
Algorithms and matching lower bounds for
approximately-convex optimization

Yuanzhi Li
Department of Computer Science

Princeton University
Princeton, NJ, 08450

yuanzhil@cs.princeton.edu

Andrej Risteski
Department of Computer Science

Princeton University
Princeton, NJ, 08450

risteski@cs.princeton.edu

Abstract

In recent years, a rapidly increasing number of applications in practice requires
optimizing non-convex objectives, like training neural networks, learning graphical
models, maximum likelihood estimation. Though simple heuristics such as gradient
descent with very few modifications tend to work well, theoretical understanding
is very weak.
We consider possibly the most natural class of non-convex functions where one
could hope to obtain provable guarantees: functions that are “approximately con-
vex”, i.e. functions f̃ : Rd → R for which there exists a convex function f such
that for all x, |f̃(x)− f(x)| ≤ ∆ for a fixed value ∆. We then want to minimize
f̃ , i.e. output a point x̃ such that f̃(x̃) ≤ minx f̃(x) + ε.
It is quite natural to conjecture that for fixed ε, the problem gets harder for larger
∆, however, the exact dependency of ε and ∆ is not known. In this paper, we
significantly improve the known lower bound on ∆ as a function of ε and an
algorithm matching this lower bound for a natural class of convex bodies. More
precisely, we identify a function T : R+ → R+ such that when ∆ = O(T (ε)),
we can give an algorithm that outputs a point x̃ such that f̃(x̃) ≤ minx f̃(x) + ε
within time poly

(
d, 1

ε

)
. On the other hand, when ∆ = Ω(T (ε)), we also prove an

information theoretic lower bound that any algorithm that outputs such a x̃ must
use super polynomial number of evaluations of f̃ .

1 Introduction

Optimization of convex functions over a convex domain is a well studied problem in machine
learning, where a variety of algorithms exist to solve the problem efficiently. However, in recent years,
practitioners face ever more often non-convex objectives – e.g. training neural networks, learning
graphical models, clustering data, maximum likelihood estimation etc. Albeit simple heuristics such
as gradient descent with few modifications usually work very well, theoretical understanding in these
settings are still largely open.

The most natural class of non-convex functions where one could hope to obtain provable guarantees
is functions that are “approximately convex”: functions f̃ : Rd → R for which there exists a convex
function f such that for all x, |f̃(x)− f(x)| ≤ ∆ for a fixed value ∆. In this paper, we focus on zero
order optimization of f̃ : an algorithm that outputs a point x̃ such that f̃(x̃) ≤ minx f̃(x) + ε, where
the algorithm in the course of its execution is allowed to pick points x ∈ Rd and query the value of
f̃(x).

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Trivially, one can solve the problem by constructing a ε-net and search through all the net points.
However, such an algorithm requires Ω

(
1
ε

)d
evaluations of f̃ , which is highly inefficient in high

dimension. In this paper, we are interested in efficient algorithms: algorithms that run in time
poly

(
d, 1

ε

)
(in particular, this implies the algorithm makes poly

(
d, 1

ε

)
evaluations of f̃).

One extreme case of the problem is ∆ = 0, which is just standard convex optimization, where
algorithms exist to solve it in polynomial time for every ε > 0. However, even when ∆ is any
quantity > 0, none of these algorithms extend without modification. (Indeed, we are not imposing
any structure on f̃ − f like stochasticity.) Of course, when ∆ = +∞, the problem includes any
non-convex optimization, where we cannot hope for an efficient solution for any finite ε. Therefore,
the crucial quantity to study is the optimal tradeoff of ε and ∆: For which ε,∆ the problem can be
solved in polynomial time, and for which it can not.

In this paper, we study the rate of ∆ as a function of ε: We identify a function T : R+ → R+ such that
when ∆ = O(T (ε)), we can give an algorithm that outputs a point x̃ such that f̃(x̃) ≤ minx f̃(x) + ε
within time poly

(
d, 1

ε

)
over a natural class of well-conditioned convex bodies. On the other hand,

when ∆ = Ω̃(T (ε))1, we also prove an information theoretic lower bound that any algorithm outputs
such x̃ must use super polynomial number of evaluations of f̃ . Our result can be summarized as the
following two theorems:

Theorem (Algorithmic upper bound, informal). There exists an algorithm A that for any function f̃
over a well-conditioned convex set in Rd of diameter 1 which is ∆ close to an 1-Lipschitz convex
function 2 f , and

∆ = O

(
max

({
ε2√
d
,
ε

d

}))
A finds a point x̃ such that f̃(x̃) ≤ minx f̃(x) + ε within time poly

(
d, 1

ε

)
The notion of well-conditioning will formally be defined in section 3, but intuitively captures the
notion that the convex body “curves” in all directions to a good extent.
Theorem (Information theoretic lower bound, informal). For every algorithm A, every d,∆, ε with

∆ = Ω̃

(
max

{
ε2√
d
,
ε

d

})
there exists a function f̃ on a convex set in Rd of diameter 1, and f̃ is ∆ close to an 1-Lipschitz
convex function f , such that A can not find a point x̃ with f̃(x̃) ≤ minx f̃(x) + ε in poly

(
d, 1

ε

)
evaluations of f̃ .

2 Prior work

To the best of our knowledge, there are three works on the problem of approximately convex
optimization, which we summarize briefly below.

On the algorithmic side, the classical paper by [DKS14] considered optimizing smooth convex
functions over convex bodies with smooth boundaries. More precisely, they assume a bound on both
the gradient and the Hessian of F . Furthermore, they assume that for every small ball centered at a
point in the body, a large proportion of the volume of the ball lies in the body. Their algorithm is local
search: they show that for a sufficiently small r, in a ball of radius r there is with high probability a
point which has a smaller value than the current one, as long as the current value is sufficiently larger
than the optimum. For constant-smooth functions only, their algorithm applies when ∆ = O(ε√

d
).

Also on the algorithmic side, the work by [BLNR15] considers 1-Lipschitz functions, but their
algorithm only applies to the case where ∆ = O(εd) (so not optimal unless ε = O(1√

d
)). Their

methods rely on sampling log-concave distribution via hit and run walks. The crucial idea is to show
that for approximately convex functions, one needs to sample from “approximately log-concave”

1The Ω̃ notation hides polylog(d/ε) factors.
2The assumptions on the diameter of K and the Lipschitz condition are for convenience of stating the results.

