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Here we present the proof of the three theoretical parts related to our work, including the exact1

recovery analysis, ε-recovery analysis and the convergence analysis. Algorithm details are followed2

from the theoretical part. The feature description table of the drug discovery dataset is displayed in3

the last section.4

1 Exact Recovery Sampling Complexity5

Theorem 1 Let µ = max(µ0, µXY), σ = max(‖Σ−1
X ‖∗, ‖Σ

−1
Y ‖∗). µ0, µXY are calculat-

ed from F. Denote q0 = 1
2 (1 + log a − log r), T0 = 128p

3 σµmax(µ1, µ)r(a + b) logN and
T1 = 8p

3 σ
2µ2(ab + r2) logN . Assume T1 ≥ q0T0, X and Y are orthonormal. For any p > 1,

with a probability at least 1− 4(q0 + 1)N−p+1 − 2q0N
−p+2, G0 and E0 are the unique optimizer

to the problem (3) in our formulation if

|Ω| ≥ 64p

3
σµmax(µ1, µ)(1 + log a− log r)r(a+ b) logN

For proving Theorem 1, we introduce the Lemma 1 stating two deterministic conditions for G0 and6

E0 to be the unique minimizer of our problem. It can be proved in Lemma 2, Lemma 9 and Lemma7

10 that under a high probability the assumption A1 and A2 hold. So let us first give Lemma 1 as8

below:9

Lemma 1 We assume that for any M 6= 0, M ∈ Rm×n satisfying RΩ(M) = 0 and M =10

PXMPY, then we have11

A1 ‖PT (M)‖F ≤ ζ‖PT⊥(M)‖F ,
where

ζ ≤
√

a

2r

And assume that there exists a matrix H ∈ Rm×n such that

A2 RΩ(H) = H, ‖PT (H)−UVT ‖F ≤
√

r

2a
, ‖PT⊥(H)‖ < 1

2

Moreover we assume that there exists a constant C0 such that

A3 ‖G0‖1 = s <
λG( 1

2 − ζ
√

r
2a )

CλE
,

where C < C0, then G0 and E0 are the unique minimizer to our optimization problem.12
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Proof. Assuming the solution is not unique, there exists another solution G0 + ∆G and E0 + ∆E13

with ∆G,∆E 6= 0. Basically our aim is to prove the contradiction that ‖G0 + ∆G‖1 + ‖E0 +14

∆E‖∗ ≥ ‖G0‖1 + ‖E0‖∗.15

In order to prove the contradiction, we illustrate several useful facts below:16

(1) RΩ(XT (G0 +∆G)Y) = RΩ(XTG0Y) and XT (G0 +∆G)Y = PX(XT (G0 +∆G)Y)PY,17

as G0 + ∆G minimizes the original problem.18

(2) XT∆GY 6= 0, since XXT∆GYYT 6= 0 for X and Y are full row rank.19

(3) XT∆GY = PX(XT∆GY)PY, RΩ(X∆GY) = 0.20

(4) ‖PT (XT∆GY)‖F ≤ ζ‖PT (XT∆GY)‖F ≤ ζ‖PT⊥(XT∆GY)‖∗ since XTG0Y 6= 0 with21

Condition A1.22

(5) U⊥ and V⊥ are the left and right singular vectors of PT (XT∆GY), while UTU⊥ = 0 and23

VTV⊥ = 0.24

Denote λ = λG/λE for simplicity, then we can obtain that25

‖E0 + ∆E‖∗ + λ‖G0 + ∆G‖1
=‖XT (G0 + ∆G)Y‖∗ + λ‖G0 + ∆G‖1
=‖XT (G0 + ∆G)Y‖∗‖UVT + U⊥VT

⊥‖+ λ‖G0 + ∆G‖1

since the ‖UVT + U⊥VT
⊥‖ = 1, where the norm is the operator norm. Then26

‖XT (G0 + ∆G)Y‖∗‖UVT + U⊥VT
⊥‖+ λ‖G0 + ∆G‖1

≥
〈
XT (G0 + ∆G)Y,UVT + U⊥VT

⊥

〉
+ λ‖G0 + ∆G‖1

=
〈
XTG0Y,UVT

〉
+
〈
XTG0Y,U⊥VT

⊥

〉
+〈

XT∆GY,UVT + U⊥VT
⊥

〉
+ λ‖G0 + ∆G‖1

=‖E0‖∗ +
〈
XT∆GY,UVT + U⊥VT

⊥ −H
〉

+ λ‖G0 + ∆G‖1

This is obtained from the assumption A2 and matrix norm inequality. One can obtain the derivation27

by the norm inequality as follows,28 〈
XT∆GY,UVT + U⊥VT

⊥ −H
〉

+ λ‖G0 + ∆G‖1

=
〈
PT (XT∆GY),UVT − PT (H)

〉
+
〈
PT⊥(XT∆GY),U⊥VT

⊥ − PT⊥(H)
〉

+ λ‖G0 + ∆G‖1

≥‖PT⊥(XT∆GY)‖∗ − ‖PT (XT∆GY)‖F ‖UVT − PT (H)‖F
− ‖PT⊥(H)‖F ‖PT⊥(XT∆GY)‖∗ + λ‖G0 + ∆G‖1

(1)

using the assumption A1 and A2 then organizing the terms, we could get29

‖E0 + ∆E‖∗ + λ‖G0 + ∆G‖1

>‖E0‖∗ + ‖PT⊥(XT∆GY)‖∗(
1

2
− ζ
√

r

2a
) + λ‖G0 + ∆G‖1

≥‖E0‖∗ + ‖PT⊥(XT∆GY)‖∗(
1

2
− ζ
√

r

2a
) + λ‖G0‖1 − λs

≥‖E0‖∗ + λ‖G0‖1 + ‖PT⊥(XT∆GY)‖∗(
1

2
− ζ
√

r

2a
)− λs

(2)

Since ‖PT⊥(XT∆GY)‖∗( 1
2−ζ

√
r
2a ) ≥ 0 which is implied from assumption A2, by observing Eq.30

(2), once (i) λ(‖G0 + ∆G‖1) ≥ λs ≥ λ‖G0‖1, or (ii) ‖PT⊥(XT∆GY)‖∗( 1
2 − ζ

√
r
2a )− λs ≥ 031

is proved, the result could lead to a contradiction. We prove it by separating the problem into two32

cases.33
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If the case (i) holds, we can directly obtain from Eq. (2) that ‖E0 + ∆E‖∗ + λ‖G0 + ∆G‖1 ≥34

‖E0‖∗ + λ‖G0‖1.35

In the contrary case of case (i), let us assume λ(‖G0 + ∆G‖1) < λ‖G0‖1. First consider the case36

if the possible minimizers G’s exist in the small ε-ball Bε(G0) as a continuous neighbour of G0,37

such that ε < mini,j |Gij |. Then for each Gs = {G0 + ∆G ∈ Bε(G0)}, it satisfies ‖Gs‖1 ≥38

‖G0‖1 − abε. Hence λ(‖G0 + ∆G‖1) ≥ λs− abλε. Since ε is arbitrary, λ(‖G0 + ∆G‖1) ≥ λs.39

Therefore, in this case the condition (i) is satisfied, which leads to the contradiction.40

Otherwise, consider the minimizers G’s exist outside of the ε-ball Bε(G0), which means G0 is an
isolated minimizer. Let us assume that there exists a constant C ′ such that for all ∆G,

‖PT⊥(XT∆GY)‖F ≥ C ′ > C > 0.

