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Abstract

We consider convex-concave saddle-point problems where the objective functions
may be split in many components, and extend recent stochastic variance reduction
methods (such as SVRG or SAGA) to provide the first large-scale linearly conver-
gent algorithms for this class of problems which are common in machine learning.
While the algorithmic extension is straightforward, it comes with challenges and
opportunities: (a) the convex minimization analysis does not apply and we use
the notion of monotone operators to prove convergence, showing in particular
that the same algorithm applies to a larger class of problems, such as variational
inequalities, (b) there are two notions of splits, in terms of functions, or in terms of
partial derivatives, (c) the split does need to be done with convex-concave terms,
(d) non-uniform sampling is key to an efficient algorithm, both in theory and prac-
tice, and (e) these incremental algorithms can be easily accelerated using a simple
extension of the “catalyst” framework, leading to an algorithm which is always
superior to accelerated batch algorithms.

1 Introduction

When using optimization in machine learning, leveraging the natural separability of the objective
functions has led to many algorithmic advances; the most common example is the separability as a sum
of individual loss terms corresponding to individual observations, which leads to stochastic gradient
descent techniques. Several lines of work have shown that the plain Robbins-Monro algorithm could
be accelerated for strongly-convex finite sums, e.g., SAG [1], SVRG [2], SAGA [3]. However, these
only apply to separable objective functions.

In order to tackle non-separable losses or regularizers, we consider the saddle-point problem:

min
x∈Rd

max
y∈Rn

K(x, y) +M(x, y), (1)

where the functions K and M are “convex-concave”, that is, convex with respect to the first variable,
and concave with respect to the second variable, with M potentially non-smooth but “simple” (e.g.,
for which the proximal operator is easy to compute), and K smooth. These problems occur naturally
within convex optimization through Lagrange or Fenchel duality [4]; for example the bilinear saddle-
point problem minx∈Rd maxy∈Rn f(x)+y>Kx−g(y) corresponds to a supervised learning problem
with design matrix K, a loss function g∗ (the Fenchel conjugate of g) and a regularizer f .

We assume that the function K may be split into a potentially large number of components. Many
problems in machine learning exhibit that structure in the saddle-point formulation, but not in the
associated convex minimization and concave maximization problems (see examples in Section 2.1).

Like for convex minimization, gradient-based techniques that are blind to this separable structure
need to access all the components at every iteration. We show that algorithms such as SVRG [2] and
SAGA [3] may be readily extended to the saddle-point problem. While the algorithmic extension is
straightforward, it comes with challenges and opportunities. We make the following contributions:
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– We provide the first convergence analysis for these algorithms for saddle-point problems, which
differs significantly from the associated convex minimization set-up. In particular, we use in
Section 6 the interpretation of saddle-point problems as finding the zeros of a monotone operator,
and only use the monotonicity properties to show linear convergence of our algorithms, thus
showing that they extend beyond saddle-point problems, e.g., to variational inequalities [5, 6].

– We show that the saddle-point formulation (a) allows two different notions of splits, in terms
of functions, or in terms of partial derivatives, (b) does need splits into convex-concave terms
(as opposed to convex minimization), and (c) that non-uniform sampling is key to an efficient
algorithm, both in theory and practice (see experiments in Section 7).

– We show in Section 5 that these incremental algorithms can be easily accelerated using a simple
extension of the “catalyst” framework of [7], thus leading to an algorithm which is always superior
to accelerated batch algorithms.

2 Composite Decomposable Saddle-Point Problems
We now present our new algorithms on saddle-point problems and show a natural extension to
monotone operators later in Section 6. We thus consider the saddle-point problem defined in Eq. (1),
with the following assumptions:

(A) M is strongly (λ, γ)-convex-concave, that is, the function (x, y) 7→M(x, y)− λ
2 ‖x‖

2 + γ
2 ‖y‖

2 is
convex-concave. Moreover, we assume that we may compute the proximal operator of M , i.e., for
any (x′, y′) ∈ Rn+d (σ is the step-length parameter associated with the prox operator):

proxσM (x′, y′) = arg min
x∈Rd

max
y∈Rn

σM(x, y) + λ
2 ‖x− x

′‖2 − γ
2 ‖y − y

′‖2. (2)

The values of λ and γ lead to the definition of a weighted Euclidean norm on Rn+d defined as
Ω(x, y)2 = λ‖x‖2 + γ‖y‖2, with dual norm defined through Ω∗(x, y)2 = λ−1‖x‖2 + γ−1‖y‖2.
Dealing with the two different scaling factors λ and γ is crucial for good performance, as these
may be very different, depending on the many arbitrary ways to set-up a saddle-point problem.