(See Section ?? to extend to arbitrary diameter and Lipschitz constant)

2

distributions, which they show can be done by a form of rejection sampling together with classical
methods for sampling log-concave distributions.

Finally, [SV15] consider information theoretic lower bounds. They show that when ∆ = 1/d1/2−δ

no algorithm can, in polynomial time, achieve achieve ε = 1
2 − δ, when optimizing a convex function

over the hypercube. This translates to a super polynomial information theoretic lower bound when
∆ = Ω(ε√

d
). They additionally give lower bounds when the approximately convex function is

multiplicatively, rather than additively, close to a convex function. 3

We also note a related problem is zero-order optimization, where the goal is to minimize a function
we only have value oracle access to. The algorithmic motivations here come from various applications
where we only have black-box access to the function we are optimizing, and there is a classical line of
work on characterizing the oracle complexity of convex optimization.[NY83, NS, DJWW15]. In all
of these settings however, the oracles are either noiseless, or the noise is stochastic, usually because
the target application is in bandit optimization. [AD10, AFH+11, Sha12]

3 Overview of results

Formally, we will consider the following scenario.
Definition 3.1. A function f̃ : K → Rd will be called ∆-approximately convex if there exists a
1-Lipschitz convex function f : K → Rd, s.t. ∀x ∈ K, |f̃(x)− f(x)| ≤ ∆.

For ease of exposition, we also assume thatK has diameter 14. We consider the problem of optimizing
f̃ , more precisely, we are interesting in finding a point x̃ ∈ K, such that

f̃(x̃) ≤ min
x∈K

f̃(x) + ε

We give the following results:
Theorem 3.1 (Information theoretic lower bound). For very constant c ≥ 1, there exists a constant
dc such that for every algorithm A, every d ≥ dc, there exists a convex set K ⊆ Rd with diameter 1,
an ∆-approximate convex function f̃ : K → R and ε ∈ [0, 1/64) 5 such that

∆ ≥ max

{
ε2√
d
,
ε

d

}
×
(

13c log
d

ε

)2

Such that A fails to output, with probability ≥ 1/2, a point x̃ ∈ K with f̃(x̃) ≤ minx∈K{f̃(x)}+ ε
in o((dε)c) time.

In order to state the upper bounds, we will need the definition of a well-conditioned body:
Definition 3.2 (µ-well-conditioned). A convex body K is said to be µ-well-conditioned for µ ≥ 1,
if there exists a function F : Rd → R such that K = {x|F (x) ≤ 0} and for every x ∈ ∂K:
‖∇2F (x)‖2
‖∇F (x)‖2 ≤ µ.

This notion of well-conditioning of a convex body to the best of our knowledge has not been defined
before, but it intuitively captures the notion that the convex body should “curve” in all directions to a
certain extent. In particular, the unit ball has µ = 1.
Theorem 3.2 (Algorithmic upper bound). Let d be a positive integer, δ > 0 be a positive real number,
ε,∆ be two positive real number such that

∆ ≤ max

{
ε2

µ
√
d
,
ε

d

}
× 1

16348

Then there exists an algorithm A such that on given any ∆-approximate convex function f̃ over a
µ-rounded convex set K ⊆ Rd of diameter 1, A returns a point x̃ ∈ K with probability 1− δ in time
poly

(
d, 1

ε , log 1
δ

)
such that

f̃(x̃) ≤ min
x∈K

f̃(x) + ε

3Though these are not too difficult to derive from the additive ones, considering the convex body has diameter
bounded by 1.

4Generalizing to arbitrary Lipschitz constants and diameters is discussed in Section 6.
5Since we normalize f to be 1-Lipschitz and K to have diameter 1, the problem is only interesting for ε ≤ 1

3

For the reader wishing to digest a condition-free version of the above result, the following weaker
result is also true (and much easier to prove):
Theorem 3.3 (Algorithmic upper bound (condition-free)). Let d be a positive integer, δ > 0 be a
positive real number, ε,∆ be two positive real number such that

∆ ≤ max

{
ε2√
d
,
ε

d

}
× 1

16348

Then there exists an algorithm A such that on given any ∆-approximate convex function f̃ over a
µ-rounded convex set K ⊆ Rd of diameter 1, A returns a point x̃ ∈ K with probability 1− δ in time
poly

(
d, 1

ε , log 1
δ

)
such that

f̃(x̃) ≤ min
x∈S(K,−ε)

f̃(x) + ε

Where S(K,−ε) = {x ∈ K|Bε(x) ⊆ K}

The result merely states that we can output a value that competes with points “well-inside” the convex
body – around which a ball of radius of ε still lies inside the body.

The assumptions on the diameter of K and the Lipschitz condition are for convenience of stating
the results. It’s quite easy to extend both the lower and upper bounds to an arbitrary diameter and
Lipschitz constant, as we discuss in Section 6.

3.1 Proof techniques

We briefly outline the proof techniques we use. We proceed with the information theoretic lower
bound first. The idea behind the proof is the following. We will construct a functionG(x) and a family
of convex functions {fw(x)} depending on a direction w ∈ Sd (Sd is the unit sphere in Rd). On one
hand, the minimal value of G and fw are quite different: minxG(x) ≥ 0, and minx fw(x) ≤ −2ε.
On the other hand, the approximately convex function f̃w(x) for fw(x) we consider will be such
that f̃w(x) = G(x) except in a very small cone around w. Picking w at random, no algorithm with
small number of queries will, with high probability, every query a point in this cone. Therefore, the
algorithm will proceed as if the function is G(x) and fail to optimize f̃w.

Proceeding to the algorithmic result, since [BLNR15] already shows the existence of an efficient
algorithm when ∆ = O(εd), we only need to give an algorithm that solves the problem when
∆ = Ω(εd) and ∆ = O(ε

2
√
d
) (i.e. when ε,∆ are large). There are two main ideas for the algorithm.

