AMA A2
+V.20.th

AAS

Theorem 5 (Consistency of revised version of Split LBISS). Under Assumption I and 2, suppose r
is large enough to satisfy (2.12), and T is defined the same as in Theorem 4. Define

S(t) = supp(1(1)), Ps(r) = Prar(pgie) =1 — D;(t)CDS(t)C7 B(t) == PswB(1).
If S(t)¢ = 2, define Ps(;) = 1. Then we have the following properties.

1. Sign consistency of /3 (t): If the %, condition (E.2) holds, then with probability not less
than 1 — 8/m — 3exp(—4n/5),

sign (DB (?)) = sign (DS*).
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ith probability not less than 1 — 8 /m — 21’ /m? — 3 exp(—4n/5),

2. {y consistency of 3(t): Wi
St<T,

we have that for 0 <t

)\Ht )\H )\BD n

20 (Ax  Ag)y + A% ' logm t
20 (2x / 2HD Dg *H
Y (A%+ s n T 2lIPs@ePswnst,

Consequently, if additionally S (T) = S, then the last term on the right hand side drops for
t = 7, and we can easily obtain

< 800 Ax (Ap+2X%) [slogm
27 g A n
_|_2i A7X+)\H)\2D+A?X [r"logm
Au \ N3 AAZ n o

Before proving Theorem 4 and 5, we need the following lemmas.

Lemma 10. Suppose X5 5 = Axl. For 8° € L and v& € R® satisfying (D.2), we have
18° = 873 =118° = 6°I15 + 167 = €13, where

[EORS

< <10\/§Jr 20 'AXAD slogm>
2

- (E.3)
§O — §* = VT (Bo o B*)7 éo o f* _ VlTVT (50 o ﬂ*),
and
50 — 6 = (uB—l + B—lAngg}SUSAB—l) VIX* (I —UUY) €, with ||Bsl|, < \/ﬁAAXAQ
s
£B;
(E-4)
AnAZ + A%
o ¢ =n VPATYWUT (I — XV Bs)e, with ||Be|, < ot X ES5
£ —¢ 1 Ui ( 5) | 5”2*\/%)\1)\2)\% (E.5)
2B
Besides, we have
_ _ . : A
V¢ =75 = S5 sUsAB™'VTX* (I = U U €, with || B, < WXEAD (E.6)
£B,
Proof. By Lemma 3 and 3° — 8* € L, we have (E.3). By (D.2), we have
7§ =75 =Ds(8° = B") =UsA(6° - 67), (E.7)
and
X*e+ D5 (1§ —75) /v = (X*X + DTD/v) (8° - %),
ie.

X*e+ VAUE (48 — %) /v = (X*X + VA2VT Jv) (v (67— 8*) + VV; (€° — g*))
= (X*XV + VA?/v) (6° = 6*) + VnX*UiA; (€2 — €). (E.8)
Left multiplying A1_2V1T VT on both sides of (E.8) leads to
1
0 _ ¢x _ — A
=< NG

Then left multiplying V7 on both sides of (E.8) leads to

THUT (e = XV (8° = 6%)). (E.9)

VIX* e+ AUS (1 —75) /v
1
= (VIX*XV + A?/v) (6° = 6) + VnVT X Ui A - ﬁAl‘lUlT (e — XV (6° = 6%))

= (VI'X* (I -UWU{) XV + A /v) (6° = 6) + VIX U UY e.
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Recalling the definition of B in Lemma 4, the equation above implies

62— 6% = B'AUE (v& —48) +vBTWVTX* (I - ULUY ) e (E.10)
Plugging it into (E.7), we obtain 72 — v% = B.e. Then noting B = A% I, we have
A
—1 -1 * T X
B2l < [[Ssis ], -1 4Bl 11X 17 = 0T ), <

so (E.6) holds. Now by (E.10) we have 6° — §* = Bje. Noting (A.8) and X g s >~ AxI, we have

UsAB™Y2. B7Y2AUT < (1 — Agw)I
= B7V2AUL - UsAB™Y2 < (1 — A\sv)I <= AUZUsA < (1 — A\sw)B.