(B) K is convex-concave and has Lipschitz-continuous gradients; it is natural to consider the gradient
operator B : Rn+d → Rn+d defined as B(x, y) = (∂xK(x, y),−∂yK(x, y)) ∈ Rn+d and
to consider L = supΩ(x−x′,y−y′)=1 Ω∗(B(x, y)−B(x′, y′)). The quantity L represents the
condition number of the problem.

(C) The vector-valued function B(x, y) = (∂xK(x, y),−∂yK(x, y)) ∈ Rn+d may be split into a
family of vector-valued functions as B =

∑
i∈IBi, where the only constraint is that each Bi is

Lipschitz-continuous (with constant Li). There is no need to assume the existence of a function
Ki : Rn+d → R such that Bi = (∂xKi,−∂yKi).
We will also consider splits which are adapted to the saddle-point nature of the problem, that is,
of the form B(x, y) =

(∑
k∈KBxk (x, y),

∑
j∈JB

y
j (x, y)

)
, which is a subcase of the above with

I = J×K, Bjk(x, y) = (pjB
x
k (x, y), qkB

y
j (x, y)), for p and q sequences that sum to one. This

substructure, which we refer to as “factored”, will only make a difference when storing the values
of these operators in Section 4 for our SAGA algorithm.

Given assumptions (A)-(B), the saddle-point problem in Eq. (1) has a unique solution (x∗, y∗) such
that K(x∗, y)+M(x∗, y) 6 K(x∗, y∗)+M(x∗, y∗) 6 K(x, y∗)+M(x, y∗), for all (x, y); moreover
minx∈Rd maxy∈Rn K(x, y) +M(x, y) = maxy∈Rn minx∈Rd K(x, y) +M(x, y) (see, e.g., [8, 4]).

The main generic examples for the functions K(x, y) and M(x, y) are:
– Bilinear saddle-point problems: K(x, y) = y>Kx for a matrix K ∈ Rn×d (we identify here a

matrix with the associated bilinear function), for which the vector-valued function B(x, y) is linear,
i.e., B(x, y) = (K>y,−Kx). Then L = ‖K‖op/

√
γλ, where ‖K‖op is the largest singular value

of K.
There are two natural potential splits with I = {1, . . . , n} × {1, . . . , d}, with B =∑n

j=1

∑d
k=1Bjk: (a) the split into individual elements Bjk(x, y) = Kjk(yj ,−xk), where ev-

ery element is the gradient operator of a bi-linear function, and (b) the “factored” split into
rows/columns Bjk(x, y) = (qkyjK

>
j· ,−pjxkK·k), where Kj· and K·k are the j-th row and k-th

column of K, p and q are any set of vectors summing to one, and every element is not the gradient
operator of any function. These splits correspond to several “sketches” of the matrixK [9], adapted
to subsampling of K, but other sketches could be considered.
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– Separable functions: M(x, y) = f(x) − g(y) where f is any λ-strongly-convex and g is γ-
strongly convex, for which the proximal operators proxσf (x′) = arg minx∈Rd σf(x)+ λ

2 ‖x−x
′‖2

and proxσg (y′) = arg maxy∈Rd −σg(y) − γ
2 ‖y − y

′‖2 are easy to compute. In this situation,
proxσM (x′, y′) = (proxσf (x′),proxσg (y′)). Following the usual set-up of composite optimiza-
tion [10], no smoothness assumption is made on M and hence on f or g.

2.1 Examples in machine learning

Many learning problems are formulated as convex optimization problems, and hence by duality as
saddle-point problems. We now give examples where our new algorithms are particularly adapted.

