
A Locally Adaptive Normal Distribution
— Supplementary material —

Georgios Arvanitidis, Lars Kai Hansen and Søren Hauberg
Technical University of Denmark, Lyngby, Denmark

DTU Compute, Section for Cognitive Systems
{gear,lkai,sohau}@dtu.dk

Notation: all points x ∈ RD are considered as column vectors, and they are denoted with bold
lowercase characters. SD++ represents the set of symmetric D ×D positive definite matrices. The
learned Riemannian manifold is denotedM, and its tangent space at point x ∈M is denoted TµM.

We present for convenience the domain and co-domain of the following often used terms. Note that
TµM is RD.

γ(t) : [0, 1]→M Expµ(v) :M×TxM→M

M(x) :M→ SD++ Logµ(x) :M×M→ TxM

1 Estimating the Normalization Constant

The locally adaptive normal distribution is defined as

pM(x | µ,Σ) =
1

C(µ,Σ)
exp

(
−1

2
〈Logµ(x),Σ

−1Logµ(x)〉
)
, x ∈M. (15)

Therefore, the normalization constant is equal to∫
M
pM(x | µ,Σ)dM(x) = 1⇒ (16)∫

M

1

C(µ,Σ)
exp

(
−1

2
〈Logµ(x),Σ

−1Logµ(x)〉
)
dM(x) = 1⇒ (17)

C(µ,Σ) =

∫
M

exp

(
−1

2
〈Logµ(x),Σ

−1Logµ(x)〉
)
dM(x) (18)

=

∫
D(µ)

√∣∣M(Expµ(v))
∣∣ exp(−1

2
〈Logµ(Expµ(v)),Σ

−1Logµ(Expµ(v))〉
)
dv (19)

=

∫
TµM

m(µ,v) exp

(
−1

2
〈v,Σ−1v〉

)
dv (20)

=

∫
TµM

m(µ,v)
Z
Z

exp

(
−1

2
〈v,Σ−1v〉

)
dv (21)

=Z · EN (0,Σ)[m(µ,v)] ' Z
S

S∑
s=1

m(µ,vs), where vs ∼ N (0,Σ). (22)

To simplify notation we have defined the m(µ,v) =
√∣∣M(Expµ(v))

∣∣ and Z =
√

(2π)D |Σ|. The
integral is then estimated with a Monte-Carlo technique.
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2 Steepest Descent Direction for the Mean

The objective function is differentiable with respect to µ with
∂

∂µ
〈Logµ(xn),Σ

−1Logµ(xn)〉 = −2Σ
−1Logµ(xn) (23)

Then the gradient of the objective function φ(µ,Σ) is equal to

∇µφ(µ,Σ) =
∂

∂µ

[
1

2N

N∑
n=1

〈Logµ(xn),Σ
−1Logµ(xn)〉+ log(C(µ,Σ))

]
(24)

= − 1

N
Σ−1

N∑
n=1

Logµ(xn) +
1

C(µ,Σ)

∫
M

∂

∂µ

[
exp

(
−1

2
〈Logµ(x),Σ

−1Logµ(x)〉
)]

dM(x)

(25)

= −Σ−1

N

N∑
n=1

Logµ(xn) +
Σ−1

C(µ,Σ)

∫
M

Logµ(x) exp

(
−1

2
〈Logµ(x),Σ

−1Logµ(x)〉
)
dM(x)

(26)

= − 1

N
Σ−1

N∑
n=1

Logµ(xn) +
Σ−1

C(µ,Σ)

∫
TµM

m(µ,v)v exp

(
−1

2
〈v,Σ−1v〉

)
dv (27)

= −Σ−1

[
1

N

N∑
n=1

Logµ(xn)−
Z

C(µ,Σ) · S

S∑
s=1

m(µ,vs)vs

]
. (28)

This gradient is highly dependent on the condition number of the covariance matrix Σ, which makes
the gradient unstable. We therefore consider the steepest descent direction.