Here from the assumption A3 we can derive41

‖PT⊥(XT∆GY)‖∗(
1

2
− ζ
√

r

2a
)− λs

≥‖PT⊥(XT∆GY)‖F (
1

2
− ζ
√

r

2a
)− λs

≥C(
1

2
− ζ
√

r

2a
)− λs

≥0

Thus the condition (ii) is satisfied.42

Suppose there is no such a constant C ′ satisfying the above condition. This implies that there exists43

infinite minimizers and we can obtain a sub-sequence {∆Gtk}∞k=1 satisfying44

lim
k=∞

‖PT⊥(XT∆GtkY)‖F = 0 (3)

Due to the nuclear norm inequality and the fact (4) we further infer that45

0 ≤ lim
k=∞

‖PT (XT∆GtkY)‖F ≤ lim
k=∞

‖PT⊥(XT∆GtkY)‖F = 0 (4)

Combining Eq.(3) and Eq.(4) we have46

lim
k=∞

‖XT∆GtkY‖F = 0 (5)

Eq.(5) implies that the infinite sequence {G + ∆Gt}∞t=N ⊂ Bε(G0), which is contradicted to the47

fact that no minimizers G’s exist within the ε-ball Bε(G0). Therefore, the above all clarify the truth48

that the E0 + ∆E and G0 + ∆G are not the minimizer for our optimization problem.49

1.1 A1 holds with high probability50

In this subsection we prove that Lemma 2 holds with some certain probability. Lemma 2 roots from51

combining the results from Lemma 5 and Lemma 6, which upper-bounds ‖PT (M)‖F and lower-52

bounds ‖PT⊥(M)‖F and clarify the inequality between them. Lemma 3 and 4 are cited from [7] to53

facilitate the proof.54

Let’s first illustrate Lemma 2 as below.55

Lemma 2 With a certain probability at least 1− 4N−p+1, for any M 6= 0, M ∈ Rm×n satisfying
RΩ(M) = 0 and M = PXMPY we have

‖PT (M)‖F ≤ ζ‖PT⊥(M)‖F ,

where ζ is the same as in Lemma 1, if T0 ≤ |Ω| ≤ T1.56

Proof. Since RΩ(M) = 0 and M = PXMPY, we have RΩPT (M) = −RΩPT⊥(M). Then we
could attain

mn

|Ω|
〈M, PTRΩPT (M)〉 =

mn

|Ω|
〈M, PT⊥RΩPT⊥(M)〉

3



First, according to Lemma 5 and Lemma 6, with a probability at least 1− 4N−p+1, we have57

1

2
‖PT (M)‖2F ≤

mn

|Ω|
〈M, PTRΩPT (M)〉

≤16σ2pµ2(ab+ r2) logN

3|Ω|
‖PT⊥(M)‖2F

≤16σ2pµ2(ab+ r2) logN

3T0
‖PT⊥(M)‖2F

=
1

2
‖PT⊥(M)‖2F

finally we have
1

2
‖PT (M)‖F ≤

1√
2
‖PT⊥(M)‖F

while r ≤ a, we have 1√
2
≤
√

a
2r , so the lemma proved.58

Before we prove Lemma 5 and Lemma 6, which we which upper-bounds ‖PT (M)‖F and lower-59

bounds ‖PT⊥(M)‖F on certain conditions, we first need to illustrate Lemma 3,Lemma 4 derived60

from the Bernstein Inequality [5].61

Lemma 3 Let X1, ..., XL be independent zero-mean random matrices of dimension d1 × d2. Sup-
pose ρ2

k ≥ max{‖E[XkX
T
k ]‖, ‖XT

kXk‖} and ‖Xk‖ ≤M almost surely form all k. If we assume

M2 log
d1 + d2

ξ
≤ 3

8

∑
ρ2
k,

then with a certain probability at least 1− ξ, we have,

‖
L∑
k=1

Xk‖ ≤

√√√√8

3
ln
d1 + d2

ξ

L∑
k=1

ρ2
k.

We can also give Lemma 4 which can be derived from Lemma 3 as below;62

Lemma 4 Let X1, ..., XL be independent zero-mean random matrices of dimension d1 × d2. Sup-
pose ρ2

k ≥ max{‖E[XkX
T
k ]‖, ‖XT

kXk‖} and ‖Xk‖ ≤M almost surely form all k. If we assume

M2 log
d1 + d2

ξ
≤ 3

8

∑
ρ2
k,

then with a certain probability at least 1− ξ, we have,

‖
L∑
k=1

Xk‖ ≤
8

3
M log

d1 + d2

ξ
.

next we will bound ‖PT − mn
|Ω| PTRΩPT ‖ by using Lemma 3 and Lemma 4.63

Lemma 5 With a certain probability at least 1− 2N−p+1, we have∥∥∥∥PT − mn

|Ω|
PTRΩPT

∥∥∥∥ ≤
√

8pµ2r(a+ b) logN

3|Ω|

if |Ω| ≥ 8p
3 µ

2r(a+ b) logN and therefore, for any M ∈ Rm×n,

mn

|Ω|
〈M, PTRΩPT (M)〉 ≥ 1

2
‖PT (M)‖2F

if |Ω| ≥ T0.64
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Proof. For any M ∈ Rm×n, we have

PTRΩPT (M) =
∑

(i,j)∈Ω

〈
PT (M), eie

T
j

〉
PT (eie

T
j ) =

∑
(i,j)∈Ω

〈
M, PT (eie

T
j )
〉
PT (eie

T
j ).

For any i ∈ [m] and j ∈ [n], define linear operator Ti,j as

Ti,j(M) =
〈
M, PT (eie

T
j )
〉
PT (eie

T
j ) = PTR(i,j)PT (M),

where R(i,j)(M) = eie
T
j Mi,j . So that

PTRΩPT (M) =
∑

(i,j)∈Ω

PTR(i,j)PT (M) =
∑

(i,j)∈Ω

Ti,j(M).