Supervised learning with non-separable losses or regularizers. For regularized linear supervised
learning, with n d-dimensional observations put in a design matrix K ∈ Rn×d, the predictions
are parameterized by a vector x ∈ Rd and lead to a vector of predictions Kx ∈ Rn. Given a loss
function defined through its Fenchel conjugate g∗ from Rn to R, and a regularizer f(x), we obtain
exactly a bi-linear saddle-point problem. When the loss g∗ or the regularizer f is separable, i.e., a
sum of functions of individual variables, we may apply existing fast gradient-techniques [1, 2, 3] to
the primal problem minx∈Rd g

∗(Kx) + f(x) or the dual problem maxy∈Rn −g(y)− f∗(K>y), as
well as methods dedicated to separable saddle-point problems [11, 12]. When the loss g∗ and the
regularizer f are not separable (but have a simple proximal operator), our new fast algorithms are the
only ones that can be applied from the class of large-scale linearly convergent algorithms.

Non-separable losses may occur when (a) predicting by affine functions of the inputs and not
penalizing the constant terms (in this case defining the loss functions as the minimum over the
constant term, which becomes non-separable) or (b) using structured output prediction methods
that lead to convex surrogates to the area under the ROC curve (AUC) or other precision/recall
quantities [13, 14]. These come often with efficient proximal operators (see Section 7 for an
example).

Non-separable regularizers with available efficient proximal operators are numerous, such as grouped-
norms with potentially overlapping groups, norms based on submodular functions, or total variation
(see [15] and references therein, and an example in Section 7).

Robust optimization. The framework of robust optimization [16] aims at optimizing an objective
function with uncertain data. Given that the aim is then to minimize the maximal value of the
objective function given the uncertainty, this leads naturally to saddle-point problems.

Convex relaxation of unsupervised learning. Unsupervised learning leads to convex relaxations
which often exhibit structures naturally amenable to saddle-point problems, e.g, for discriminative
clustering [17] or matrix factorization [18].

2.2 Existing batch algorithms

In this section, we review existing algorithms aimed at solving the composite saddle-point problem in
Eq. (1), without using the sum-structure. Note that it is often possible to apply batch algorithms for
the associated primal or dual problems (which are not separable in general).

Forward-backward (FB) algorithm. The main iteration is
(xt, yt) = proxσM

[
(xt−1, yt−1)− σ

(1/λ 0
0 1/γ

)
B(xt−1, yt−1)

]
= proxσM

(
xt−1 − σλ−1∂xK(xt−1, yt−1) + σγ−1∂yK(xt−1, yt−1)).

The algorithm aims at simultaneously minimizing with respect to x while maximizing with re-
spect to y (when M(x, y) is the sum of isotropic quadratic terms and indicator functions, we get
simultaneous projected gradient descents). This algorithm is known not to converge in general [8],
but is linearly convergent for strongly-convex-concave problems, when σ = 1/L2, with the rate
(1− 1/(1 + L2))t [19] (see simple proof in Appendix B.1). This is the one we are going to adapt to
stochastic variance reduction.

When M(x, y) = f(x) − g(y), we obtain the two parallel updates xt = proxσf
(
xt−1 −

λ−1σ∂xK(xt−1, yt−1

))
and yt = proxσg

(
yt−1 + γ−1σ∂yK(xt−1, yt−1

))
, which can de done seri-

ally by replacing the second one by yt = proxσg
(
yt−1 + γ−1σ∂yK(xt, yt−1

))
. This is often referred

to as the Arrow-Hurwicz method (see [20] and references therein).
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Accelerated forward-backward algorithm. The forward-backward algorithm may be accelerated
by a simple extrapolation step, similar to Nesterov’s acceleration for convex minimization [21]. The
algorithm from [20], which only applies to bilinear functions K, and which we extend from separable
M to our more general set-up in Appendix B.2, has the following iteration:

(xt, yt) = proxσM
[
(xt−1, yt−1)− σ

(1/λ 0
0 1/γ

)
B(xt−1 + θ(xt−1 − xt−2), yt−1 + θ(yt−1 − yt−2))

]
.