Thus
1 1
vB™' + BTIAUES L UsAB™ <vB™' + )\—B‘lAUSTUSAB‘l < )\—B‘l,
’ by b
which immediately leads to (E.4). Finally, combining (E.9) with (E.4) we have (E.5). O]

Lemma 11 (No-false-positive condition for Split LBISS). For the Oracle Dynamics (D.6), if there is
7 > 0, such that for 0 < t < 7 the inequality

1 0 1/p(t) X*e
HHSC’(ﬁ’S)H(@S%(@S) ((pigl()t)) + P (’yg(t) -t 0. N <1 (E.11)

holds, then the solution path of the original dynamics (C.3) has no false-positive for 0 <t < 1.

Proof of Lemma 11. Tt is easy to see that
() 2O -w(C)- () () e

=1).

Now let
T:=inf(t>0: ||ps(t)]l

oo

It suffices to show 7 > 7. For 0 < t < 7, we have yg-(t) = 0, which also implies pg(t) = p’s(t)
and vs(t) = v5(t). Hence by (E.12) we have

(%) L (50) = #ss (Z0) - N+ (5). emy
o=t ((30) - (3)

B (8 o
(Vé(t) “ ) ELOR =Im (H<B,S),(ﬂ,s>>
(the equality above will be shown at last), so by (E.13) we have
ﬂ/(t) _ ﬁ* _ —HT Op N 1 B/(t) B X*e
i) ~ () = Hases ((ln) = ()~ (0.)
hge (t) = f Op Lipgwm)_ (X

Integration on both sides leads to

pse(t) = Hye (s.5)H 5 ) (5.9 ((ﬂ?@)) +% (i((?)) —t ()66» 0<t<7).

Due to the continuity of pge(t), ps(t) (and v5(t), if K < +00), the equation above also holds for
t = 7. According to the definition of 7, we know (E.11) does not hold for t = 7. Thus 7 > 7, and
the desired result follows.

‘We claim that
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So it suffices to prove

L®R® =Im (HT (E.14)

(5,s>,<5,s>) :

Actually, let Hig g 3,5y = U'N'U'" where U'""U’ = I and A’ is an invertible diagonal matrix. It
suffices to show L @& R* = Im(U"). First, by the definition of H, one can easily verify that

Im (U') = Im (Hg,5),5,5)) € (Im (X") +Im (D")) ®R* = L& R®.

On the other hand, assume that (U’, U") is an orthogonal square matrix. For any ¢ € L & R?, since
Prywn¢ € Im(U’) € L @ R®, we have PIm(ﬁ’)C =(— PmwnH¢ € LOR?, and (2.2) tells us

-

2 2
nj2rpT : > ’ . H L
AU Py 2 M [P €|, = o€ = 0

= (= Pmwn¢ + le(g/)C = P ¢ € Im(U').

Thus (E.14) holds. O

Proof of Theorem 4. By Lemma 6, (A.3), (E.5) and (E.6), we have that with probability not less than
1—4s/m?>1—4/m,

20 Ax [logm

o *
_ < — = ,
||/VS ’YSHOO /\H )\D n

200 Ag)L + A% [logm
°_ ¢~ —. DX, ) E.16

By (A.4) and (E.3) to (E.6), with probability not less than 1 — 3 exp(—4n/5),

(E.15)

llelly < 20+/n, which implies

20 AX 20’ AX 20’ )\H/\2 +A2 (E17)
§° — §* o X.
I =8l < 5 S 197 = 5%l < 5 e = €l < - S
The inequalities above also imply
Ax | Ag)i, 4+ A3
0= 81l < 10° =0l e - €l < 1o (G + BERS) . @y
14D

and

2 2
d(0) = \/1Iv&ll5 + 18°llz < V51l + 18715 + HV% —7slly + 1182 = Bl

Ax  Ax  Ag)i + A%
L+ Ap) 1B, + +— (= + 55 + 52— ). (19
<O ap) |l 3 (R2 4 34 2N )
From now, we assume all the inequalities above hold. The condition on s now tells us
4 1 Ax 2(1+vA% +A3)
v v B I -d(0) (> d(0)). E.20
R_n<+)\D+)\1)\D> +\/ >\HV ()(— ()) ( )
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Now we prove the No-false-positive property. By Lemma 11, it suffices to show that for 0 < ¢ < 7,
(E.11) holds with probability not less that 1 — 2/m. By (A.7), (A.15) and (D.13),