To implement Lemma 3, we need to give M and the corresponding ρ2. Since ‖PT − mn
|Ω|PTRΩPT ‖65

can be viewed as the spectral norm of |Ω| independent zero-mean random variables 1
|Ω|PT−

mn
|Ω|Ti,j ,66

then we have67

‖ 1

|Ω|
PT −

mn

|Ω|
Ti,j‖ ≤ max{‖ 1

|Ω|
PT ‖, ‖

mn

|Ω|
Ti,j‖}

= max{‖ 1

|Ω|
PT ‖,

mn

|Ω|
arg max
‖M‖F=1

‖
〈
M, PT (eie

T
j )
〉
PT (eie

T
j )‖F }

= max{‖ 1

|Ω|
PT ‖,

mn

|Ω|
arg max
‖M‖F=1

〈
M, PT (eie

T
j )
〉
‖PT (eie

T
j )‖F }

= max{‖ 1

|Ω|
PT ‖,

mn

|Ω|
‖PT (eie

T
j )‖F }

To bound ‖PT (eie
T
j )‖F , we get68

‖PT (eie
T
j )‖F =

〈
PT (eie

T
j ), eie

T
j

〉
=
〈
PX(eie

T
j )PV, eie

T
j

〉
+
〈
PU(eie

T
j )PY, eie

T
j

〉
−
〈
PU(eie

T
j )PV, eie

T
j

〉
=‖PX(eie

T
j )PV‖F + ‖PU(eie

T
j )PY‖F − ‖PU(eie

T
j )PV‖F

≤‖PXei‖F ‖PVej‖F + ‖PUei‖F ‖PYej‖F

≤‖XTVXΣ−2
X VT

X‖F
aµXY

m

rµ0

n
+ ‖YTVYΣ−2

Y VT
Y‖F

rµ0

m

bµXY

n

≤‖Σ−1
X ‖∗

aµXY

m

rµ0

n
+ ‖Σ−1

Y ‖∗
rµ0

m

bµXY

n

≤σ rµ0µXY(a+ b)

mn
≤ σrµ2(a+ b)

mn
.

Therefore69

‖ 1

|Ω|
PT −

mn

|Ω|
Ti,j‖ ≤ max{‖ 1

|Ω|
PT ‖,

mn

|Ω|
‖PT (eie

T
j )‖F }

≤max{‖ 1

|Ω|
PT ‖,

σrµ2(a+ b)

mn
} = max{ 1

|Ω|
,
σrµ2(a+ b)

mn
}

= max{ 1

|Ω|
,
σrµ2(a+ b)

mn
} =

σrµ2(a+ b)

mn
= M
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Since that 1
|Ω|E[PTRΩPT (M)] = 1

mnPT (M), the corresponding ρ2
i,j can be calculated as70

ρ2
i,j =‖E[(

1

|Ω|
PT −

mn

|Ω|
Ti,j)

T (
1

|Ω|
PT −

mn

|Ω|
Ti,j)]‖

=‖E[
1

|Ω|2
PTPT +

m2n2

|Ω|2
Ti,jTi,j −

2mn

|Ω|2
PTTi,j ]‖

=‖ 1

|Ω|2
PT +

m2n2

|Ω|2
E[Ti,jTi,j ]−

2mn

|Ω|2
PTE[Ti,j ]‖

=‖ 1

|Ω|2
PT +

m2n2

|Ω|2
E[Ti,jTi,j ]−

2mn

|Ω|2
PT

1

mn
PT ‖

=‖m
2n2

|Ω|2
E[Ti,jTi,j ]−

1

|Ω|2
PT ‖ ≤ max{m

2n2

|Ω|2
E[Ti,jTi,j ],

1

|Ω|2
PT }

≤max{m
2n2

|Ω|2
E[‖PT (eie

T
j )‖F ‖Ti,j‖],

1

|Ω|2
}

≤max{m
2n2

|Ω|2
σrµ2(a+ b)

mn

1

mn
‖PT ‖],

1

|Ω|2
}

=
σrµ2(a+ b)

|Ω|2

By Lemma 4, let M = σrµ2(a+b)
mn and ρ2 = σrµ2(a+b)

|Ω|2 , we conclude with a certain probability71

1− 2N−p+1,72

‖PT −
mn

|Ω|
PTRΩPT ‖ ≤

√
8

3
log

m+ n

2N−p+1

σrµ2(a+ b)

|Ω|
≤

√
8σprµ2(a+ b) logN

3|Ω|

which also should satisfy the condition that

σ2r2µ4(a+ b)2

|Ω|2
log

m+ n

2N−p+1
≤ 3

8

σrµ2(a+ b)

|Ω|

which means

|Ω| ≥ 8σprµ2(a+ b) logN

3
.

Moreover, if |Ω| ≥ T0 ≥ 32σprµ2(a+b) logN
3 , then∥∥∥∥PT − mn

|Ω|
PTRΩPT

∥∥∥∥ ≤
√

8σpµ2r(a+ b) log τ

3|Ω|
≤ 1

2
,

By utilizing the property of matrix norm, we have〈
M, PT (M)− mn

|Ω|
PTRΩPT (M)

〉
≤ 1

2
‖PT (M)‖2F

So that

〈M, PT (M)〉 − 1

2
‖PT (M)‖F ≤

〈
M,

mn

|Ω|
PTRΩPT (M)

〉
,

which we can easily derive

1

2
‖PT (M)‖2F ≤

mn

|Ω|
PTRΩPT (M).

73

Following the similarly outline of the proof as Lemma 5, we can prove the following Lemma 6.74
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Lemma 6 With a certain probability at least 1− 2N−p+1, we have∥∥∥∥PT⊥ − mn

|Ω|
PT⊥RΩPT⊥

∥∥∥∥ ≤ 8σ2pµ2(ab+ r2) logN

3|Ω|

if |Ω| ≥ T0 = 8
3σµ

2pr(a+ b) logN and therefore, for any M ∈ Rm×n,

mn

|Ω|
〈M, PT⊥RΩPT⊥(M)〉 ≤ 16σ2pµ2(ab+ r2) logN

3|Ω|
‖PT⊥(M)‖2F

Then based on Lemma 5 and 6, we can prove that A1 holds with a certain high probability.75

1.2 A2 holds with high probability76

In this subsection we aim to investigate the condition when A2 holds with the high probabili-77

ty. Like the similar approach we propose above, we also need to bound the following two terms78
mn
|Ω| ‖PT⊥RΩPT (H)‖F and ‖PT (H)− mn

|Ω|PT⊥RΩPT (H)‖∞ in Lemma 7 and 8 respectively where79

‖ · ‖∞ is the maximum entry of a matrix.80

Lemma 7 For a fixed H ∈ Rm×n, with a probability 1− 2N−p+1, we have

mn

|Ω|
‖PT⊥RΩPT (H)‖ ≤ ‖PT (H)‖∞

√
8σpmnµa logN

3|Ω|
,

if |Ω| ≥ T0.81

Proof. We write

PT⊥RΩPT (F ) =
∑

(i,j)∈Ω

〈
H, PT (eie

T
j )
〉
PT⊥(eie

T
j ) =

∑
(i,j)∈Ω

Ti,j ,

where Ti,j(H) =
〈
H, PT (eie

T
j )
〉
PT⊥(eie

T
j ). Evidently,

E[PT⊥RΩPT (H)] = 0.