First, we show that the gradient of a smoothed version of f̃w (in the spirit of [FKM05]) at any point
x will be correlated with x∗ − x, where x∗ = argminx∈K f̃w(x). The above strategy will however
require averaging the value of f̃w along a ball of radius ε, which in many cases will not be contained
in K (especially when ε is large). Therefore, we come up with a way to extend f̃w outside of K in a
manner that maintains the correlation with x∗ − x.

4 Information-theoretic lower bound

In this section, we present the proof of Theorem 3.1.

The idea is to construct a function G(x), a family of convex functions {fw(x)} depending on a
direction w ∈ Sd, such that minxG(x) ≥ 0, minx fw(x) ≤ −2ε, and an approximately convex
f̃w(x) for fw(x) such that f̃w(x) = G(x) except in a very small “critical” region depending on w.
Picking w at random, we want to argue that the algorithm will with high probability not query the
critical region. The convex body K used in the lower bound will be arguably the simplest convex
body imaginable: the unit ball B1(0).

We might hope to prove a lower bound for even a linear function fw for a start, similarly as in [SV15].
A reasonable candidate construction is the following: we set fw(x) = −ε〈w, x〉 for some random

chosen unit vector w and define f̃(x) = 0 when |〈x,w〉| ≤ log d
ε√
d
‖x‖2 and f̃(x) = fw(x) otherwise.6

6For the proof sketch only, to maintain ease of reading all of the inequalities we state will be only correct up
to constants. In the actual proofs we will be completely formal.

4

Observe, this translates to ∆ =
log d

ε√
d
ε. It’s a standard concentration of measure fact that for “most”

of the points x in the unit ball, |〈x,w〉| ≤ log d
ε√
d
‖x‖2. This implies that any algorithm that makes a

polynomial number of queries to f̃ will with high probability see 0 in all of the queries, but clearly
min f̃(x) = −ε. However, this idea fails to generalize to optimal range as ∆ = 1√

d
ε is tight for

linear, even smooth functions.7

In order to obtain the optimal bound, we need to modify the construction to a non-linear, non-smooth
function. We will, in a certain sense, “hide” a random linear function inside a non-linear function.
For a random unit vector w, we consider two regions inside the unit ball: a core C = Br(0) for

r = max{ε, 1√
d
}, and a “critical angle” A = {x | |〈x,w〉| ≥ log d

ε√
d
‖x‖2}. The convex function f

will look like ‖x‖1+α
2 for some α > 0 outside C ∪ A and −ε〈w, x〉 for x ∈ C ∪ A. We construct

f̃ as f̃ = f when f(x) is sufficiently large (e.g. |f(x)| > ∆
2) and ∆

2 otherwise. Clearly, such f̃
obtain its minimal at point w, with f̃(w) = −ε. However, since f̃ = ‖x‖1+α

2 outside C or A, the
algorithm needs either query A or query C ∩ Ac to detect w. The former happens with exponentially
small probability in high dimensions, and for any x ∈ C ∩ Ac, |f(x)| = ε|〈w, x〉| ≤ ε log d

ε√
d
‖x‖2 ≤

ε log d
ε√

d
r ≤ max{ ε

2
√
d
, εd} × log d

ε ≤
∆
2 , which implies that f̃(x) = ∆

2 . Therefore, the algorithm will
fail with high probability.

Now, we move on to the detailed of the constructions. We will consider K = B 1
2
(0): the ball of

radius 1
2 in Rd centered at 0. 8

4.1 The family {fw(x)}

Before delving into the construction we need the following definition:
Definition 4.1 (Lower Convex Envelope (LCE)). Given a set S ⊆ Rd, a function F : S → R,
define the lower convex envelope FLCE = LCE(F) as a function FLCE : Rd → R such that for every
x ∈ Rd,

FLCE(x) = max
y∈S
{〈x− y,∇F (y)〉+ F (y)}

Proposition 4.1. LCE(F) is convex.
Proof. LCE(F) is the pointwise maximum of linear functions, so the claim follows.

Remark : The LCE of a function F is a function defined over the entire Rd, while the input function
F is only defined in a set S (not necessarily convex set). When the input function F is convex,
LCE(F) can be considered as an extension of F to the entire Rd.

To define the family fw(x), we will need four parameters: a power factor α > 0, a shrinking factor β,
and a radius factor γ > 0, and a vector w ∈ Rd such that ‖w‖2 = 1

2 , which we specify in a bit.
Construction 4.1. Given w,α, β, γ, define the core C = Bγ(0), the critical angle A = {x |
|〈x,w〉| ≥ β‖x‖2} and letH = K ∩ C ∩ A. Let h̃ : H → R be defined as

h̃(x) =
1

2
‖x‖1+α

2

and define lw(x) = −8ε〈x,w〉. Finally let fw : K → Rd as

fw(x) = max
{
h̃LCE(x), lw(x)

}
Where h̃LCE = LCE(h̃) as in Definition 4.1.

We then construct the “hard” function f̃w as the following:

Construction 4.2. Consider the function f̃w : K → R:

f̃w(x) =

{
fw(x) if x ∈ K ∩

(
C ∪ A

)
;

max{fw(x), 1
2∆} otherwise.

7This follows from the results in [DKS14]
8We pick B 1

2
(0) instead of the unit ball in order to ensure the diameter is 1.

5

Consider the following settings of the parameters β, γ, α (depending on the magnitude of ε):

• Case 1, 1√
d
≤ ε ≤ 1

(log d)2 : β =

√
c log d

ε√
d

, γ = 10cε(log d
ε)1.5, α = 1

log(1/γ) .

• Case 2, ε ≤ 1√
d

: β =

√
c log d/ε√

d
, γ = 10c√

d
(log d/ε)3/2, α = 1

log(1/γ) .

• Case 3, 1
64 ≥ ε ≥

1
(log d)2 : β =

√
c log d√
d

, γ = 1
2 , α = 1.

For convenience of delivering the ideas, we divide the proof into each of these three cases. The proofs
are essentially the same in each case, with minor modifications in the calculation.

4.2 Case 1: 1√
d
≤ ε ≤ 1

(log d)2

Let us set β =

√
c log d

ε√
d

, γ = 10cε(log d
ε)1.5, α = 1

log(1/γ) .