With σ = 1/(2L) and θ = L/(L+ 1), we get an improved convergence rate, where (1 −
1/(1 + L2))t is replaced by (1 − 1/(1 + 2L))t. This is always a strong improvement when L
is large (ill-conditioned problems), as illustrated in Section 7. Note that our acceleration technique in
Section 5 may be extended to get a similar rate for the batch set-up for non-linear K.

2.3 Existing stochastic algorithms

Forward-backward algorithms have been studied with added noise [22], leading to a convergence
rate in O(1/t) after t iterations for strongly-convex-concave problems. In our setting, we replace
B(x, y) in our algorithm with 1

πi
Bi(x, y), where i ∈ I is sampled from the probability vector (πi)i

(good probability vectors will depend on the application, see below for bilinear problems). We have
EBi(x, y) = B(x, y); the main iteration is then

(xt, yt) = proxσtM
[
(xt−1, yt−1)− σt

(1/λ 0
0 1/γ

)
1
πit
Bit(xt−1, yt−1)

]
,

with it selected independently at random in I with probability vector π. In Appendix C, we show that
using σt = 2/(t+ 1 + 8L̄(π)2) leads to a convergence rate in O(1/t), where L̄(π) is a smoothness
constant explicited below. For saddle-point problems, it leads to the complexities shown in Table 1.
Like for convex minimization, it is fast early on but the performance levels off. Such schemes are
typically used in sublinear algorithms [23].

2.4 Sampling probabilities, convergence rates and running-time complexities

In order to characterize running-times, we denote by T (A) the complexity of computing A(x, y)
for any operator A and (x, y) ∈ Rn+d, while we denote by Tprox(M) the complexity of computing
proxσM (x, y). In our motivating example of bilinear functions K(x, y), we assume that Tprox(M)
takes times proportional to n+ d and getting a single element of K is O(1).

In order to characterize the convergence rate, we need the Lipschitz-constant L (which happens to
be the condition number with our normalization) defined earlier as well as a smoothness constant
adapted to our sampling schemes:
L̄(π)2 = sup(x,y,x′,y′)

∑
i∈I

1
πi

Ω∗(Bi(x, y)−Bi(x′, y′))2 such that Ω(x− x′, y − y′)2 6 1.

We always have the bounds L2 6 L̄(π)2 6 maxi∈I L
2
i ×
∑
i∈I

1
πi

. However, in structured situations
(like in bilinear saddle-point problems), we get much improved bounds, as described below.

Bi-linear saddle-point. The constant L is equal to ‖K‖op/
√
λγ, and we will consider as well

the Frobenius norm ‖K‖F defined through ‖K‖2F =
∑
j,kK

2
jk, and the norm ‖K‖max defined as

‖K‖max = max{supj(KK
>)

1/2
jj , supk(K>K)

1/2
kk }. Among the norms above, we always have:

‖K‖max 6 ‖K‖op 6 ‖K‖F 6
√

max{n, d}‖K‖max 6
√

max{n, d}‖K‖op, (3)
which allows to show below that some algorithms have better bounds than others.

There are several schemes to choose the probabilities πjk (individual splits) and πjk = pjqk (fac-
tored splits). For the factored formulation where we select random rows and columns, we con-
sider the non-uniform schemes pj = (KK>)jj/‖K‖2F and qk = (K>K)kk/‖K‖2F , leading to
L̄(π) 6 ‖K‖F /

√
λγ, or uniform, leading to L̄(π) 6

√
max{n, d}‖K‖max/

√
λγ. For the indi-

vidual formulation where we select random elements, we consider πjk = K2
jk/‖K‖2F , leading to

L̄(π) 6
√

max{n, d}‖K‖F /
√
λγ, or uniform, leading to L̄(π) 6

√
nd‖K‖max/

√
λγ (in these

situations, it is important to select several elements simultaneously, which our analysis supports).