To use Lemma 3, we compute M and ρ2 as,82

M = max
i∈[m]j∈[n]

‖Ti,j‖

≤ max
i∈[m]j∈[n]

max
‖F‖F=1

‖
〈
H, PT (eie

T
j )
〉
PT⊥(eie

T
j )‖F

≤ max
i∈[m]j∈[n]

〈
H, PT (eie

T
j )
〉
PT⊥(eie

T
j )

≤‖PT (H)‖∞ max
i∈[m]j∈[n]

‖PT⊥(eie
T
j )‖F

≤‖PT (H)‖∞

√
µ2σ2(ab+ r2)

mn

and83

ρ2
i,j = max{‖E[Ti,j , T

T
i,j ]‖, ‖E[TTi,j , Ti,j ]‖}

=‖PT (H)‖2∞max{‖E[PT⊥(eie
T
j )TPT⊥(eie

T
j )]‖, ‖E[PT⊥(eie

T
j )PT⊥(eie

T
j )T ]‖}

=‖PT (H)‖2∞max{‖E[PY⊥eje
T
i PX⊥eie

T
j PY ⊥ ]‖, ‖E[PX⊥eie

T
j PY ⊥eje

T
i PX⊥ ]‖}

≤‖PT (H)‖2∞max{σµXYa

m
‖E[PY⊥eje

T
j PY ⊥ ]‖, σµXYb

n
‖E[PX⊥eie

T
i PX⊥ ]‖, }

≤‖PT (H)‖2∞σmax{µXYa

m
‖PY⊥E[eje

T
j ]PY ⊥‖,

µXYb

n
‖PX⊥E[eie

T
i ]PX⊥‖, }

≤‖PT (H)‖2∞σmax{µXYa

mn
‖PY⊥PY ⊥‖,

µXYb

mn
‖PX⊥PX⊥‖, }

≤‖PT (H)‖2∞
σµXY max{a, b}

mn
.
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To prove simply without loss of the generality, we assume b ≤ a, so we can get

ρ2
i,j ≤ ‖PT (H)‖2∞

σµXYa

mn
≤ ‖PT (H)‖2∞

σµa

mn

By Lemma 3, we have, if

‖PT (H)‖2∞
σ2µ2(ab+ r2)

mn
log

2N

2N−p+1
≤ 3

8
‖PT (H)‖2∞

σµa|Ω|
mn

that is
8σµ(ab+ r2)p logN

3a
≤ |Ω|,

therefore, with a probability of 1− 2N−p+1,84

mn

|Ω|
≤mn
|Ω|
‖PT (H)‖∞

√
8σpρ2|Ω| logN

3

≤mn
|Ω|
‖PT (H)‖∞

√
8σpµa|Ω| logN

3mn

=‖PT (H)‖∞

√
8σmnpµa logN

3|Ω|

by Lemma 2, we need to use the condition |Ω| ≥ T0, and then

|Ω| ≥ T0 ≥
32σprµ2(a+ b) logN

3
≥ 8σp(ab+ r2)µ logN

3a

which is because µ ≥ 1, a ≥ b, and a � r. Then under the condition |Ω| ≥ T0, we complete the85

proof.86

Lemma 8 For a fixed H ∈ Rm×n, with a probability 1− 2N−p+2, we have

‖
(
PT −

mn

|Ω|PTRΩPT

)
(H)‖∞ ≤

√
8σprµ2(a+ b) logN

3|Ω|
‖PT (H)‖∞

and therefore if |Ω| ≤ T0,

‖
(
PT −

mn

|Ω|PTRΩPT

)
(H)‖∞ ≤

1

2
‖PT (F)‖∞

Proof. For each matrix index (a, b), sample (i, j) uniformly at random to define the random vari-
able ηa,b = [mnPTRΩPT (H)− PT (H)] We have

E[ηa,b] = 0,

ηa,b ≤ ‖PTRi,jPT − PT ‖‖PT (H)‖∞ ≤ rσµ2(a+ b)‖PT (H)‖∞
and87

E[η2
a,b] =E[([mnPTRi,jPT (H)− PT (H)]a,b)

2]

=E[([m2n2PTRi,jPT (H)]a,b)
2] + ([PT (H)]a,b)

2 − 2mnE[([PTRi,jPT (H)]a,b[PT (H)]a,b)
2]

=m2n2E[(PTRi,jPT (H)]a,b)
2]− ([PT (H)]a,b)

2

=m2n2E[(
〈
eae

T
b , PT (eie

T
j )
〉 〈

H, PT (eie
T
j )
〉
)2]− ([PT (H)]a,b)

2

=mn‖PT (H)‖2F ‖PT (eaeb)‖2F − ([PT (H)]a,b)
2

≤‖PT (H)‖2∞rσµ2(a+ b)

Using the standard Bernstein Inequality, we have

P

|[mnPTRΩPT (H)− |Ω|PT (H)]a,b| >

√
8|Ω|‖PT (H)‖2∞rσµ2(a+ b) log 2

2N−p

3

 ≤ 2N−p

8



Take the union bound, we have , with a probability of 1− 2N−p+2

‖mn
|Ω|

PTRΩPT (H)− PT (H)‖∞ ≤

√
9σrpµ2(a+ b) lnN

3|Ω|
‖PT (H)‖∞

If |Ω| ≥ T0, we have

‖mn
|Ω|

PTRΩPT (H)‖∞ ≤
1

2
‖PT (H)‖∞

88

Next we need to verify that there exists a matrix H that satisfies the conditions in assumption A2,
we follow the idea in [7] and construct F as follows. We generate a sequence of Ht, t = 1, ..., q as
follows

Ht =
mn

T0

t∑
i=1

RΩi(Wi),

where W1 = UVT and Wt+1 is defined as

Wt+1 = PT (UVT −Ht) = (PT −
mn

T0
PTRΩtPT )(Wt)

We randomly select qT0 entries from Ω and partition the selected entries into q subsets as89

Ω1, ...,Ωqwith equal sizes, with |Ωi| = T0, , i = 1, ..., q. Thus we have H = Hq and H = RΩ(H).90

Now we are ready to show that H satisfies the other two properties in assumption A2.91

Lemma 9 With a probability of 1− 2qN−p+1, it is satisfied that

‖PT (H)‖ ≤
√

r

2a

if q ≥ q092

Lemma 10 With a probability of 1− 2qN−p+1 − 2qN−p+2, it is satisfied that

‖PT⊥(H)‖ ≤ 1

2

if q ≥ q093

Proof. Because of Lemma 8 we have

‖Ht+1‖∞ = ‖(PT −
mn

T0
PTRΩPT )Ht‖∞ ≤

1

2
‖Ht‖∞.

To bound ‖PT⊥(H)‖, we have94

‖PT⊥(H)‖ ≤
q∑
i=1

mn

T0
‖PT⊥RΩiPT (Hi)‖

≤α
q∑
i=1

‖Hi‖∞ ≤ α‖H1‖∞
q∑
i=1

1

2i−1

=2α‖H1‖∞ ≤ 2

√
8σpmnµa logN

3|Ω|

√
µ1r

mn

≤2

√
8σpmnµa logN

3|Ω|

So when |Ω| ≥ 128σµ1rpµa logN
3 , it could be guaranteed that ‖PT⊥(H)‖ ≤ 1

2 when

|Ω| ≥ 128pσµµXYr(a+ b) logN

3
= T0.

95
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2 ε-Recovery Sampling Complexity96

Consider the optimization problem below that if the perfect feature matrices X and Y are corrupted97

by ∆X and ∆Y and bounded by a constant ‖∆X‖F ≤ s1 and ‖∆Y‖F ≤ s2, so that we investigate98

the following relaxed optimization problem:99

min
G
‖RΩ((X + ∆X)TG(Y + ∆Y)− F)‖2F

subject to E−XTGY ∈ B(0, φ),

subject to ‖G‖1 ≤ α, ‖E‖∗ ≤ γ.

