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Abstract

We propose a kernel-based method for finding matching between instances across
different domains, such as multilingual documents and images with annotations.
Each instance is assumed to be represented as a multiset of features, e.g., a bag-of-
words representation for documents. The major difficulty in finding cross-domain
relationships is that the similarity between instances in different domains cannot
be directly measured. To overcome this difficulty, the proposed method embeds
all the features of different domains in a shared latent space, and regards each
instance as a distribution of its own features in the shared latent space. To repre-
sent the distributions efficiently and nonparametrically, we employ the framework
of the kernel embeddings of distributions. The embedding is estimated so as to
minimize the difference between distributions of paired instances while keeping
unpaired instances apart. In our experiments, we show that the proposed method
can achieve high performance on finding correspondence between multi-lingual
Wikipedia articles, between documents and tags, and between images and tags.

1 Introduction
The discovery of matched instances in different domains is an important task, which appears in nat-
ural language processing, information retrieval and data mining tasks such as finding the alignment
of cross-lingual sentences [1], attaching tags to images [2] or text documents [3], and matching user
identifications in different databases [4].

When given an instance in a source domain, our goal is to find the instance in a target domain that
is the most closely related to the given instance. In this paper, we focus on a supervised setting,
where correspondence information between some instances in different domains is given. To find
matching in a single domain, e.g., find documents relevant to an input document, a similarity (or
distance) measure between instances can be used. On the other hand, when trying to find matching
between instances in different domains, we cannot directly measure the distances since they con-
sist of different types of features. For example, when matching documents in different languages,
since the documents have different vocabularies we cannot directly measure the similarities between
documents across different languages without dictionaries.

∗The author moved to Software Technology and Artificial Intelligence Research Laboratory (STAIR Lab)
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Figure 1: An example of the proposed method
used on a multilingual document matching
task. Correspondences between instances in
source (English) and target (Japanese) do-
mains are observed. The proposed method as-
sumes that each feature (vocabulary term) has
a latent vector in a shared latent space, and
each instance is represented as a distribution
of the latent vectors of the features associated
with the instance. Then, the distribution is
mapped as an element in a reproducing kernel
Hilbert space (RKHS) based on the kernel em-
beddings of distributions. The latent vectors
are estimated so that the paired instances are
embedded closer together in the RKHS.

One solution is to map instances in both the source and target domains into a shared latent space.
One such method is canonical correspondence analysis (CCA) [5], which maps instances into a la-
tent space by linear projection to maximize the correlation between paired instances in the latent
space. However, in practice, CCA cannot solve non-linear relationship problems due to its linearity.
To find non-linear correspondence, kernel CCA [6] can be used. It has been reported that kernel
CCA performs well as regards document/sentence alignment between different languages [7, 8],
when searching for images from text queries [9] and when matching 2D-3D face images [10]. Note
that the performance of kernel CCA depends on how appropriately we define the kernel function
for measuring the similarity between instances within a domain. Many kernels, such as linear, poly-
nomial and Gaussian kernels, cannot consider the occurrence of different but semantically similar
words in two instances because these kernels use the inner-product between the feature vectors rep-
resenting the instances. For example, words, ‘PC’ and ‘Computer’, are different but indicate the
same meaning. Nevertheless, the kernel value between instances consisting only of ‘PC’ and con-
sisting only of ‘Computer’ is equal to zero with linear and polynomial kernels. Even if a Gaussian
kernel is used, the kernel value is determined only by the vector length of the instances.

In this paper, we propose a kernel-based cross-domain matching method that can overcome the
problem of kernel CCA. Figure 1 shows an example of the proposed method. The proposed method
assumes that each feature in source and target domains is associated with a latent vector in a shared
latent space. Since all the features are mapped into the latent space, the proposed method can mea-
sure the similarity between features in different domains. Then, each instance is represented as a
distribution of the latent vectors of features that are contained in the instance. To represent the dis-
tributions efficiently and nonparametrically, we employ the framework of the kernel embeddings of
distributions, which measures the difference between distributions in a reproducing kernel Hilbert
space (RKHS) without the need to define parametric distributions. The latent vectors are estimated
by minimizing the differences between the distributions of paired instances while keeping unpaired
instances apart. The proposed method can discover unseen matching in test data by using the dis-
tributions of the estimated latent vectors. We will explain matching between two domains below,
however, the proposed method can be straightforwardly extended to matching between three and
more domains by regarding one of the domains as a pivot domain.

In our experiments, we demonstrate the effectiveness of our proposed method in tasks that involve
finding the correspondence between multi-lingual Wikipedia articles, between documents and tags,
and between images and tags, by comparison with existing linear and non-linear matching methods.

2 Related Work
As described above, canonical correlation analysis (CCA) and kernel CCA have been successfully
used for finding various types of cross-domain matching. When we want to match cross-domain
instances represented by bag-of-words such as documents, bilingual topic models [1, 11] can also
be used. The difference between the proposed method and these methods is that since the proposed
method represents each instance as a set of latent vectors of its own features, the proposed method
can learn a more complex representation of the instance than these existing methods that represent
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each instance as a single latent vector. Another difference is that the proposed method employs a
discriminative approach, while kernel CCA and bilingual topic models employ generative ones.