We characterize convergence with the quantity ε = Ω(x−x∗, y− y∗)2/Ω(x0−x∗, y0− y∗)2, where
(x0, y0) is the initialization of our algorithms (typically (0, 0) for bilinear saddle-points). In Table 1
we give a summary of the complexity of all algorithms discussed in this paper: we recover the same
type of speed-ups as for convex minimization. A few points are worth mentioning:
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Algorithms Complexity

Batch FB log(1/ε) ×
(
nd+ nd‖K‖2op/(λγ)

∣∣∣ )
Batch FB-accelerated log(1/ε) ×

(
nd+ nd‖K‖op/

√
λγ)
∣∣∣ )

Stochastic FB-non-uniform (1/ε) ×
(

max{n, d}‖K‖2F /(λγ)
∣∣∣ )

Stochastic FB-uniform (1/ε) ×
(
nd‖K‖2max/(λγ)

∣∣∣ )
SAGA/SVRG-uniform log(1/ε) ×

(
nd+ nd‖K‖2max/(λγ)

∣∣∣ )
SAGA/SVRG-non-uniform log(1/ε) ×

(
nd+ max{n, d}‖K‖2F /(λγ)

∣∣∣ )
SVRG-non-uniform-accelerated log(1/ε) ×

(
nd+

√
ndmax{n, d}‖K‖F /

√
λγ
∣∣∣ )

Table 1: Summary of convergence results for the strongly (λ, γ)-convex-concave bilinear saddle-point
problem with matrix K and individual splits (and n+ d updates per iteration). For factored splits
(little difference), see Appendix D.4. For accelerated SVRG, we omitted the logarithmic term (see
Section 5).

– Given the bounds between the various norms on K in Eq. (3), SAGA/SVRG with non-uniform
sampling always has convergence bounds superior to SAGA/SVRG with uniform sampling, which
is always superior to batch forward-backward. Note however, that in practice, SAGA/SVRG with
uniform sampling may be inferior to accelerated batch method (see Section 7).

– Accelerated SVRG with non-uniform sampling is the most efficient method, which is confirmed
in our experiments. Note that if n = d, our bound is better than or equal to accelerated forward-
backward, in exactly the same way than for regular convex minimization. There is thus a formal
advantage for variance reduction.

3 SVRG: Stochastic Variance Reduction for Saddle Points

Following [2, 24], we consider a stochastic-variance reduced estimation of the finite sum B(x, y) =∑
i∈IBi(x, y). This is achieved by assuming that we have an iterate (x̃, ỹ) with a known value of

B(x̃, ỹ), and we consider the estimate of B(x, y):

B(x̃, ỹ) + 1
πi
Bi(x, y)− 1

πi
Bi(x̃, ỹ),

which has the correct expectation when i is sampled from I with probability π, but with a reduced
variance. Since we need to refresh (x̃, ỹ) regularly, the algorithm works in epochs (we allow to
sample m elements per updates, i.e., a mini-batch of size m), with an algorithm that shares the same
structure than SVRG for convex minimization; see Algorithm 1. Note that we provide an explicit
number of iterations per epoch, proportional to (L2 + 3L̄2/m). We have the following theorem,
shown in Appendix D.1 (see also a discussion of the proof in Section 6).

Theorem 1 Assume (A)-(B)-(C). After v epochs of Algorithm 1, we have:

E
[
Ω(xv − x∗, yv − y∗)2

]
6 (3/4)vΩ(x0 − x∗, y0 − y∗)2.

The computational complexity to reach precision ε is proportional to
[
T (B) + (mL2 +

L̄2) maxi∈I T (Bi) + (1 + L2 + L̄2/m)Tprox(M)
]

log 1
ε . Note that by taking the mini-batch size m

large, we can alleviate the complexity of the proximal operator proxM if too large. Moreover, if L2

is too expensive to compute, we may replace it by L̄2 but with a worse complexity bound.

Bilinear saddle-point problems. When using a mini-batch size m = 1 with the factored updates,
or m = n + d for the individual updates, we get the same complexities proportional to [nd +
max{n, d}‖K‖2F /(λγ)] log(1/ε) for non-uniform sampling, which improve significantly over (non-
accelerated) batch methods (see Table 1).

4 SAGA: Online Stochastic Variance Reduction for Saddle Points

Following [3], we consider a stochastic-variance reduced estimation of B(x, y) =
∑
i∈IBi(x, y).