We start by showing the general steepest descent direction.

d∗ = argmin
d∈RD

{〈∇µφ,d〉 | ‖d‖M = 1} 〈d,Md〉 = 1⇒M = AᵀA (29)

= A−1 argmin
x∈RD

{〈∇µφ,A
−1x〉 | ‖x‖2 = 1} 〈Ad, Ad〉 = 1⇒ x = Ad (30)

= A−1 argmin
x∈RD

{〈A−ᵀ∇µφ,x〉 | ‖x‖2 = 1}. 〈x,x〉 = 1 and d = A−1x (31)

(32)

Using the Cauchy-Schwarz inequality (−‖x‖2 ‖y‖2 ≤ 〈x,y〉) for the optimization problem (31),
we get that the minimizer is equal to

−
∥∥A−ᵀ∇µφ

∥∥
2
‖x‖2 ≤ 〈A

−ᵀ∇µφ,x〉 ⇒ x∗ = − A−ᵀ∇µφ

‖A−ᵀ∇µφ‖2
, (33)

and thus, by plugging the result of (33) in to (31), we get that the steepest descent direction is

d∗ = − A−1A−ᵀ∇µφ

‖A−1A−ᵀ∇µφ‖2
= − (AᵀA)−1∇µφ√

〈A−ᵀ∇µφ, 〈A−ᵀ∇µφ, 〉〉
= − M−1∇µφ√

〈∇µφ,M−1∇µφ〉

⇒ d∗ = − M−1∇µφ

‖M−1∇µφ‖M
.

(34)

In our case, the M = Σ−1, and thus, we get that the steepest descent direction of the objective
function of the LAND model is

d∗ =
1

N

N∑
n=1

Logµ(xn)−
Z

C(µ,Σ) · S

S∑
s=1

m(µ,vs)vs, (35)

where we omit the denominator ‖∇µφ(µ,Σ)‖2, since this is just a scaling factor, which will be
captured by the stepsize. This avoid problems that appears due to large condition numbers of Σ.
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3 Gradient Direction for the Covariance

We decompose the Σ−1 = AᵀA. In addition, we rewrite the inner product as follows

〈Logµ(xn),A
ᵀALogµ(xn)〉 = tr(Logµ(xn)

ᵀAᵀALogµ(xn)) (36)

= tr(ALogµ(xn)Logµ(xn)
ᵀAᵀ) (37)

⇒ ∂

∂A
[tr(ALogµ(xn)Logµ(xn)

ᵀAᵀ)] = 2ALogµ(xn)Logµ(xn)
ᵀ, (38)

where tr(·) is the trace operator. Then the gradient of the objective with respect the matrix A is

∇Aφ(µ,Σ) =
∂

∂A

[
1

2N

N∑
n=1

〈Logµ(xn),A
ᵀALogµ(xn)〉+ log(C(µ,Σ))

]
(39)

=
1

2N
2A

N∑
n=1

Logµ(xn)Logµ(xn)
ᵀ (40)

+
1

C(µ,Σ)

∫
M

∂

∂A

[
exp

(
−1

2
〈Logµ(x),A

ᵀALogµ(x)〉
)]

dM(x) (41)

=
1

N
A

N∑
n=1

Logµ(xn)Logµ(xn)
ᵀ (42)

− A

C(µ,Σ)

∫
M

Logµ(x)Logµ(x)
ᵀ exp

(
−1

2
〈Logµ(x),A

ᵀALogµ(x)〉
)
dM(x)

(43)

=
1

N
A

N∑
n=1

Logµ(xn)Logµ(xn)
ᵀ (44)

− A

C(µ,Σ)

∫
TµM

m(µ,v)vvᵀ exp

(
−1

2
〈v,Σ−1v〉

)
dv. (45)

Finally, treating the integral as an expectation problem and using Monte Carlo integration, we get
that the gradient is