Here, we consider sufficiently large dc such that when d ≥ dc, γ < 1
2 so α < 1

Following the the proof outline, we first show the minimum of fw is small, in particular we will
show fw(w) ≤ −2ε. Note that fw(x) = max

{
h̃LCE(x), lw(x)

}
and lw(w) = −8ε‖w‖22 = −2ε,

therefore, we can just focus on h̃LCE(w):

We will need the following proposition:

Proposition 4.2. Let h̃ be the function defined in Construction 4.1, then we have:

∇h̃(x) =
1 + α

2
‖x‖α−1

2 x

Lemma 4.1. h̃LCE(w) ≤ 1
2 (1 + α)βγα − 1

2αγ
1+α

Proof of Lemma 4.1. By the definition of LCE, we have:

h̃LCE(w) = max
x∈H
{〈w − x,∇h̃(x)〉+ h̃(x)}

= max
x∈H

{〈
w − x, 1 + α

2
‖x‖α−1

2 x

〉
+

1

2
‖x‖1+α

2

}
= max

x∈H

{
1 + α

2
‖x‖α−1

2 〈w, x〉 − α

2
‖x‖1+α

2

}
≤ max

x∈H

{
(1 + α)β

2
‖x‖α2 −

α

2
‖x‖1+α

2

}
where the last inequality is due to the fact that x ∈ H, so: |〈x,w〉| ≤ β‖x‖2. Now consider the
function g(y) = (1+α)β

2 yα − α
2 y

1+α: we know that g′(y) = (1+α)αβ
2 yα−1 − α(1+α)

2 yα. Notice that
g′(y) = (1+α)

2 yα−1(β − y). For x ∈ H, since x /∈ C, we have

‖x‖2 ≥ γ = 10cε

(
log

d

ε

)1.5

≥
10c

(
log d

ε

)1.5
√
d

≥ 10β ≥ β

Where the second inequality is due to ε ≥ 1√
d

and the second last inequality is due to c ≥ 1, ε ≤ 1.

Therefore, g′(‖x‖2) < 0, which implies that g(‖x‖2) inH increases as ‖x‖2 decreases. Hence:

h̃LCE(w) ≤ g(γ) =
(1 + α)βγα

2
− αγ1+α

2

As a corollary, we get the following:

Corollary 4.1. fw(w) = −2ε

6

Proof of Corollary 4.1. Note that lw(w) = −2ε, moreover, since γα = γ
1

− log γ = 2
log γ
− log γ = 1

2 ,
have:

1

2
(1 + α)βγα − 1

2
αγ1+α =

1

4
(1 + α)β − 1

4
αγ

≤ 1

4
(1 + α)β − 1

4
αγ

By γ ≥ 10β we can conclude:
1

2
(1 + α)βγα − 1

2
αγ1+α ≤ β

4
− 9

40
αγ

By the definition of α, we have: for every c ≥ 1, there exists dc = 1600c, for every d ≥ dc and every
1 ≥ ε ≥ 1√

d

α =
1

log(1/γ)
=

1

log 1
10cε(log d/ε)1.5

≥ 1

log d

Therefore,

αγ ≥ 10cε(log d/ε)1.5

log d
≥ 10cε

√
log

d

ε

By β =

√
c log d

ε√
d

, we can conclude that

1

2
(1 + α)βγα − 1

2
αγ1+α ≤ β

4
− 9

40
αγ ≤ 1

4

√
c log d

ε√
d

− 9

4
cε

√
log

d

ε
≤ −2ε

The last inequality is due to ε ≥ 1√
d

, c ≥ 1.

Which implies h̃LCE(w) ≤ −2ε. This completes the proof.

4.3 fw(x) = h̃(x) inH

We now show that fw(x) = h̃(x) inH:

Lemma 4.2. For every x ∈ H, fw(x) = h̃(x)

Proof of Lemma 4.2. Note that h̃ is a convex function defined on H, therefore, h̃LCE = h̃ on H.
Now we consider lw on H: Since ∀x ∈ H, |〈x,w〉| ≤ β‖x‖2, lw(x) = −8ε〈x,w〉 ≤ 8εβ‖x‖2 ≤
1
2γ

α‖x‖2 where the last inequality follows by noticing that for every c ≥ 1, there exists dc = 8192c,
such that for every d ≥ dc and 1 ≥ ε ≥ 1√

d

8βε ≤ 8β ≤ 8

√
c log d

ε√
d

≤ 8

√
c log(d1.5)√

d
≤ 1

4
=
γα

2

Moreover, for x ∈ H, we know that 1
2γ

α‖x‖2 ≤ h̃(x) = h̃LCE(x), therefore, fw(x) = h̃(x) =
1
2 ‖x‖

1+α
2 .

4.4 Approximate convexity and constructing G(x)

Finally, we show that f̃w is indeed a ∆-approximately convex, by showing ∀x ∈ K, |fw − f̃w| ≤ ∆

and fw is 1-Lipschitz and convex. Note that by construction, f̃w only differs from fw on K ∩ C ∩ A,
so it’s sufficient to focus on the set K ∩ C ∩ A.

We will need the following simple bound on the value of lw in K ∩ C ∩ A.

Lemma 4.3. For every x ∈ K ∩ C ∩ A, we have |lw(x)| ≤ 1
2∆.

7

Proof of Lemma 4.3. For x ∈ K ∩ C ∩ A, |lw(x)| = 8ε|〈x,w〉| ≤ 8εβ‖x‖2 ≤ 8εβγ ≤ 1
2∆.

The last inequality holds since ∆ ≥ 160 ε2√
d

(
c log d

ε

)2
and c ≥ 1

Proposition 4.3. f̃w is a ∆-approximately convex.

Proof. First, notice that fw is convex and 1-Lipschitz.

Since fw is a point-wise maximum of h̃LCE and lw, it is convex.

Furthermore, we claim both h̃LCE and lw are 1-Lipschitz, which will imply that fw is 1-Lipschitz.
Indeed, lw is 1-Lipschitz by definition, and the norm of the gradient of h̃LCE is upper bounded by
1
2 (1 + α) ≤ 1 since α < 1.