This is achieved by assuming that we store values gi = Bi(x
old(i), yold(i)) for an old iterate
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Algorithm 1 SVRG: Stochastic Variance Reduction for Saddle Points
Input: Functions (Ki)i, M , probabilities (πi)i, smoothness L̄(π) and L, iterate (x, y)

number of epochs v, number of updates per iteration (mini-batch size) m
Set σ =

[
L2 + 3L̄2/m

]−1

for u = 1 to v do
Initialize (x̃, ỹ) = (x, y) and compute B(x̃, ỹ)
for k = 1 to log 4× (L2 + 3L̄2/m) do

Sample i1, . . . , im ∈ I from the probability vector (πi)i with replacement

(x, y)← proxσM
[
(x, y)−σ

(1/λ 0
0 1/γ

)(
B(x̃, ỹ)+ 1

m

∑m
k=1

{
1
πik

Bik(x, y)− 1
πik

Bik(x̃, ỹ)
})]

end for
end for

Output: Approximate solution (x, y)

(xold(i), yold(i)), and we consider the estimate of B(x, y):∑
j∈I g

j + 1
πi
Bi(x, y)− 1

πi
gi,

which has the correct expectation when i is sampled from I with probability π. At every iteration,
we also refresh the operator values gi ∈ Rn+d, for the same index i or with a new index i sampled
uniformly at random. This leads to Algorithm 2, and we have the following theorem showing linear
convergence, proved in Appendix D.2. Note that for bi-linear saddle-points, the initialization at (0, 0)
has zero cost (which is not possible for convex minimization).

Theorem 2 Assume (A)-(B)-(C). After t iterations of Algorithm 2 (with the option of resampling
when using non-uniform sampling), we have:

E
[
Ω(xt − x∗, yt − y∗)2

]
6 2
(
1− (max{ 3|I|

2m , 1 + L2

µ2 + 3 L̄2

mµ2 })−1
)t

Ω(x0 − x∗, y0 − y∗)2.

Resampling or re-using the same gradients. For the bound above to be valid for non-uniform
sampling, like for convex minimization [25], we need to resample m operators after we make
the iterate update. In our experiments, following [25], we considered a mixture of uniform and
non-uniform sampling, without the resampling step.

SAGA vs. SVRG. The difference between the two algorithms is the same as for convex minimization
(see, e.g., [26] and references therein), that is SVRG has no storage, but works in epochs and requires
slightly more accesses to the oracles, while SAGA is a pure online method with fewer parameters but
requires some storage (for bi-linear saddle-point problems, we only need to store O(n+d) elements
for the factored splits, while we need O(dn) for the individual splits). Overall they have the same
running-time complexity for individual splits; for factored splits, see Appendix D.4.

Factored splits. When using factored splits, we need to store the two parts of the operator values
separately and update them independently, leading in Theorem 2 to replacing |I| by max{|J|, |K|}.

5 Acceleration

Following the “catalyst” framework of [7], we consider a sequence of saddle-point problems with
added regularization; namely, given (x̄, ȳ), we use SVRG to solve approximately

min
x∈Rd

max
y∈Rn

K(x, y) +M(x, y) + λτ
2 ‖x− x̄‖

2 − γτ
2 ‖y − ȳ‖

2, (4)

for well-chosen τ and (x̄, ȳ). The main iteration of the algorithm differs from the original SVRG by
the presence of the iterate (x̄, ȳ), which is updated regularly (after a precise number of epochs), and
different step-sizes (see details in Appendix D.3). The complexity to get an approximate solution of
Eq. (4) (forgetting the complexity of the proximal operator and for a single update), up to logarithmic
terms, is proportional, to T (B) + L̄2(1 + τ)−2 maxi∈I T (Bi).