∇Aφ(µ,Σ) = A

[
1

N

N∑
n=1

Logµ(xn)Logµ(xn)
ᵀ − Z
C(µ,Σ) · S

S∑
s=1

m(µ,vs)vsv
ᵀ
s

]
. (46)

4 Gradients for the LAND Mixture Model

Similarly the LAND mixture model are

∇µk
ψ(Θ) = −Σ−1k

[
N∑
n=1

rnkLogµk
(xn)−

Z ·Rk
Ck(µk,Σk) · S

S∑
s=1

m(µk,vs)vs

]
(47)

∇Ak
ψ(Θ) = Ak

[
N∑
n=1

rnkLogµk
(xn)Logµk

(xn)
ᵀ − Z ·Rk
Ck(µk,Σk) · S

S∑
s=1

m(µk,vs)vsv
ᵀ
s

]
(48)

where Rk =
∑N
n=1 rnk, and the responsibilities rnk = πkpM(xn | µk,Σk)∑K

l=1 πlpM(xn | µl,Σl)
.
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5 Algorithms

In this section we present the algorithms for: 1) estimating the normalization constant C(µ,Σ), 2)
maximum likelihood estimation of the LAND, and 3) fitting the LAND mixture model.

Algorithm 1 The estimation of the normalization constant C(µ,Σ)

Input: the given data {xn}Nn=1, the µ, Σ, the number of samples S
Output: the estimated Ĉ(µ,Σ)

1: sample S tangent vectors vs ∼ N (0,Σ) on TµM
2: map the vs onM as xs = Expµ(vs), s = 1, . . . , S

3: compute the normalization constant Ĉ(µ,Σ) = Z
S

∑S
s=1

√
|M(xs)|

Algorithm 2 LAND maximum likelihood

Input: the data {xn}Nn=1, stepsize αµ, αA, tolerance ε
Output: the estimated µ̂, Σ̂, Ĉ(µ̂, Σ̂)

1: initialize µ0,Σ0 and t← 0
2: repeat
3: estimate C(µt,Σt) using Eq. 16
4: compute dµφ(µt,Σt) using Eq. 35
5: µt+1 ← Expµt(αµdµφ(µ

t,Σt))

6: estimate C(µt+1,Σt) using Eq. 16
7: compute∇Aφ(µ

t+1,Σt) using Eq. 46
8: At+1 ← A− αA∇Aφ(µ

t+1,Σt)
9: Σt+1 ← [(At+1)ᵀAt+1|−1

10: t← t+ 1

11: until
∥∥φ(µt+1,Σt+1)− φ(µt,Σt)

∥∥2
2
≤ ε

Algorithm 3 LAND mixture model

Input: the data {xn}Nn=1, {αµk
, αAk

}Kk=1, tolerance ε
Output: the estimated {µ̂k, Σ̂k, Ĉk, π̂k}Kk=1

1: initialize the {µ0
k, Σ0

k, C0k, π0
k}Kk=1 and t← 0

2: repeat
3: Expectation step:
4: compute the responsibilities rnk = πkpM(xn | µk, Σk)∑K

t=1 πtpM(xn | µt, Σt)

5: Maximization step:
6: for k = 1, . . . ,K do
7: estimate Ck(µtk,Σ

t
k) using Eq. 16

8: compute from Eq. 47 the dµφ(µtk,Σ
t
k)

9: µt+1
k ← Expµt

k
(αµk

dµφ(µ
t
k,Σ

t
k))

10: estimate Ck(µtk,Σ
t
k) using Eq. 16

11: compute from Eq. 48 the∇Ak
φ(µt+1

k ,Σt
k)

12: At+1
k ← At

k − αAk
∇Aφ(µ

t+1
k ,Σt

k)

13: Σt+1
k ← [(At+1

k )ᵀAt+1
k ]−1

14: πk = 1
N

∑N
n=1 rnk

15: end for
16: t← t+ 1

17: until
∥∥ψ(Θt+1)− ψ(Θt)

∥∥2
2
≤ ε
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5.1 Stepsize Selection

The LAND objective is expensive to evaluate due to the dependency on Logµ(xn). This imply that
a line-search is infeasible for selecting a stepsize. Thus, we use the following common trick. Each
stepsize is given in the start of the algorithm. If the objective increased after an update, we reduce the
corresponding stepsize as α = 0.75 · α, and if the objective reduced, then α = 1.1 · α.