! B'(t)
!
K HHS°7(5*S>H<5,S>,<B,S> (ﬁ(t)) HOO
= || (-DseA" + Be525Ds) 4150 + B 525 0]

< |Ds-ATB (1), /i + [ Bse sTE DA D] /w4 05O/

A
< 2|0, 1@ 4 IO e < (2 (50 + o) +1) VIS 01 + I 0l
1 Ax
<2 (14 5 ) @0+ o)
1 Ay 2(1+vA% + A7) n

Besides, by (A.15) we have

By (A.8), DATDT = UAB~'AUT and A2 < B < (1 + vA%/)\%)A2, therefore 1 is an upper
bound of the largest eigenvalue of DATD?, and 1/(1 + vA% /A\%) is a lower bound of the smallest
nonzero eigenvalue of DAY DT Then

Hge (g,5)H{

X*e
(8,9),(B,5) 0

)| =[1(-0s: + B 525 505 atxee

< ||Dse ATX"e|| _ + || DsATX "¢ < 2| DATX™¢|_ .

‘ oo

DATX* (DATX")" = %DAT (A— DTD) AT DT

1 1 1 A% /23 A3
= — (DATDT — (DATDT)*) = — min | 7, AL g Ak g
nv n 4 (14 vA%/02) :

By (A.3), with probability not less than 1 — 2/m, forany 0 < ¢t < 7,

* 2
i X*e _ . _ A% n
HHSC’('&S)H(B,S),(/B,S) -t < 0 )HOO <27 HDATX e||C>O <2720 AL -4/logm < 5

Combining the results above with Assumption 2, we have for 0 < ¢t < 7, (E.11) holds with probability
not less that 1 — 2/m, and we have the No-false-positive property (which tells that (5(¢),vs(t))
coincides with that of the Oracle Dynamics for 0 < ¢ < 7).

Then we prove the sign consistency of v(t). If the ~,, condition (E.2) holds, by (E.15),

200 Ax [logm _ ~Z; 1
o _ i <20 Ax < dmin o5 Lok E21
HrYS ’Y,S’Hoo = )\H )\D n = 2 Ymin = 27m1n ( )

Thus sign(yg) = sign(v%), and

21
0gs:|—5 - 2logs+4—l—d(0)/n I 210gs—|—4+d(0)//$.
)\HT )\HT )‘H'yr%in

o > 1 *
Ymin £ Q’Ymin =
By (D.12), the sign consistency of 4 (¢) holds for
1 210g3—|—4+d(0)//£>_2logs+4+d(0)/ﬁ

1
t> inf [ ——Ilog—
0<p<1 (mAH o8 I + AHYmin AHYmin

)

thus also for 7. Then under the No-false-positive property,

sign (vs (7)) = sign (75 (7)) = sign (7§) = sign (75),,
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and
sign (vs. (7)) = 0 = sign (v5.) .

Now we prove the /5 consistency of 7y(t). Under the No-false-positive property, for 0 < ¢t < 7,

1v(t) = DBl = llvs(t) = v5lla < lldy.s @)l + 178 = V51l

o 4y/s+d0)/k 20 A slogm
< d(t) + V5 |G — 3l < DT/ 20 A fslos
)\Ht )\H )\D n

< 5\/§+2i Ax /slogm.
— Mgt AH AD n

Finally, we prove the {5 consistency of 3(t). Under the No-false-positive property, for 0 < ¢ < 7,

1B) = B%lly = 18'() = B[l < ds(®) + [18° = B[l < d(t) + [18° = B"5.-
By Lemma 10 (especially noting (E.10)), we have

187 = Bl < (167 = 6%[ly + 116° — €7

1 1 1
< ||l—=A7'UT L+ || —=ATTUEXV| ) )16 = 6%, < Vo' ||—=A7 UL
< | Jrarore + (1o | marvrav| ) 1o - o, < v | Zaviord

A
# (14 35) 0BV Ix (1= 00T, + B AUE, VA g = L)

A
AX AX 1 20 AX logm
1 — .20 — —. = .
OO+<+)\1><V U)‘%)+)\D S>\H )\D\/ n

By (A.3), with probability not less than 1 — 2/m, we have

1 2 1
RS fogm < 27, /18
2 A1

< V!