(6)

where B(0, φ) ⊂ Rm×n is a ball with the radius of φ and center at 0.100

The matrix Fij is assumed to be observed partially i.i.d. from an index set {(iα, jα)}mα=1 with101

unknown distribution.102

We denote Θ = {(G,E) | ‖G‖1 ≤ β, ‖E‖∗ ≤ γ,E = XTGY} as the feasible solution set, and103

θ = (G,E) ∈ Θ as any feasible solution. Let Fθ(i, j) = xTi Gyj be the estimation function for104

Fij with θ as the parameters, and FΘ = {fθ | θ ∈ Θ} be the set of feasible functions. Denote the105

loss function as l where l(fθ(i, j),Fij) = RΩ(XTGY − F)2
i,j . Then, we introduce two “l-risk”106

quantities: the expected l-risk107

Rl(f) = E(i,j)[l(fθ(i, j),Fij)],

and the empirical l-risk108

R̂l(f) =
1

s

∑
(i,j)

[l(fθ(i, j),Fij)].

In this notation, our model is to solve for θ that parameterizes f∗ = arg minf∈FΘ
R̂l(f), and it is109

sufficient to show that the recovery can be attained if R̂l(f∗) approaches to zero. Next we implement110

Rademacher complexity, a learning theoretic tool to measure the complexity of a function class.111

Then we will derive the sampling rate. To begin with, we cite the following Lemma [1] to bound the112

expected risk.113

Lemma 11 (Bound on Expected risk). Let l be a loss function with Lipschitz constant Ll in the114

compact domain respect to its first argument bounded by B, and p be a constant where 0 < p < 1.115

Let R(FΘ) be the Rademacher complexity of the function class FΘ defined as:116

R(FΘ) =E[ sup
f∈FΘ

1

s

s∑
t=1

ωtl(f(it, jt),F)] (7)

where each ωt takes values {±1} with equal probability. Then with the probability at least 1 − p,117

for all f ∈ FΘ we have:118

Rl(f) ≤ R̂l(f) + 2E[R(FΘ)] +B

√
log 1

p

2s
. (8)

In order to upper-boundRl, both R̂l and model complexity EΩ[R(FΘ)] need to be upper-bounded.119

The next key lemma shows that what affect the model complexity term EΩ[R(FΘ)] in matrix com-120

pletion context.121

The Rademacher complexity can be bounded in terms of β and γ by the following lemma:122

Lemma 12 Let X = ‖X‖F , Y = ‖Y‖F and d = max(a, b),123

E[R(FΘ)] ≤ 2C0LlβXY
√

log 2d

s
+

√
9dCLlα

√
abp(
√
m+

√
n)

s
(s1Y + s2X + s1s2) (9)

For proving clearly we firstly introduce Lemma 13 as below, which is a special case of Theorem 2124

in [3];125

10



Lemma 13 Let Sσ = {W ∈ Rn×n | ‖W‖∗ ≤ σ} and a = maxi ‖Ai‖F , where {Ai | Ai ∈126

Rn×n}mi=1 is an arbitrary set, then:127

E[ sup
W∈Sw

1

m

m∑
i=1

ωi‖WAi‖∗] ≤ 2aσ

√
log 2n

m
. (10)

By using Lemma 13 and Rademacher contraction principle(e.g. Lemma in [4]), we can readily prove128

Lemma 12.129

Proof. Denote P ∈ Rm×n with each entry Pij =
∑
α:iα=i,jα=j ωα, which means the ’hit-time’130

on the i, j-th element of Ω, then we can divide R(FΘ) as:131

R(FΘ) = Eσ[ sup
f∈FΘ

1

s

∑
(i,j)

Aij l(f(i, j),Fij)] + Eσ[ sup
f∈FΘ

1

s

∑
(i,j)

Bij l(f(i, j),Fij)] (11)

In Eq. (11) we define

Aij =

{
Pij , if hij > p
0, otherwise. Bij =

{
0, if hij > p

Pij , otherwise.

where hij = |{α : iα = i, jα = j}| and p is a thresholding value discussed soon. Recall that132

|l(f(i, j),Fij)| ≤ B, from Lemma 10 in [6] we can infer that:133

Eσ[ sup
f∈FΘ

1

s

∑
(i,j)

Aij l(f(i, j),Fij)] ≤
B

s
Eσ[
∑
(i,j)

|Aij |] ≤
B
√
p (12)

Also we need to bound the other term in Eq. 11 below by using Lemma 13. We conduct that134

Eσ[ sup
f∈FΘ

1

s

∑
(i,j)

Bij l(f(i, j),Fij)]

≤Ll
s
Eσ[ sup
‖G‖1≤α

∑
(i,j)

Bijx
T
i Gyj + sup

‖G‖1≤α

∑
(i,j)

Bij∆xTi Gyj+

sup
‖G‖1≤α

∑
(i,j)

Bijx
T
i G∆yj + sup

‖G‖1≤α

∑
(i,j)

Bij∆xTi G∆yj ]

(13)

Since ‖G‖∗ ≤ C0‖G‖2 ≤ C0‖G‖1 as the matrix-norm equivalence for any G ∈ Ra×b while there135

always exists a fixed C0, for the last three terms we can use Holder’s inequality to upper-bound it as136

below:137

Ll
s

[ sup
‖G‖1≤α

∑
(i,j)

Bij∆xTi Gyj + sup
‖G‖1≤α

∑
(i,j)

Bijx
T
i G∆yj + sup

‖G‖1≤α

∑
(i,j)

Bij∆xTi G∆yj ]

≤ LlE[‖B‖2]

s
sup
‖G‖1≤α

[‖∆XTGY‖∗ + sup
‖G‖1≤α

‖XTG∆Y‖∗ + sup
‖G‖1≤α

‖∆XTG∆Y‖∗]

≤
√
abαLE[‖B‖2]

s
[‖∆XT ‖F ‖Y‖F + ‖XT ‖F ‖∆Y‖F + ‖∆XT ‖F ‖∆Y‖F ]

≤
√
abαL

s
(s1Y + s2X + s1s2)E[‖B‖2]

≤ 2.2CLα
√
abp(
√
m+

√
n)

s
(s1Y + s2X + s1s2)

(14)

where the last inequality is from Lemma 1 in [6].138
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Next we bound the term Eσ[sup‖G‖1≤α
∑

(i,j) Bijx
T
iα

Gyjα ] in Eq. (13) as:139

Ll
s
Eσ[ sup
‖G‖1≤α

s∑
α=1

ωαxTiαGyjα ] ≤ LlE[ sup
‖G‖1≤α

1

s

s∑
α=1

ωαtr(x
T
iαGyjα)]

≤LlE[ sup
‖G‖1≤α

1

s

s∑
α=1

ωαtr(GyjαxTiα)] ≤ 2C0Llαmax
i,j
‖yjxTi ‖2

√
log 2d

s

≤2C0LlαXY
√

log 2d

s

(15)

