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1 Proof of Theorem 3.1

Proof. We prove it by induction that requires p steps to find a causal ordering that is consistent with
the DAG. Without loss of generality, assume that one of the true causal ordering 7* is {1, 2, ...p}.
For ease of notation, let 7y = {X7, Xo,---, X, }. Let k = 1 be the first step:

Var(X;) = E(Var[X;|F;1]) + Var(E[X;|F;-1]),
where the outer expectation and variance is taken over Xy, Xo, ..., X;_4. Since the conditional dis-
tribution X;[Fj_1 ~ Poisson(g;(Xpy;))), we have Var[X;|F;_1] = E[X;|F;_1] = g;(Xpy;))-
Hence,

Var(X;) = E(E[X;|F;-1]) + Var(g; (Xpy ;)
=E(X;) + Var(gj(XPa(j)))a
yielding that
Var(X;) — E(X;) = Var(g; (XPa(j)))'
Clearly, if Pa(j) is empty, meaning the node is the first component of the causal ordering,

Var(g;(Xpy(;))) = 0. Otherwise, Var(g;(Xpy(;))) > 0 by the assumption. Hence for any node

that can not be the first in the ordering, Var(X;) — E(X;) > 0. Hence we pick any node X}, such
that Var(X}) — E(X%) = 0 as being the first element of the causal ordering and X satisfies the
above equation.

For k = m, assume X, X5, ..., X,, is a valid causal ordering for the first m nodes. Now we consider
Var(X;|Fm) = E(Var[X;|F;_1]|Fm) + Var(E[X; | F;-1]| Fm),
for j = m + 1,m + 2,...,p, where the expectation and variance are taken over the variables
X1, X2, ..., Xpm. Again, for any j = m + 1,m + 2, ..., p, we have Var[X;|F;_1] = E[X,|F,_1] =
9; (XPa(j))~ Further, since X7, Xs, ..., X, is a valid causal ordering for the first m nodes,
Var(X;|Fm) = E(E[X;|Fj-1]|Fm) + Var(E(X;|F;j-1)|Fm)
= E(lefm) + Var(gj (XPa(]))‘fm)
Hence, following on similar lines,
Var(Xj|-7:7n) - E(Xj‘]:'rn) = Var[gj (XPa(j))|]:’m]-

Hence if Pa(j) \ {1,2, ..., m} is empty, Var(g;(Xpy;))|Fm) = 0 and Var(X;|F,) — E(X;|Fm) =
0. Any such node can be next on the causal ordering and X, holds the above property. On the
other hand, for any node in which Pa(j)\ {1, 2, ..., m} is non-empty Var(X;|F.,,) —E(X,;|Fn) >0
which excludes it from being next in the causal ordering. Hence X, Xo, ..., X, 41 is a valid causal
ordering for the first m + 1 nodes. This completes the proof by induction. [



2 Proof of Theorem 4.2

Proof. Let X = (X x\") be the i.i.d n samples from the given DAG model. Let 7* be a
true causal ordering and 7 be the estimated causal ordering. Without loss of generality, assume that
the true causal ordering 7* is {1, 2, ...p}. For an arbitrary permutation or causal ordering 7, let 7,
represent its j** element.

Let E, denote the set of undirected edges corresponding to the moralized graph (i.e. the directed
edges without directions and edges between nodes with common children). Recall the definitions
N@G) =1{k € {1,2,...,p} |(4,k) € E,} denote the neighborhood set of j in the moralized graph
and K (j) = {klk € N(j — 1) N {j,...,p}} denote a candidate set for 7; and Cj;, = N (k) N
{m1,m2, ..., mj—1} which is the intersection of the neighbors of k with {1,2, ..., — 1}.

Recall that for ease of notation for any j € {1,2,..p}, and S C {1,2,...,p} let ui; s and rep-
resent E[X ;| Xg] and O'J2-|S = Var(X;|Xg). Also, denote jj)s(xs) and represent E[X;|Xg =
xg] and 032'|S(x5) = Var(X;|Xs = zg). Let ng(zg) = Y1, l(Xg) = xg) and ng =
> ws (xs)1(n(zs) > co.n) for an arbitrary co € (0,1).

The overdispersion score of k& € K(j) for the j* component of the causal ordering, de-
fined in the second step of our ODS algorithm only considers elements of & (Cyk) = {z €
{ng)k , ng)k, s ngi} | n(z) > ¢p.n} so we only count up elements that occur sufficiently fre-
quently.

According to the ODS algorithm, the truncated sample conditional expectation and variance of X;
given Xg = z for j € {1,2,...p} and any subset S C {1,2,...p} \ {7} be following: for z € X(5),
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The overdispersion score of k € K () for the j" element of the causal ordering is for z € X' (Cjy),
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And the correct overdispersion score is

sie = Boy[odic,, — rioy] = Boy, [Var(gr (Pa(k))|Cjp)].
Let us define some events for the proof and d denote the maximum degree of the moralized graph.
Forany j € {1,2,...,p} and k € K(j),

§u = {max|sjp — 53| <m/2}
& = {mpx o, X, <nei)

We prove it by induction that requires p steps to recover a causal ordering that is consistent with the
Poisson DAG. Without loss of generality, assume that the true causal ordering 7* is {1, 2, ...p}. For
the first step j = 1, a set of candidate element of 71 is K(1) = {1,2,....,p} and a candidate parent
set of each node Cy, = 0 for all k € K(1).