1
ﬁAl_lUirﬁ

<20 Al_lUlT
n n

vn

In this case, combining the inequalities above with d(t) < 5+/s/(Agt), the desired result follows. [

1
o

Proof of Theorem 5. By the proof details of Theorem 4, we know that with probability not less than
1 —6/m — 3exp(—4n/5), (E.15) to (E.19) hold, meanwhile the solution path has no false-positive
for 0 <t < 7. From now, we assume that these properties are all valid.

First we prove the sign consistency of B(t) If the v} ;,, condition (E.2) holds, then by Theorem 4,
S(7) = S holds, and we have

DsePs(s) = D (I - DchSc) — 0 —> sign (DSCB (f)) — 0 = sign (Ds§) .
To prove sign(Ds3(7)) = sign(Dg/3*), note that
|psf () - Dsp|| = |ps (1= DL.Ds:) (8 (7) - 5%
oo o0
Dg (I — DL .Dge)dg (7 Ds (1— Dl .Dge) (8% — B
S Sgel/S B (T) oo + S gc /S (ﬂ ﬁ ) oo
| s (1= DL.Ds) ds ()| + 1108 = 28ll + | PsDE.Dse (87— 57)
First, by (E.20), & > d(0) > [|74]l5 > Yhin. and

log(8Ap) 2logs+5 1
log (8A
)‘H’yglin )‘H’yglin B H)‘H o8 ( D) "
By (D.12), we have d (T) < v2../(8Ap), and thus

IN

IN

o0

2logs +4+d(0)/k

T2
)‘H’yr?nin

V

HDS (I _ D;CDSC) dg (?)Hoo

< IDslly - ||1 = DE-Dse |- 1ds ()], < Ap - d(7) < Dtin < Jmin,

8 4
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Besides, by (E.4), we have
DgDL.Dge (8° — %) = UsAVT DL Use A (6° — %) = UsAVT DL Use ABse

with
AxAp

JusavTDLseans |, < ap DL - UseAVT| 1Bl < 205

By (A.3), with probability not less than 1 — 2/m,
*
< 270' . AXAD IOgm < Ymin )
Finally, we note (E.21). Then sign(Dg/3(7)) = sign(Dg*) holds, since
Ios (361 )

HDSDT.;CDSC (B° = pB%)

Ymin , Ymin , Ymi x
< min min II]lI'l: D . .
Lo 2 ot = (DB

Then we prove the /5 consistency of 3(t). For any 0 < t < 7, S(t) C S, which implies Dge3(t) =
Dg:* = 0. Then

s 1, < v (- ), + oo o )
< (V" Py (B'®) = B9, + [VF (I = Psen) 5]],)
(v rao @0 -3, v - )
< IV Psy (B'0) = B, + ||V VT sy (8'(6) = 8] + 2| D Dsrens | -

The first and second term of the right hand side are respectively not greater than

1
VT Psoyda®ll, + [1V" Pty (8° = 87, < Mda®lly + 3~ [|DPsey (87 = 57l
1 *
<d(t) + s D5 Pse) (B = 8|,

— d(t) + i |UsA (1= VI Dl Used) (07 = 6%)

2
(here we use the fact that Dg(;)c Pg(yy = 0), and

VT Psda ()| + ||V VT Ps (8° - 7|

< lds®ll, + |67 = ) = VPV DY ). Do (8 = 87)
< d(t) + €7 = €l + [VITVT DY) Usiaye A (5° = %) 2

Noting (D.13) and (E.16), as well as applying the definition of B;s in Lemma 10, now we only need
to show that with probability not less than 1 — 2/m — 2r' /m?,

2

20 ADAX logm

T pt
HUS@A (1= V7Dl Uscer) B‘“Hoo S P
) 20’ A 10 m
THT i X o
HV1 v DS(t)CUS(t)CABtSGHOO < E : g s

which are both true, according to (A.3), as well as (E.4) which leads to

HUS(t)A (1 - VTD;(t)CUS(t)CA) B(;H2

2AxA
Tpt . T _SOXAD
< Ap (1+ [V Dy UsqoeAV H2> 1Bsll: < 25
and A
Ty, Tt T X
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