Combining the above bounds in Eq. (12), Eq. (14) and Eq. (15) together, with p =140

(sB)/[2.2CLα
√
abp(
√
m +

√
n)(s1Y + s2X + s1s2)] we can get the bound for E[R(FΘ)] as:141

142

E[R(FΘ)] ≤ 2C0LlαXY
√

log 2d

s
+

9CLlα
√
abp(
√
m+

√
n)

s
(s1Y + s2X + s1s2) (16)

143

Lemma 15 clarifies the upper-bound of the complexity of f . Additionally, with proper chosen λE144

and λG, the empirical risk R̂(f) can be sufficiently small. Therefore we conclude the upper bound145

ofR(f∗) as below.146

Lemma 14 With a probability at least 1 − p, thje expected l-risk of an optimal solution will be
bounded by:

R(f∗) ≤ 2C0LlαXY
√

log 2d

s
+

18CLlα
√
abpN

s
(s1Y + s2X + s1s2) +B

√
log 1

p

2s

Now consider another view to upper-bound our model, then we give Lemma 12 as followed,147

Lemma 15 Let X = ‖X‖F , Y = ‖Y‖F and d = max(a, b),148

E[R(FΘ)] ≤ 2C0Ll[γ

√
log 2N

s
+ φ

√
log 2N

s
+ α

√
log 2d

s
(s1Y + s2X + s1s2)] (17)

Again, by using Lemma 13 and Rademacher contraction principle(e.g. Lemma in [4]), we can prove149

Lemma 15.150

Proof. E(R(FΘ)) can be bounded as above, we have151

Eσ[ sup
f∈FΘ

1

s

s∑
α=1

ωαl(f(iα, jα),Fiαjα)]

≤Ll
s
Eσ[ sup
‖G‖1≤α

s∑
α=1

ωαxTiαGyjα + sup
‖G‖1≤α

s∑
α=1

ωα∆xTiαGyjα+

sup
‖G‖1≤α

s∑
α=1

ωαxTiαG∆yjα + sup
‖G‖1≤α

s∑
α=1

ωα∆xTiαG∆yjα ]

(18)
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Then one can follow the same approach in Eq. (15) as152

Ll
s
Eσ[ sup
‖G‖1≤α

s∑
α=1

ωαxTi Gyj + sup
‖G‖1≤α

s∑
α=1

ωα∆xTi Gyj+

sup
‖G‖1≤α

s∑
α=1

ωαxTi G∆yj + sup
‖G‖1≤α

s∑
α=1

ωα∆xTi G∆yj ]

≤LlE[
1

s
( sup
‖E‖∗≤γ

s∑
α=1

ωαtr(EiαjαejαeTiα) + sup
‖Φ‖F≤φ

s∑
α=1

ωαtr(ΦiαjαejαeTiα))+

2Llαr

√
d log 2d

s
[max
i,j
‖yj∆xTi ‖2 + max

i,j
‖∆yjx

T
i ‖2 + max

i,j
‖∆yj∆xTi ‖2]

≤2Ll[γ

√
log 2N

s
+ C0φ

√
log 2N

s
+ C0α

√
log 2d

s
(s1Y + s2X + s1s2)]

≤2C0Ll[γ

√
log 2N

s
+ φ

√
log 2N

s
+ α

√
log 2d

s
(s1Y + s2X + s1s2)]

(19)

where the last equation is derived by applying Lemma 13. So we derive another upper bound of153

E[R(FΘ)] as154

E[R(FΘ)] ≤ 2C0Ll[γ

√
log 2N

s
+ φ

√
log 2N

s
+ α

√
log 2d

s
(s1Y + s2X + s1s2)] (20)

155

Then our Theorem 2 can be attained directly from Lemma 14 and Lemma 15.156

Theorem 2 Denote ‖E‖∗ ≤ α, ‖G‖1 ≤ γ, and the perfect side feature matrices (containing latent157

features of F) are corrupted with ∆X and ∆Y where ‖∆X‖F ≤ s1, ‖∆Y‖F ≤ s2 and S =158

max(s1, s2). To ε-recover F that the expected loss E[l(f,F)] < ε for a given arbitrarily small159

ε > 0, O(min((γ2 + φ2) logN,S2α
√
N)/ε2) observations are sufficient for our model to achieve160

an ε-recovery when corrupted factors of side information are bounded.161

For the goal of investigating the recovery guarantee under the generalized frame of our work, it162

is noted that we can replace any norm-regularizers ‖G‖∼ of G satisfying that ‖G‖∼ ≤ ‖G‖1.163

Therefore it is feasible to further explore more structural priors in various situation.164

3 Convergence Analysis165

In this subsection, we present the proof of the global convergence for our algorithm.166

For conveniently writing, we write the Lagrangian function of our problem as167

L(E,G,C,M1,M2, β) =
1

2
‖C‖2F + λE‖E‖∗ + λG‖G‖1+

〈M,B(E) +A(G) +N (C)−D〉+
β

2
‖B(E) +A(G) +N (C)−D‖2F

(21)

where B(E) =

(
Ω(E)

E

)
, A(G) =

(
0

−XTGY

)
, N (C) =

(
0
C

)
and D =

(
Ω(F)

0

)
. M is the168

multiplier stacked as
(

M1

M2

)
.169

The proving framework consists of three steps: The first step includes Lemma 16 for the proof of170

Lemma 17 and Theorem 3; the next step is the proof of Lemma 17 which indicates the convergence171

of our algorithm; the third step is to clarify our algorithm converges to a KKT point of problem (4),172

which is also the global minimizer for convex problem, shown in Theorem 3.173

Lemma 16 Let Gk, Ek, Ck be the optimal solution for each individual subproblem at the k-th174

iteration, then it satisfies that −βkτA(Gk+1 −Gk) − A∗(M̄k+1
) ∈ ∂‖Gk+1‖1,−βkτB(Ek+1 −175
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Ek) − B∗(M̂
k+1

) ∈ ∂‖Ek+1‖∗ where M̄
k+1

= Mk + βk[A(Gk) + B(Ek+1) + N (Ck) − D],176

M̂
k+1

= Mk + βk[A(Gk+1) + B(Ek+1) +N (Ck) −D], here ∂‖ · ‖ denotes the subgradient of177

an arbitrary ‖ · ‖, and A∗ is the adjoint operator of A.178

Note that A∗ = AT if A is a linear operator while A(X) = AX. This Lemma is directly derived179

from the optimality conditions of subproblems when solving G and E individually.180

Next we present the lemma implying the convergence.181

Lemma 17 Given βk is non-decreasing and upper bounded, τA > ‖A‖2, τB > ‖B‖2, and182

(G∗,E∗,C∗,M∗) is any KKT point of problem 21, then:183

{τA‖Gk −G∗‖2F − ‖A(Gk −G∗)‖2F + τB‖Ek −E∗‖2F + ‖Ck −C∗‖F − ‖N (Ck −C∗)‖2F+

β−2
k ‖M

k −M∗‖2F }is non-increasing; and

‖Gk −Gk+1‖2F → 0, ‖Ek −Ek+1‖2F → 0, ‖Ck −Ck+1‖2F → 0, ‖Mk −Mk+1‖2F → 0.
(22)