5.2 Initialization Issues

The initialization of the LAND is important, as well as for the mixture model. We discuss two
different initializations plus one specifically for the mixture model.

1. Random: we initialize the LAND mean with a random point on the manifold. The initial
covariance is the empirical covariance of the tangent vectors. This initialization can be used
also for the mixture model, with K random starting points. Then, we cluster the points and
the covariances are initialized using empirical estimators.

2. Least Squares: we initialize the LAND with the intrinsic least squares mean, and the
covariance with the empirical estimator. This initialization can be used also for the mixture
model, using the extension of the k-means on Riemannian manifolds, and then, the points
of each cluster for the empirical covariances.

3. GMM: we initialize the LAND mixture model centres with the result of the GMM. For the
empirical covariances, we use the points that belong to each cluster from the GMM solution.

5.3 Stopping criterion

Our objective function is non-convex, thus, as stopping criterion we use the change of the objective
value. In particular, we stop the optimization when

∥∥φ(µt+1,Σt+1)− φ(µt,Σt)
∥∥2
2
≤ ε, for some ε

given by the user. The same stopping criterion is used for the mixture model.

6 Experiments

In this section we provide additional illustrative experiments.

6.1 Estimating the Normalization Constant

In order to show the consistency of the normalization constant estimation with respect to the number of
samples, we conduct the following experiment. We used the data from the first synthetic experiment
of the paper. Then for a grid 100 × 100 on the TµM we computed the corresponding m(µ,v)
values. Thus, we computed the numerical integral on the tangent space using trapezoidal numerical
integration. Then we estimated the normalization constant using our approach for sample sizes
S = 100 : 100 : 3000 and for 10 different runs. From the result in Fig. 1 we observe that the
numerical scheme we provide, approximates well the normalization constant that we computed
numerically.

6.2 MNIST digit 1 data

In this experiment we used the digit 1 from the MNIST dataset. We sample 200 points and using
PCA we projected them onto the first 2 principal components. Then we fitted LAND, a least
squares model, and a normal distribution. From the result Fig. 2 we observe that the LAND model
approximates efficiently the underlying distribution of the data. Also, the least squares model has a
similar performance, since it takes under consideration the underlying manifold. However, is obvious
that it overfits the given data, and gives significant probability to low density areas. On the other
hand, the linear model has poor performance, due to the linear distance measure.
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Figure 1: The normalization constant estimation for different sample sizes S. The black line denotes
the trapezoidal numerical integral, and the dashed red line the mean value of the estimators using our
proposed method.
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LS mean
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Linear mean

Figure 2: The MNIST digit 1 projected onto the 2 first principal components experiment. Left:
the LAND model approximates efficiently the data distribution. Center: the least squares model
approximates the distribution, but it overfits the given data. Right: the normal distribution has poor
performance due to the linear distance measure.

6.3 The Sleep Stages Experiment

Here we present the feature extraction result for 3 factors. From the Fig. 3 we observe that actually,
the derived data have a manifold structure. Moreover, we see that the characteristics of the data i.e.,
the EEG measurement, varies a lot between the 3 subjects.
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Figure 3: Top row: The given data, after the feature extraction procedure for 3 factors for three
subjects. Bottom row: the F-measure for different values of σ (subject “s151”).
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6.4 The Clustering Problem for the Synthetic Data

Due to space limitations, we were not able to present the result of the least squares mixture model
for the clustering problem of the synthetic data, thus, we present here the result. From the Fig. 4
we observe that indeed the LAND can approximates efficiently the underlying distributions of the
clusters. Even thought the least squares mixture model takes under consideration the underlying
structure of the data, it fails to reveal precisely the distributions of the clusters. Thus, we argue that
our maximum likelihood estimates are better than the least squares estimates. On the other hand, the
GMM fails even to find the correct means of the distributions.