The key difference with the convex optimization set-up is that the analysis is simpler, without
the need for Nesterov acceleration machinery [21] to define a good value of (x̄, ȳ); indeed, the
solution of Eq. (4) is one iteration of the proximal-point algorithm, which is known to converge
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Algorithm 2 SAGA: Online Stochastic Variance Reduction for Saddle Points
Input: Functions (Ki)i, M , probabilities (πi)i, smoothness L̄(π) and L, iterate (x, y)

number of iterations t, number of updates per iteration (mini-batch size) m
Set σ =

[
max{ 3|I|

2m − 1, L2 + 3 L̄
2

m }
]−1

Initialize gi = Bi(x, y) for all i ∈ I and G =
∑
i∈I g

i

for u = 1 to t do
Sample i1, . . . , im ∈ I from the probability vector (πi)i with replacement
Compute hk = Bik(x, y) for k ∈ {1, . . . ,m}
(x, y)← proxσM

[
(x, y)− σ

(1/λ 0
0 1/γ

)(
G+ 1

m

∑m
k=1

{
1
πik

hk − 1
πik

gik
})]

(optional) Sample i1, . . . , im ∈ I uniformly with replacement
(optional) Compute hk = Bik(x, y) for k ∈ {1, . . . ,m}
Replace G← G−

∑m
k=1{gik − hk} and gik ← hk for k ∈ {1, . . . ,m}

end for
Output: Approximate solution (x, y)

linearly [27] with rate (1 + τ−1)−1 = (1 − 1
1+τ ). Thus the overall complexity is up to loga-

rithmic terms equal to T (B)(1 + τ) + L̄2(1 + τ)−1 maxi∈I T (Bi). The trade-off in τ is opti-
mal for 1 + τ = L̄

√
maxi∈I T (Bi)/T (B), showing that there is a potential acceleration when

L̄
√

maxi∈I T (Bi)/T (B) > 1, leading to a complexity L̄
√
T (B) maxi∈I T (Bi).

Since the SVRG algorithm already works in epochs, this leads to a simple modification where every
log(1 + τ) epochs, we change the values of (x̄, ȳ). See Algorithm 3 in Appendix D.3. Moreover, we
can adaptively update (x̄, ȳ) more aggressively to speed-up the algorithm.

The following theorem gives the convergence rate of the method (see proof in Appendix D.3).
With the value of τ defined above (corresponding to τ = max

{
0, ‖K‖F√

λγ

√
max{n−1, d−1} − 1

}
for bilinear problems), we get the complexity L̄

√
T (B) maxi∈I T (Bi), up to the logarithmic term

log(1 + τ). For bilinear problems, this provides a significant acceleration, as shown in Table 1.

Theorem 3 Assume (A)-(B)-(C). After v epochs of Algorithm 3, we have, for any positive v:

E
[
Ω(xv − x∗, yv − y∗)2

]
6
(
1− 1

τ+1

)v
Ω(x0 − x∗, y0 − y∗)2.

While we provide a proof only for SVRG, the same scheme should work for SAGA. Moreover, the
same idea also applies to the batch setting (by simply considering |I| = 1, i.e., a single function),
leading to an acceleration, but now valid for all functions K (not only bilinear).

6 Extension to Monotone Operators

In this paper, we have chosen to focus on saddle-point problems because of their ubiquity in machine
learning. However, it turns out that our algorithm and, more importantly, our analysis extend
to all set-valued monotone operators [8, 28]. We thus consider a maximal strongly-monotone
operator A on a Euclidean space E, as well as a finite family of Lipschitz-continuous (not necessarily
monotone) operators Bi, i ∈ I, with B =

∑
i∈IBi monotone. Our algorithm then finds the zeros of

A +
∑
i∈IBi = A + B, from the knowledge of the resolvent (“backward”) operator (I + σA)−1

(for a well chosen σ > 0) and the forward operators Bi, i ∈ I. Note the difference with [29], which
requires each Bi to be monotone with a known resolvent and A to be monotone and single-valued.
There several interesting examples (on which our algorithms apply):

– Saddle-point problems: We assume for simplicity that λ = γ = µ (this can be achieved by a
simple change of variable). If we denote B(x, y) = (∂xK(x, y),−∂yK(x, y)) and the multi-
valued operator A(x, y) = (∂xM(x, y),−∂yM(x, y)), then the proximal operator proxσM may be
written as (µI + σA)−1(µx, µy), and we recover exactly our framework from Section 2.

– Convex minimization: A = ∂g and Bi = ∂fi for a strongly-convex function g and smooth func-
tions fi: we recover proximal-SVRG [24] and SAGA [3], to minimize minz∈E g(z) +

∑
i∈I fi(z).