For proving the non-increase property of the first sequence, it is equivalent to investigate the follow-184

ing inequality:185

τA‖Gk+1 −G∗‖2F − ‖A(Gk+1 −G∗)‖2F + τB‖Ek+1 −E∗‖2F + ‖Ck+1 −C∗‖F
− ‖N (Ck+1 −C∗)‖2F + β−2

k ‖M
k+1 −M∗‖2F − (τA‖Gk −G∗‖2F − ‖A(Gk −G∗)‖2F

+ τB‖Ek −E∗‖2F + ‖Ck −C∗‖F − ‖N (Ck −C∗)‖2F + β−2
k ‖M

k −M∗‖2F ) ≤ 0

(23)

For proving the above inequality, we list several facts to be used:186

Mk+1 = Mk + βk(A(Gk+1) + B(Ek+1) +N (Ck+1)−D),

2
〈
Gk+1 −G∗,Gk+1 −Gk

〉
= ‖Gk+1 −G∗‖2F − ‖G

k −G∗‖2F + ‖Gk+1 −Gk‖2F ,

A(G∗) + B(E∗) +N (C∗)−D = 0,

〈M,A(G)〉 = 〈A∗(M),G〉 , 〈M,B(E)〉 = 〈B∗(M),E〉 .

(24)

Proof.
τA‖Gk+1 −G∗‖2F − ‖A(Gk+1 −G∗)‖2F + τB‖Ek+1 −E∗‖2F + ‖Ck+1 −C∗‖F − ‖N (Ck+1 −C∗)‖2F+

β−2
k ‖M

k+1 −M∗‖2F − (τA‖Gk −G∗‖2F − ‖A(Gk −G∗)‖2F + τB‖Ek −E∗‖2F + ‖Ck −C∗‖F
− ‖N (Ck −C∗)‖2F + β−2

k ‖M
k −M∗‖2F )

=2τA

〈
Gk+1 −G∗,Gk+1 −Gk

〉
− τA‖Gk+1 −Gk‖2F − 2

〈
A(Gk+1 −G∗),A(Gk+1 −Gk)

〉
+

‖A(Gk+1 −Gk)‖2F + 2τB

〈
Ek+1 −E∗,Ek+1 −Ek

〉
− τB‖Ek+1 −Ek‖2F+

2τN

〈
Ck+1 −C∗,Ck+1 −Ck

〉
− τA‖Ck+1 −Ck‖2F − 2

〈
N (Ck+1 −C∗),N (Ck+1 −Ck)

〉
+

‖N (Ck+1 −Ck)‖2F
=− {β−2

k ‖M
k+1 −Mk‖2F + τB‖Ek+1 −Ek‖F − 2β−1

k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
}−

(τA‖Gk+1 −Gk‖2F − ‖A(Gk+1 −Gk)‖2F )− (‖Ck+1 −Ck‖2F − ‖N (Ck+1 −Ck)‖2F )−

2β−1
k

〈
Gk+1 −G∗, [−βkτA(Gk+1 −Gk)−A∗(M̄k+1

)] +A∗(M∗)
〉
−

2β−1
k

〈
Ek+1 −E∗, [−βkτB(Ek+1 −Ek)− B∗(M̂

k+1
)] + B∗(M∗)

〉
−

2β−1
k

〈
Ck+1 −C∗, [−βk(Ck+1 −Ck)−N ∗(Mk+1)] +N ∗(M∗)

〉
(25)

Since τA ≥ ‖A‖2, we can check that

τA‖ · ‖2F − ‖A(·)‖2F ≥ 0.
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and similarly it is clear that

β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
≥ 0

The last three terms in Eq. (25) are nonnegative due to Lemma 16 and the monotonicity of subgradi-
ent mapping. So the non-increasing property in Lemma 17 is proved. Because of the non-increasing
property and non-negativity, it has a limit. Then we can see that

τA‖Gk+1 −Gk‖2F − ‖A(Gk+1 −Gk)‖2F → 0,

‖Ck+1 −Ck‖2F − ‖N (Ck+1 −Ck)‖2F → 0.

β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
→ 0

due to their non-negativity. So ‖Gk+1−Gk‖F → 0 and ‖Ck+1−Ck‖F → 0 can be obtained from187

the first two limits. Note that188

β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
≥β−2

k ‖M
k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1

k ‖M
k+1 −Mk‖F ‖B(Ek+1 −Ek)‖F

=(β−1
k ‖M

k+1 −Mk‖F − ‖B(Ek+1 −Ek)‖F )2 + τB‖Ek+1 −Ek‖2F − ‖B(Ek+1 −Ek)‖2F
≥τB‖Ek+1 −Ek‖2F − ‖B(Ek+1 −Ek)‖2F ≥ 0.

(26)

So we have that ‖Ek+1 −Ek‖F → 0. Furthermore,189

β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
(β−1
k ‖M

k+1 −Mk‖F −
√
τB‖Ek+1 −Ek‖F )2+

2β−1
k (
√
τB‖Mk+1 −Mk‖F ‖Ek+1 −Ek‖F −

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
)

≥ (β−1
k ‖M

k+1 −Mk‖F −
√
τB‖Ek+1 −Ek‖F )2.

(27)

So β−2
k ‖M

k+1 −Mk‖2F + τB‖Ek+1 −Ek‖2F − 2β−1
k

〈
Mk+1 −Mk,B(Ek+1 −Ek)

〉
→ 0. This190

results in ‖Mk+1 −Mk‖F → 0 noting that ‖Ek+1 −Ek‖F → 0 .191

Based on Lemma 16 and Lemma 17, we can derive the following theorem.192

Theorem 3 If βk is non-decreasing and upper-bounded, τA > ‖A‖, and τB > ‖B‖ then the se-193

quence {(Ck,Gk,Ek,Mk)} generated by adaptive LADMM converges to a KKT point of problem194

(4).195

Proof. By Lemma 17, {(Ck,Gk,Ek,Mk)} is bounded, hence there is a subsequence that196

(Cki ,Gki ,Eki ,Mki)→ (C∞,G∞,E∞,M∞). We accomplish the proof in two steps.197

We first prove that (C∞,G∞,E∞,M∞) is a KKT point of our optimization problem.198

By Lemma 17, A(Gk+1) + B(Ek+1) + N (Ck+1) −D = β−1
k (Mk+1 −Mk) → 0. This shows199

that any accumulation point of {(Ck,Gk,Ek,Mk)} is a feasible solution.200

Without the loss of generality, suppose λG = λE = 1
2 . by letting k = ki − 1 in Lemma 16 and the201

subgradient definition, we have202

‖Gki‖1 + ‖Eki‖∗ + ‖Cki‖F

≤‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖F +
〈
Gki −G∗,−βki−1τA(Gki −Gki−1)−A∗(M̄ki)

〉
+
〈
Eki −E∗,−βki−1τB(Eki −Eki−1)− B∗(M̂

ki
)
〉

+
〈
Cki −C∗,−βki−1(Cki −Cki−1)−N ∗(Mki)