LAND mixture model

LAND mean

Least Squares mixture model

LS mean

Gaussian mixture model

GMM mean

LAND mixture model

LAND mean

Least Squares mixture model

LS mean

Gaussian mixture model

GMM mean

Figure 4: The clustering problem for two synthetic datasets. Left: the LAND mixture model
approximates efficiently the underlying distributions of the clusters. Center: the least squares fails to
reveal precisely the distributions of the clusters. Right: the GMM due to the linear distance measure
fails even to find the correct means of the distributions.

6.5 The Contour Plots for the Synthetic Data

Additionally to the results presented in the main paper, in Fig. 5 we present the contours of all
the fitted models and for all the numbers of components, where the advantages of the LAND are
obvious. Especially, when K = 1 we observe that the LAND approximates well the underlying
distribution, while even though the least squares estimator reveals the nonlinearity of the distribution,
as we discussed in the paper the covariance overfits the given data.

Furthermore, when K increases the LAND components locally become almost linear Gaussians,
since the geodesics will almost be straight lines. However, even in this case the LAND mixture model
is more flexible than the Gaussian mixture model, see the result for K = 4. Also, the LAND does
not overfit the given data, as the least squares mixture model does, since the probability mass is more
concentrated around the means, see the result for K = 2.

6.6 Motion Capture Data

We conducted an experiment using motion capture data from CMU Motion Capture Database1.
Specifically, we picked two movements motion: 16 from subject 22 (jumping jag), and the subject
9 (run). Each data point corresponds to a human pose. We projected the data onto the first 2 and 3
principal and we fitted a LAND mixture model and a Gaussian mixture model for K = 2. From the
results in Fig. 6 we see that the LAND means fall inside the data, while the GMM means are actually
outside of the manifold.

1http://mocap.cs.cmu.edu/
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Figure 5: Synthetic data and the fitted models. From top to bottom we present the results for
K = 1, 2, 3, 4, respectively. Left: the contours of the LAND mixture model. Center: the contours of
the least squares mixture model. Right: the contours of the Gaussian mixture model.
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6.7 Scalability of Geodesic Computations

A scalability concern is that the underlying ODEs are computationally more demanding in high
dimensions, and more specifically, we are interested in the logarithm map. We conducted a supple-
mentary experiment on the MNIST data, reporting the ODE solver running time as a function of
input dimensionality. In particular, we fix a point and we compute the running time of the logarithm
map between this point and 20 random chosen points, for a set of the dimensions of the feature space.
From the result in Fig. 7 we observe that the current implementation scales to approximately 50
dimensions, where it becomes impractical.
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Figure 7: Scalability experiment.

6.8 Model Selection

We used the standard AIC and BIC criteria,

BIC = −2 · ln(L) + ν · ln(N) (49)
AIC = −2 · ln(L) + 2 · ν (50)

where L ∈ R is the log-likelihood of the model, and ν ∈ R is the number of free parameters. The
optimal number of components K can then be chosen to minimize either criteria. Note that the
LAND and the GMM are not normalized under the same measure, so their likelihoods are not directly
comparable. However, we can select the optimal K for each method separately.

We used the synthetic data from the first experiment in the paper. From the results in Fig. 8 we observe
that the optimal LAND model is achieved for K = 1, while the for the least squares estimators and
the GMM, the optimal is achieved for K = 3 and K = 4 respectively. Thus, we argue that the less
complex LAND model with only one component, is able to reveal the underlying distribution, while
the other two methods need more components resulting to more complex models.
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Figure 8: Model selection experiment. Left: the AIC criterion. Right: the BIC criterion.
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