Now we argue maxx∈K |fw(x)− f̃w(x)| ≤ ∆.

By Lemma 4.3, we know that when x ∈ K ∩ C ∩ A, lw(x) ≥ − 1
2∆. Since fw(x) =

max{lw(x), h̃LCE(x)}, we have fw(x) ≥ − 1
2∆. The claim follows.

Now we construct G(x), which does not depend on w, we want to show that for an algorithm with
small number of queries of f̃w, it can not distinguish fw from this function.

Construction 4.3. Let G : K → R be defined as:

G(x) =

{
max

{
1+α

4 ‖x‖2 −
α
4 γ,

1
2∆
}

if x ∈ K ∩ C ;
1
2‖x‖

1+α
2 otherwise.

Lemma 4.4. G(x) ≥ 0 and {x ∈ K | G(x) 6= f̃w(x)} ⊆ A

Proof of Lemma 4.4. By Lemma 4.2, f̃w(x) = fw(x) = h̃(x) for x ∈ H. Moreover, by definition,
h̃(x) = 1

2‖x‖
1+α
2 . Therefore, f̃w(x) = G(x) for x ∈ H. So we only need consider K ∩ C ∩ A.

Note that |lw(x)| ≤ 1
2∆ in K ∩ C ∩ A by Lemma 4.3. Therefore, for x ∈ K ∩ C ∩ A, f̃(x) =

max
{
h̃LCE(x), 1

2∆
}

.

We conclude the proof by noticing that for every x ∈ K ∩ C ∩ A (recall K the ball of radius 1/2
centered at 0), there exists y ∈ H such that ‖y‖2 = γ and 〈x, y〉 = ‖x‖2‖y‖2. Which implies that

h̃LCE(x) = max
x′∈H
{〈x− x′,∇h̃(x′)〉+ h̃(x′)}

= max
x′∈H

{
1 + α

2
‖x′‖α−1

2 〈x, x′〉 − α

2
‖x′‖1+α

2

}
=

1 + α

2
‖y‖α−1

2 〈x, y〉 − α

2
‖y‖1+α

2

=
1 + α

4
‖x‖2 −

α

4
γ

Where the third equality follows from the following observations:

(1). When ‖x′‖2 is fixed, the best x′ should be aligned with x: 〈x′, x〉 = ‖x′‖2‖x‖2.

(2). defining

g(s) =
1 + α

2
‖x‖2sα −

α

2
s1+α

We have:

g′(s) =
(1 + α)α(‖x‖2 − s)

2
sα−1 < 0

For ‖x‖2 ≤ γ ≤ s.

8

4.5 Putting everything together

Proof of Theorem 3.1 for 1√
d
≤ ε ≤ 1

(log d)2 . With everything prior to this set up, the final claim is
somewhat standard. We want to show that no algorithm can, with probability ≥ 1

2 , output a point
x, s.t. f̃w(x) ≤ minx f̃w(x) + ε. Since we know that f̃w(x) agrees with G(x) everywhere except
in K ∩ A, and G(x) satisfies minxG(x) ≥ minx f̃w(x) + ε, we only need to show that with high
probability, any polynomial time algorithm will not query any point in K ∩A.

Consider a (potentially) randomized algorithm A, making random choices R1, R2, . . . , Rm. Condi-
tioned on a particular choice of randomness r1, r2, . . . , rm, for a random choice of w, each ri lies in
A with probability at most exp(−c log(d/ε)), by a standard Gaussian tail bound. Union bounding,
since m = o((dε)c) for an algorithm that runs in time o((dε)c), the probability that at least of the
queries of A lies in A is at most 1

2 .

But the claim is true for any choice r1, r2, . . . , rm of the randomness, by averaging, the claim holds
for r1, r2, . . . , rm being sampled according to the randomness of the algorithm.

4.6 Case 2: ε ≤ 1√
d

In the case where ε ≤ 1√
d

, the proof proceeds exactly the same as before, but with a different setting

of the parameters. In this case we set β =

√
c log d/ε√

d
, γ = 10c√

d
(log d/ε)3/2, and α = 1

log(1/γ) .

We proceed to verify that each Lemma still holds under this parameter setting. We first show that
Lemma 4.1 still holds.

Proof of Lemma 4.1. Following the same calculation as in previous section, it is enough to show that
γ ≥ β in this setting. We can check that for every c ≥ 1

β

γ
=

√
c log d/ε

10c(log d/ε)1.5
=

√
c

10c log d/ε
<

√
c

10c
≤ 1

10
< 1

We then check that Corollary 4.1 still holds.

Proof of Corollary 4.1. Following the same calculation in the previous section, it is sufficient to show
that

β

4
− 9

40
αγ ≤ −2ε

Putting in the specific numbers, we obtain: since ε ≤ 1√
d

β =

√
c log d/ε√

d

On the other hand, we have:

αγ ≥ 10c(log d/ε)1.5

√
d log

√
d/ε

≥
10c
√

log d/ε√
d

Therefore, for c ≥ 1

β

4
− 9

40
αγ ≤

√
c log d/ε

4
√
d

−
9c
√

log d/ε

4
√
d

≤ − 2√
d
≤ −2ε

We then check that Lemma 4.2 still holds.

9

Proof of Lemma 4.2. Following the same calculation in the previous section, it is sufficient to show
that

8βε ≤ 1

4

Putting in the specific bound, we know that for every c ≥ 0, there exists a dc = 32c2 such that for
every d ≥ dc,

8βε = 8

√
c log d/ε√

d
ε ≤ 1

4

It remains to check that Lemma 4.3 holds.

Proof of Lemma 4.3. Following the same calculation in the previous section, it is sufficient to show
that

8εβγ ≤ 1

2
∆

Putting in the specific bound, we know that

8βεγ =
80c1.5ε(log d/ε)2

d
≤ ∆

2

Where the last inequality follows from ∆ ≥ ε
d (13c log d/ε)2.

Note that Lemma 4.4 holds regardless of the choice of α, β, γ.

4.7 Case 3: 1
64 ≥ ε ≥

1
(log d)2

In this case, we can choose β =
√
c log d√
d

, γ = 1
2 and α = 1. Actually, since C = K in this case, it

reduces to having only linear function lw.