〉
(28)
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Suppose i→∞, from Lemma 17, we can observe Gki −Gki−1 → 0 so that203

‖G∞‖1 + ‖E∞‖∗ + ‖C∞‖2F
≤‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖2F + 〈G∞ −G∗,−A∗(M∞)〉

+ 〈E∞ −E∗,−B∗(M∞)〉+ 〈C∞ −C∗,−N ∗(M∞)〉
=‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖2F − 〈A(G∞ −G∗),M∞〉
− 〈B(E∞ −E∗),M∞〉 − 〈N (C∞ −C∗),M∞〉

=‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖2F − 〈A(G∞ −G∗) + B(E∞ −E∗) +N (C∞ −C∗),M∞〉
=‖G∗‖1 + ‖E∗‖∗ + ‖C∗‖2F

(29)

since both (C∞,G∞,E∞) and (C∗,G∗,E∗) are feasible solutions. So we conclude that204

(C∞,G∞,E∞) is an optimal solution to (4).205

Similarly we let k = ki − 1 in Lemma 16 and by the definition of subgradient, we have206

‖G‖1 ≥ ‖Gki‖1 +
〈
G−Gki ,−βki−1τA(Gki −Gki−1)−A∗(M̄ki)

〉
(30)

for any G. Fix G and let i→∞, we see that
‖G‖1 ≥ ‖G∞‖1 + 〈G−G∞,−A∗(M∞)〉

for any G. So −A∗(M∞) ∈ ∂‖G∞‖1. Similarly, −B∗(M∞) ∈ ∂‖E∞‖∗. It is also not difficult to207

check that −N ∗(M∞) = C. Therefore, (C∞,G∞,E∞,M∞) is a KKT point of problem (4).208

Next we prove that the whole sequence of {(Ck,Ek,Gk,Mk)} converges to209

{(C∞,E∞,G∞,M∞)}.210

By choosing (C∗,G∗,E∗,M∗) = (C∞,G∞,E∞,M∞) in Lemma 17, we have τA‖Gki −211

G∞‖2F + τB‖Gk − G∞‖2F + β−2
ki
‖Mki − M∞‖2F → 0. By Lemma 17, we readily have212

τA‖Gk − G∞‖2F − ‖A(Gk − G∞)‖2F + τB‖Mk −M∞‖2F + β−2
k ‖M

k −M∞‖2F → 0. So213

(Ck,Gk,Ek,Mk)→ (C∞,G∞,E∞,M∞). Since (C∞,G∞,E∞,M∞) can be an arbitrary ac-214

cumulation point of (Ck,Gk,Ek,Mk),we can conclude that (Ck,Gk,Ek,Mk) converges to a KK-215

T point. Since KKT point is the global optimal solution in the convex problem, (Ck,Gk,Ek,Mk)216

converges to a global minimizer.217

4 Algorithm218

In this section we establish the derivation for the closed-form solution of each subproblem. The four219

steps are noted as Updating C, Updating E, Updating G and Updating M.220

Updating C:221

Ck+1 = arg min
C

1

2
‖C‖2F +

〈
Mk

2 ,E
k −XTGkY −C

〉
+
βk
2
‖Ek −XTGkY −C‖2F (31)

which has a closed form solution as:222

Ck+1 =
βk

βk + 1
(Ek −XTGkY + Mk

2/βk) (32)

Updating G:223

min
G

λG‖G‖1 +
〈
M2,E

k −XTGY −Ck
〉

+
βk
2
‖Ek −XTGY −Ck‖2F , (33)

after adding constant term to Eq. (33) we obtain224

min
G

λG‖G‖1 +
βk
2
‖Bk −XTGY −Ck‖2F (34)

where Bk
1 = Ek + Mk

2/βk. By converting the matrix b into a vector g = vec(G), vec(XTGY) =225

(YT ⊗ XT )g . Further we let bk = vec(Bk) and ⊗ computes the Kronecker product of two226

matrices. Thus, if we denote A = (YT ⊗XT ), the above subproblem becomes:227

min
g
λG‖g‖1 +

βk
2
‖Ag + ck − bk1‖22 (35)
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Since (35) is a lasso problem, which does not have a closed-form solution and must be solved228

iteratively in practice, by utilizing a linearization technique, we have229

1

2
‖Ag + ck − bk1‖22 ≈

1

2
‖Agk + ck − bk1‖22 +

〈
fk1 ,g − gk

〉
+
τA
2
‖g − gk‖22 (36)

where τA > 0 is a proximal parameter and230

fk1 = AT (Agk + ck − bk1) = AT (Agk + ck − ek −mk
2/βk) (37)

is the gradient of 1
2‖Ag + ck − bk1‖22 at gk. Eq. (20) can be re-written as:231

min
g
λG‖g‖1 +

βkτA
2
‖g − [gk − fk1 /τA]‖22 (38)

Obviously the closed-form solution is:232

gk+1 = max(|gk − fk1 /τA| −
λG
τAβk

, 0)� sgn(gk − fk1 /τA) (39)

Updating E:233

min
E
λE‖E‖∗ +

〈
Mk

1 , RΩ(E− F)
〉

+
βk
2
‖RΩ(E− F)‖2F

+
〈
Mk

2 ,E−XTGk+1Y −Ck
〉

+
βk
2
‖E−XTGk+1Y −Ck‖2F

(40)

which we can reformulate as:234

min
E
λE‖E‖∗ +

βk
2
‖RΩ(E−Bk

2)‖2F +
βk
2
‖E−Bk

3‖2F (41)

where Bk
2 = RΩ(F −Mk

1/βk) and Bk
3 = XTGk+1Y + Ck −Mk

2/βk. After linearization, the235

problem can be approximately optimized by:236

min
E
λE‖E‖∗ +

βkτB
2
‖E− (Ek − fk2 /τB)‖2F +

βkτB
2
‖E− (Ek − fk3 /τB)‖2F (42)

where fk2 and fk3 are the gradients of 1
2‖RΩ(E−Bk

2)‖2F and 1
2‖E−Bk

3‖2F at Ek, which are illustrated237

below:238

fk2 = RΩ(Ek −Bk
2) = RΩ(Ek − F + Mk

1/βk),

fk3 = Ek −Bk
3 = Ek −XTGk+1Y −Ck + Mk

2/βk.
(43)

The closed-form solution is then readily obtainable as239

Ek+1 = SV T (Ek − (fk2 + fk3 )/(2τB), λE/2(βkτB)) (44)

Here the operator SV T (E, t) is defined in [2] for soft-thresholding the singular values of an arbitrary240

matrix E by t.241

Updating M:242

Mk+1
1 =Mk

1 + βk(RΩ(Ek+1 − F)),

Mk+1
2 =Mk

2 + βk(Ek+1 −XTGk+1Y −Ck+1).
(45)

5 Feature Description Table of Drug Discovery Dataset243
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Table 1: Drug corresponding feature.

Label Feature Name
F1 Molecular Weight( g/mol)
F2 XLogP3
F3 Hydrogen Bond Donor Count
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F8 Topological Polar Surface Area
F9 Heavy Atom Count
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