P(7; # my) = P(exists at least one k € K (1) \ {1} s.t. S11 > Siz)
SIKM|_max  {P(sh+ 5 > six— 5 16) + P(E51&) + P(5))

keK(1)\{1} 2
< P * P(¢e P&
—pke;?ﬁﬁ’i{l}{ (m > siplé1) + P(&5|&2) + P(&5)}



By Assumption (Al), s7, > m and we will represent some Propositions that respectively control
P(£71€2) and P(&5).
For the j — 1 step, assume (71, T2, ..., T;—1) is a valid ordering for the first j — 1 nodes. Note that

with the correct N(5), @»k = Cj,. Now, we consider 7. The probability of a false recovery of

m; given the true undirected edges of the moralized graph and the true causal ordering before j is
following:

P(/TFJ 7é 7T;|%1 = 7TT, ...,%j,1 = 7T4Ll)
= P(exists at least one k € K (j) \ {5} s.t. 5j; > ;i)

<[K@G)I e {P (355 +m/2 > s —m/2|&1) + P(]162) + P(€5) }

< [K@)I e {P(m > sjilé1) + P(E5]€2) + P(&5) }

By Assumption (Al), s7, > m and we represent some Propositions that respectively control
P(£5)€2) and P(&5). Furthermore we also show a condition on ¢g.

Proposition 2.1. Forall j € {1,2,...,p},k € K(j), cg < n- 5 given & is a sufficient that a
candidate parents set X (Cy,) is not empty

Proposition 2.2.

m2nl/(5+d) m2nl/(5+d) m2n3/ (5+d)
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where m is the constant in Assumption (Al).

P(&)62) < 2p*n5ta {exp( —

Proposition 2.3.
P& < anexp( — /Gt 1og 2)

where M is the constant in Assumption (A2).

Hence for any j € {1,2,...p} with ¢ = n*?dd,
P(Rj # iR =75, . Fje1 = T)_q)
= N {P(m > sjilé1) + P(E5l&2) + P(€5) }
< 2’07 {exp( %/g(sﬁd)) +exp( — W) +exp( — w
+np Mexp( —n'/+ 9 log 2) (1)

By using the above probability bound (1),

~ * (E1) ~ * =~ * = * = *
P@#n*) < P(M #7)+ ..+ P(@p1 # 7y 4|T1 =71, ., Tp2 =7, _5)

(Es) 2,1/(5+d) 2,,1/(5+d) 2,,3/(5+d)
< opinsta {exp(— m n18 ) +exp( — %) +exp( — %

+ nngexp( —pl/G+d) log 2)

The first inequality (E;) is followed from P(A U B) = P(A) + P(B N A°) = P(A) +
P(B|A®)P(A°) < P(A) 4+ P(B|A®) for some events A, B. And (E) is directly from (1).

Hence, there exists some positive constants C, Cy, C3 > 0 such that

P(# # %) < Crexp( — Can/ O+ + C5log max{p, n})



2.0.1 Proof of Proposition 2.1

Proof. Let | Xg| denote the cardinality of a set {X él), X g), vy X é”)} and |X'(S)| denote the car-

dinality of a set X'(S). In worst case where |X'(S)| = 1, for all z € {X(1 éz), ...,Xé")},
ng(z) = co.n — 1 except for only one component y € X(S). In this case, the sample size
n=ns(y)+ (| Xs| — 1)(co.n — 1). A simple calculation yields that

ns(y) =n— (| Xs| — D(co-n —1) =n — con|Xg| + con+ | Xg| — 1.

n-HX5| 1

. . n+|Xs|—1 :
Hence c¢p.n < ng(y) is equivalent to ¢y < TR Since ‘X ‘ < AT if C(l < IX | there
exists at least one component y € X (.S). In addition under the event &, | Xg| < n5+@ which is all
d
possible combinations. Hence if ¢y < n™ 5+4, |X(5)| # 0. O

2.0.2 Proof of Proposition 2.2
Proof. This problem is reduced to the consistency rate of a sample conditional mean and conditional

variance. For ease of notation, let n;, = nc,, and n;.(z) = nc,, (z). Suppose that ¢y = n~ .
Then for any j € {1,2,...,p} and k € K(j),
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(E)) is followed from that P(}", w; X; > 0) < >°. P(X; > 6/w;), and (E») is from = 7k(:1:) < 1.

Since nji(x) > co.nforall z € X(Cj), |X¥(Cjx)| < 1/co hence (E3) and (Es5) hold. Moreover
(E4) is followed from the Hoeffding’s inequality (Theorem 2 [1]) since samples are independent
and bounded above n'/ 5+ given &,. O




2.0.3 Proof of Proposition 2.3

Proof. Forany j € {1,2, ..., p}, the conditional distribution of X; given Xpa(j) is Poisson with rate
parameter g;(Pa(j)). Hence for k € K(j),
P(£) = P( max max X > pl/G+d)
(2) (keKé')i:L..}.(,n k )
(E1) )
§1 np max max P(|X,il)| > plt/(G+d)
kEK(5) i=1,...,n

(E2)
< E _ ., 1/(5+4d) 1 2 k
< np mac max Epage [exp(— '/ log 2 + g (pa(k)))|
(E3)

< mp ) e, Mexp(—n'T*T0log2)

= npMexp( — n'/+% Jog 2).

(E1) is followed from the union bound and |K(j)| < p. (Es) is from the moment generating
function of Poisson distribution with ¢ = log 2. And, (E3) is from Assumption (A2). O]
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