We can check that for sufficiently large dc = 4096c2, for every d ≥ dc, we have: β ≤ γ
10 ;

β
4 −

9
40αγ ≤ −

1
10 ≤ −2ε, 8βε ≤ 8

√
c log d√
d
≤ 1

4 and 8βεγ = 4ε
√
c log d√
d

≤ 1
2∆. So all the Lemma

4.1, 4.1, 4.2, 4.3 holds. Which completes the proof.

5 Algorithmic upper bound

As mentioned before, the algorithm in [BLNR15] covers the case when ∆ = O(εd), so we only
need to give an algorithm when ∆ = Ω(εd) and ∆ = O(ε

2

d). Our approach will not be making use
of simulated annealing, but a more robust version of gradient descent. The intuition comes from
[FKM05] who use estimates of the gradient of a convex function derived from Stokes’ formula:

Ew∼Sd
[
d

r
f(x+ rw)w

]
=

∫
B
∇f(x)dx

where w ∼ Sd denotes w being a uniform sample from the sphere Sd. Our observation is the gradient
estimation is robust to noise if we instead use f̃ in the left hand side. Crucially, robust is not in the
sense that it approximates the gradient of f , but it preserves the crucial property of the gradient of
f we need: 〈−∇f(x), x∗ − x〉 ≥ f(x) − f(x∗). In words, this means if we move x at direction
−∇f(x) for a small step, then x will be closer to x∗, and we will show the property is preserved by
f̃ when ∆ ≤ ε2√

d
. Indeed, we have that:〈
−Ew∼Sd

[
d

r
f̃(x+ rw)w

]
, x∗ − x

〉
≥ −Ew∼Sd

[〈
d

r
f(x+ rw)w, x∗ − x

〉]
− d∆

r
Ew∼Sd [|〈w, x∗ − x〉|]

The usual [FKM05] calculation shows that

Ew∼Sd)

[〈
d

r
f(x+ rw)w, x∗ − x

〉]
= Ω (f(x)− f(x∗)− 2r)

10

and d
r∆Ew∼U(Sd) [|〈w, x∗ − x〉|] is bounded byO(∆

√
d

r), since Ew∼U(Sd) [|〈w, x∗ − x〉|] = O(1√
d
).

Therefore, we want f(x)− f(x∗)− 2r ≥ ∆
√
d

r
whenever f(x)− f(x∗) ≥ ε. Choosing the optimal

parameter leads to r = ε
4 and ∆ ≤ ε2√

d
.

This intuitive calculation basically proves the simple upper bound guarantee (Theorem 3.3). On
the other hand, the argument requires sampling from a ball of radius Ω(ε) around point x. This is
problematic when ε > 1√

d
: many convex bodies (e.g. the simplex, L1 ball after rescaling to diameter

one) will not contain a ball of radius even 1√
d

. The idea is then to make the sampling possible by

“extending” f̃ outside of K. Namely, we define a new function g : Rd → R such that (ΠK(x) is the
projection of x to K)

g(x) = f̃(ΠK(x)) + d(x,K)

g(x) will not be in general convex, but we instead directly bound 〈Ew∼
[

1
r g(x+ rw)w

]
, x − x∗〉

for x ∈ K and show that it behaves like 〈−∇f(x), x∗ − x〉 ≥ f(x)− f(x∗).

Algorithm 1 Noisy Convex Optimization
1: Input: A convex set K ⊂ Rd with diam(K) = 1 and 0 ∈ K. A ∆-approximate convex function
f̃

2: Define: g : R→ R as:
g̃(x) = f̃(ΠK(x)) + d(x,K)

where ΠK is the projection to K and d(x,K) is the Euclidean distance from x to K.
3: Initial: x1 = 0, r = ε

128µ , η = ε3

4194304d2 , T = 8388608d2

ε4 .
4: for t = 1, 2,, T do
5: Let vt = f̃(xt).
6: Estimate up to accuracy ε

4194304 in l2 norm (by uniformly randomly sample w):

gt = Ew∼Sd
[
d

r
g̃(xt + rw)w

]
where w ∼ Sd means w is uniform sample from the unit sphere.

7: Update xt+1 = ΠK(xt − ηgt)
8: end for
9: Output mint∈[T]{vt}

The rest of this section will be dedicated to showing the following main lemma for Algorithm 1.

Lemma 5.1 (Main, algorithm). Suppose ∆ < ε2

16348
√
d

, we have: For every t ∈ [T], if there exists

x∗ ∈ K such that f̃(x∗) < f̃(xt)− 2ε, then

〈−gt, x∗ − xt〉 ≥
ε

64

Assuming this Lemma, we can prove Theorem 3.2.

Proof of Theorem 3.2. We first focus on the number of iterations:

For every t ≥ 1, suppose f̃(x∗) < f̃(xt)− 2ε, then we have: (since ‖gt‖ ≤ 2d/r ≤ 256d
ε)

‖x∗ − xt+1‖22 ≤ ‖x∗ − (xt − ηgt)‖22
= ‖x∗ − xt‖22 − 2η〈x∗ − xt, gt〉+ η2‖gt‖22

≤ ‖x∗ − xt‖22 −
ηε

64
+ η2 65536d2

ε2

≤ ‖x∗ − xt‖22 −
ε4

8388608d2
+

ε4

4194304d2

= ‖x∗ − xt‖22 −
ε4

8388608d2

11

Since originally ‖x∗ − x1‖ ≤ 1, the algorithm ends in poly(d, 1
ε) iterations.

Now we consider the sample complexity. Since we know that∥∥∥∥dr g̃(xt + rw)w

∥∥∥∥
2

≤ 64d

ε

By standard concentration bound we know that we need poly(d, 1
ε) samples to estimate the expecta-

tion up to error ε
2097152 per iteration.

Proof of Lemma 5.1. Proceeding towards applying the FKM framework, we have, since |g(x) −
h(x)| ≤ ∆:

Ew∼U(Sd)

[〈
−d
r
g(xt + rw)w, e

〉]
≥ Ew∼U(Sd)

[〈
−d
r
h(xt + rw)w, e

〉]
−d
r

∆Ew∼U(Sd)|〈w, e〉|

We want to lower bound the quantity on the RHS by ε
64 . Since the absolute value of the second term

is upper bounded by d
r∆(2d−1/2) ≤ ε

32 , it is enough to bound the first term by ε
16 .