However, this is a situation where the operators Bi have an extra property called co-coercivity [6],
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which we are not using because it is not satisfied for saddle-point problems. The extension of
SAGA and SVRG to monotone operators was proposed earlier by [30], but only co-coercive opera-
tors are considered, and thus only convex minimization is considered (with important extensions
beyond plain SAGA and SVRG), while our analysis covers a much broader set of problems. In
particular, the step-sizes obtained with co-coercivity lead to divergence in the general setting.
Because we do not use co-coercivity, applying our results directly to convex minimization, we
would get slower rates, while, as shown in Section 2.1, they can be easily cast as a saddle-point
problem if the proximal operators of the functions fi are known, and we then get the same rates
than existing fast techniques which are dedicated to this problem [1, 2, 3].

– Variational inequality problems, which are notably common in game theory (see, e.g., [5]).

7 Experiments

We consider binary classification problems with design matrix K and label vector in {−1, 1}n, a
non-separable strongly-convex regularizer with an efficient proximal operator (the sum of the squared
norm λ‖x‖2/2 and the clustering-inducing term

∑
i 6=j |xi − xj |, for which the proximal operator

may be computed in O(n log n) by isotonic regression [31]) and a non-separable smooth loss (a
surrogate to the area under the ROC curve, defined as proportional to

∑
i+∈I+

∑
i−∈I−(1−yi+yj)

2,
where I+/I− are sets with positive/negative labels, for a vector of prediction y, for which an efficient
proximal operator may be computed as well, see Appendix E).

Our upper-bounds depend on the ratio ‖K‖2F /(λγ) where λ is the regularization strength and γ ≈ n
in our setting where we minimize an average risk. Setting λ = λ0 = ‖K‖2F /n2 corresponds to a
regularization proportional to the average squared radius of the data divided by 1/n which is standard
in this setting [1]. We also experiment with smaller regularization (i.e., λ/λ0 = 10−1), to make
the problem more ill-conditioned (it turns out that the corresponding testing losses are sometimes
slightly better). We consider two datasets, sido (n = 10142, d = 4932, non-separable losses and
regularizers presented above) and rcv1 (n = 20242, d = 47236, separable losses and regularizer
described in Appendix F, so that we can compare with SAGA run in the primal). We report below the
squared distance to optimizers which appears in our bounds, as a function of the number of passes on
the data (for more details and experiments with primal-dual gaps and testing losses, see Appendix F).
Unless otherwise specified, we always use non-uniform sampling.
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We see that uniform sampling for SAGA does not improve on batch methods, SAGA and accelerated
SVRG (with non-uniform sampling) improve significantly over the existing methods, with a stronger
gain for the accelerated version for ill-conditioned problems (middle vs. left plot). On the right plot,
we compare to primal methods on a separable loss, showing that primal methods (here “fba-primal”,
which is Nesterov acceleration) that do not use separability (and can thus be applied in all cases)
are inferior, while SAGA run on the primal remains faster (but cannot be applied for non-separable
losses).

8 Conclusion
We proposed the first linearly convergent incremental gradient algorithms for saddle-point problems,
which improve both in theory and practice over existing batch or stochastic algorithms. While we
currently need to know the strong convexity-concavity constants, we plan to explore in future work
adaptivity to these constants like already obtained for convex minimization [3], paving the way to an
analysis without strong convexity-concavity.
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gradients: Practical SVRG. In Adv. NIPS, 2015.
[27] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and

Optimization, 14(5):877–898, 1976.
[28] E. Ryu and S. Boyd. A primer on monotone operator methods. Appl. Comput. Math., 15(1):3–43, 2016.
[29] H. Raguet, J. Fadili, and G. Peyré. A generalized forward-backward splitting. SIAM Journal on Imaging

Sciences, 6(3):1199–1226, 2013.
[30] D. Davis. Smart: The stochastic monotone aggregated root-finding algorithm. Technical Report 1601.00698,

arXiv, 2016.
[31] X. Zeng and M. Figueiredo. Solving OSCAR regularization problems by fast approximate proximal

splitting algorithms. Digital Signal Processing, 31:124–135, 2014.

9