Let’s proceed to the first term. By applying Stokes’ theorem, we have:

Ew∼U(Sd)

[〈
−d
r
h(xt + rw)w, e∗

〉]
= −

〈
1

Vol[B1(0)]

∫
z∈B1(0)

∇h(xt + rz)dz, e∗

〉

= − 1

Vol[B1(0)]

∫
z∈B1(0)

〈∇h(xt + rz), e∗〉 dz

In order to evaluate gradients of h, we will need to develop machinery for dealing with the projections.

Note the following observation: for any point y ∈ Rd, x = ΠK(y) is given by the solution to the
system of equations in x, λ:

x+ λ∇F (x) = y, λ =
‖y − x‖2
‖∇F (x)‖2

(1)

For simplicity, we denote xt to x and let e = x∗ − x.

Denoting ys = y + se, xs = ΠK(ys), we have using (1) and the chain rule:

e =
∂ys
∂s

=
∂xs
∂s

+
∂λs
∂s
∇F (x) + λs∇2F (x)

∂xs
∂s

(2)

We will be evaluating all the partial derivatives at s = 0, so as a shorthand, let us denote by ∂λ
∂s ,

∂x
∂s

the quantities ∂λs
∂s

∣∣∣∣
s=0

, ∂xs∂s

∣∣∣∣
s=0

.

Towards calculating ∂h(ys)
∂s , we proceed to calculate ∂f(xs)

∂s and ∂‖ys−xs‖2
∂s .

For ∂f(xs)
∂s , by (2) we have:

∂f(xs)

∂s

∣∣∣∣
s=0

=

〈
∇f(x),

∂xs
∂s

〉
= 〈∇f(x), e〉−∂λ

∂s
〈∇f(x),∇F (x)〉−λ∇f(x)>∇2F (x)

∂x

∂s
(3)

On the other hand, we wish to show ‖ys−xs‖2
∂s

∣∣∣∣
s=0

= 1
‖∇F (x)‖2 〈∇F (x), e〉. Using the fact that for

any differentiable function g(x), d
dx‖g(x)‖2 = ‖g(x)‖−1

2
d
dxg(x) we have

‖ys − xs‖2
∂s

∣∣∣∣
s=0

= ‖y − x‖−1
2

〈
y − x, ∂y

∂s
− ∂x

∂s

〉
=

∂λ

∂s
‖∇F (x)‖2 +

λ

‖∇F (x)‖2
∇F (x)>∇2F (x)

∂x

∂s
(4)

where the second equality follows since by (1), we have y−x
‖y−x‖2 = ∇F (x)

‖∇F (x)‖2 .

12

Since F (xs) = 0 by taking gradients on both sides we have 〈∇F (x), ∂x∂s 〉 = 0 which gives us by (1):

〈∇F (x), e〉 =
∂λ

∂s
‖∇F (x)‖22 + λ∇F (x)>∇2F (x)

∂x

∂s
(5)

Combine with Equality (4) we get: ‖ys−xs‖2∂s

∣∣∣∣
s=0

= 1
‖∇F (x)‖2 〈∇F (x), e〉 as we wanted.

For notational convenience, let’s denote ˜∇F (x) = ∇F (x)
‖∇F (x)‖2 . From the above estimates, putting (3)

and (4) together we have:
h(ys)

∂s
= 〈∇f(x), e〉+ 〈 ˜∇F (x), e〉(1− 〈∇f(x), ˜∇F (x)〉)

+λ
(

˜∇F (x)〈 ˜∇F (x), f(x)〉 − ∇f(x)
)>
∇2F (x)

∂x

∂s
(6)

We will bound each of the terms on the RHS individually. Namely, we show:

〈∇f(x), e〉 ≤ − ε
2

(7)

〈 ˜∇F (x), e〉(1− 〈∇f(x), ˜∇F (x)〉) ≤ 0 (8)

λ
(

˜∇F (x)〈 ˜∇F (x), f(x)〉 − ∇f(x)
)>
∇2F (x)

∂x

∂s
≤ − ε

8
(9)

Proceeding to (7), since f(x∗) ≤ f(x) − ε, ‖x − x∗‖2 ≤ r and f is 1-Lipschitz, we know that
f(x∗) ≤ f(x)− ε

2 . By convexity of f , we have
f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉

which by simple rearranging gives 〈∇f(x), e〉 ≤ − ε
2 .

For (8), we know that x∗ lies inK, hence using the fact that∇F (x) is a normal vector toK at x, we get
〈∇F (x), e〉 ≤ 0. Furthermore, since |〈∇f(x), ˜∇F (x)〉| ≤ 1, we know that (1−〈∇f(x),∇F (x)〉) ∈
[0, 2], which implies that

〈 ˜∇F (x), e〉
(

1− 〈∇f(x), ˜∇F (x)〉
)
≤ 0

Finally, consider the last term. By (2) and (5) we get:

(I + λ∇2F (x))
∂xs
∂s

= e− ∂λ

∂s
∇F (x)

= e− 〈 ˜∇F (x), e〉 ˜∇F (x) + 〈 ˜∇F (x), e〉 ˜∇F (x)− ∂λ

∂s
∇F (x)

= (e− 〈 ˜∇F (x), e〉 ˜∇F (x)) + λ ˜∇F (x)
>
∇2F (x)

∂xs
∂s

˜∇F (x)

Multiplying on the left and right by (I − ˜∇F (x) ˜∇F (x)
>

) on both sides of the above equality, and

using the fact that ˜∇F (x)
> ∂xs
∂s = 0 and (I − ˜∇F (x) ˜∇F (x)

>
) ˜∇F (x) = 0, we have:

(I + λ(I − ˜∇F (x) ˜∇F (x)
>

)∇2F (x))
∂xs
∂s

= (I − ˜∇F (x) ˜∇F (x)
>

)(e− 〈 ˜∇F (x), e〉 ˜∇F (x))

Denoting A = (I − ˜∇F (x) ˜∇F (x)
>

), B = A∇2F (x), we get:

A∇2F (x)
∂x

∂s
= B(I + λB)−1Ae

We proceed to bound the spectral norm of the RHS (which of course will imply a spectral norm
bound on the LHS). Towards that, we first show ‖λB‖2 ≤ 1

2 : indeed, by our choice of r, we have
λ‖∇F (x)‖2 ≤ r ≤ 1

2µ . This implies

‖λB‖2 ≤ λ‖A‖2‖∇2F (x)‖2 ≤ ‖λ‖2‖∇F (x)‖2
‖∇2F (x)‖2
‖∇F (x)‖2

≤ rµ ≤ 1

2
(10)

where the first inequality follows by submultiplicativity of the spectral norm, and the second by
‖A‖ ≤ 1. Therefore we have:

‖B(I + λB)−1Ae‖2 ≤ 2‖B‖2 ≤ 2‖A‖2‖∇2F (x)‖2 ≤ 2µ‖∇F (x)‖2

13

where the first inequality and second inequality follow by (10) and the submultiplicativity of the
spectral norm; the third is by well-conditioning of the convex body. Finally, this implies |∇f(x)>(I−

˜∇F (x) ˜∇F (x)
>

)∇2F (x)∂x∂s | ≤ 2µ‖∇F (x)‖2

Putting (7), (8), (9) together, we get h(ys)
∂s

∣∣∣∣
s=0

≤ − ε
8 .

Using the above fact and the 1-Lipschitzness of h, we get

〈∇h(y), e∗〉 = 〈∇h(y), e〉+ 〈∇h(y), e∗ − e〉 ≤ − ε
8

+ r ≤ − ε

16

Which completes the proof.

6 Discussion and open problems

6.1 Arbitrary Lipschitz constants and diameter

We assumed throughout the paper that the convex function f is 1-Lipschitz and the convex set K
has diameter 1. Our results can be easily extended to arbitrary functions and convex sets through a
simple linear transformation. For f with Lipschitz constant ‖f‖Lip and K with diameter D, and the
corresponding approximately convex f̃ , define g̃ : KD → R as g̃(x) = 1

D‖f‖Lip
f̃(rx). (Where KD is the

rescaling of K by a factor of 1
D .) This translates to ‖g̃(x)− g(x)‖2 ≤ ∆

R‖f‖Lip
. But g(x) = f(Rx)

R‖f‖Lip
is

1-Lipschitz over a set KR of diameter 1. Therefore, for general functions over a general convex sets,
our result trivially implies the rate for being able to optimize approximately-convex functions is

∆

R‖f‖Lip
= max

{
1√
d

(
ε

R‖f‖Lip

)2

,
1

d

ε

R‖f‖Lip

}
which simplifies to ∆ = max

{
ε2√

dR‖f‖Lip
, εd

}
.

6.2 Body specific bounds

Our algorithmic result matches the lower bound on well-conditioned bodies. The natural open
problem is to resolve the problem for arbitrary bodies. 9

Also note the lower bound can not hold for any convex body K in Rd: for example, if K is just a one
dimensional line in Rd, then the threshold should not depend on d at all. But even when the “inherent
dimension” of K is d, the result is still body specific: one can show that for f̃ over the simplex in Rd,
when ε ≥ 1√

d
, it is possible to optimize f̃ in polynomial time even when ∆ is as large as ε. 10

Finally, while our algorithm made use of the well-conditioning – what is the correct prop-
erty/parameter of the convex body that governs the rate of T (ε) is a tantalizing question to explore in
future work.

References
[AD10] Alekh Agarwal and Ofer Dekel. Optimal algorithms for online convex optimization

with multi-point bandit feedback. In COLT, pages 28–40. Citeseer, 2010.

[AFH+11] Alekh Agarwal, Dean P Foster, Daniel J Hsu, Sham M Kakade, and Alexander Rakhlin.
Stochastic convex optimization with bandit feedback. In Advances in Neural Information
Processing Systems, pages 1035–1043, 2011.

9We do not show it here, but one can prove the upp/lower bound still holds over the hypercube and when one
can find a ball of radius ε that has most of the mass in the convex body K.

10Again, we do not show that here, but essentially one can search through the d+ 1 lines from the center to
the d+ 1 corners.

14

[BLNR15] Alexandre Belloni, Tengyuan Liang, Hariharan Narayanan, and Alexander Rakhlin.
Escaping the local minima via simulated annealing: Optimization of approximately
convex functions. In Proceedings of The 28th Conference on Learning Theory, pages
240–265, 2015.

[DJWW15] John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Opti-
mal rates for zero-order convex optimization: The power of two function evaluations.
Information Theory, IEEE Transactions on, 61(5):2788–2806, 2015.

[DKS14] Martin Dyer, Ravi Kannan, and Leen Stougie. A simple randomised algorithm for
convex optimisation. Mathematical Programming, 147(1-2):207–229, 2014.

[FKM05] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex
optimization in the bandit setting: gradient descent without a gradient. In Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 385–394.
Society for Industrial and Applied Mathematics, 2005.

[NS] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex
functions. Foundations of Computational Mathematics, pages 1–40.

[NY83] Arkadii Nemirovskii and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. Wiley-Interscience series in discrete mathematics. Wiley,
Chichester, New York, 1983. A Wiley-Interscience publication.

[Sha12] Ohad Shamir. On the complexity of bandit and derivative-free stochastic convex opti-
mization. arXiv preprint arXiv:1209.2388, 2012.

[SV15] Yaron Singer and Jan Vondrák. Information-theoretic lower bounds for convex optimiza-
tion with erroneous oracles. In Advances in Neural Information Processing Systems,
pages 3186–3194, 2015.

15

	Introduction
	Prior work
	Overview of results
	Proof techniques

	Information-theoretic lower bound
	The family {fw(x)}
	Case 1: 1d 1(logd)2
	fw(x) = (x) in H
	Approximate convexity and constructing G(x)
	Putting everything together
	Case 2: 1d
	Case 3: 164 1(logd)2

	Algorithmic upper bound
	Discussion and open problems
	Arbitrary Lipschitz constants and diameter
	Body specific bounds