To model cross-domain data, deep learning and neural network approaches have been recently pro-
posed [12, 13]. Unlike such approaches, the proposed method performs non-linear matching without
deciding the number of layers of the networks, which largely affects their performances.

A key technique of the proposed method is the kernel embeddings of distributions [14], which can
represent a distribution as an element in an RKHS, while preserving the moment information of
the distribution such as the mean, covariance and higher-order moments without density estima-
tion. The kernel embeddings of distributions have been successfully used for a statistical test of the
independence of two sample sets [15], discriminative learning on distribution data [16], anomaly
detection for group data [17], density estimation [18] and a three variable interaction test [19]. Most
previous studies about the kernel embeddings of distributions consider cases where the distributions
are unobserved but the samples generated from the distributions are observed. Additionally, each
of the samples is represented as a dense vector. With the proposed method, the kernel embedding
technique cannot be used to represent the observed multisets of features such as bag-of-words for
documents, since each of the features is represented as a one-hot vector whose dimensions are zero
except for the dimension indicating that the feature has one. In this study, we benefit from the kernel
embeddings of distributions by representing each feature as a dense vector in a shared latent space.
The proposed method is inspired by the use of the kernel embeddings of distributions in bag-of-
words data classification [20] and regression [21]. Their methods can be applied to single domain
data, and the latent vectors of features are used to measure the similarity between the features in a
domain. Unlike these methods, the proposed method is used for the cross-domain matching of two
different types of domain data, and the latent vectors are used for measuring the similarity between
the features in different domains.

3 Kernel Embeddings of Distributions
In this section, we introduce the framework of the kernel embeddings of distributions. The kernel
embeddings of distributions are used to embed any probability distribution P on space X into a re-
producing kernel Hilbert space (RKHS) Hk specified by kernel k, and the distribution is represented
as element m∗(P) in the RKHS. More precisely, when given distribution P, the kernel embedding
of the distribution m∗(P) is defined as follows:

m∗(P) := Ex∼P[k(·,x)] =
∫
X
k(·,x)dP ∈ Hk, (1)

where kernel k is referred to as embedding kernel. It is known that kernel embedding m∗(P) pre-
serves the properties of probability distribution P such as the mean, covariance and higher-order
moments by using characteristic kernels (e.g., Gaussian RBF kernel) [22].

When a set of samples X = {xl}nl=1 is drawn from the distribution, by interpreting sample set X as
empirical distribution P̂ = 1

n

∑n
l=1 δxl

(·), where δx(·) is the Dirac delta function at point x ∈ X ,
empirical kernel embedding m(X) is given by

m(X) =
1

n

n∑
l=1

k(·,xl), (2)

which can be approximated with an error rate of ||m(X)−m∗(P)||Hk
= Op(n

− 1
2 ) [14]. Unlike ker-

nel density estimation, the error rate of the kernel embeddings is independent of the dimensionality
of the given distribution.

3.1 Measuring Difference between Distributions
By using the kernel embedding representation Eq. (2), we can measure the difference between two
distributions. Given two sets of samples X = {xl}nl=1 and Y = {yl′}n

′

l′=1 where xl and yl′ belong
to the same space, we can obtain their kernel embedding representations m(X) and m(Y). Then,
the difference between m(X) and m(Y) is given by

D(X,Y) = ||m(X)−m(Y)||2Hk
. (3)

Intuitively, it reflects the difference in the moment information of the distributions. The difference
is equivalent to the square of maximum mean discrepancy (MMD), which is used for a statistical test
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of independence of two distributions [15]. The difference can be calculated by expanding Eq. (3) as
follows:

||m(X)−m(Y)||2Hk
= ⟨m(X),m(X)⟩Hk

+ ⟨m(Y),m(Y)⟩Hk
− 2⟨m(X),m(Y)⟩Hk

, (4)

where, ⟨·, ·⟩Hk
is an inner-product in the RKHS. In particular, ⟨m(X),m(Y)⟩Hk

is given by

⟨m(X),m(Y)⟩Hk
=

⟨
1

n

n∑
l=1

k(·,xl),
1

n′

n′∑
l′=1

k(·,yl′)

⟩
Hk

=
1

nn′

n∑
l=1

n′∑
l′=1

k(xl,yl′). (5)

⟨m(X),m(X)⟩Hk
and ⟨m(Y),m(Y)⟩Hk

can also be calculated by Eq. (5).

4 Proposed Method
Suppose that we are given a training set consisting of N instance pairs O = {(dsi , dti)}Ni=1, where dsi
is the ith instance in a source domain and dti is the ith instance in a target domain. These instances
dsi and dti are represented as multisets of features included in source feature set Fs and target feature
set F t, respectively. This means that these instances are represented as bag-of-words (BoW). The
goal of our task is to determine the unseen relationship between instances across source and target
domains in test data. The number of instances in the source domain may be different to that in the
target domain.

4.1 Kernel Embeddings of Distributions in a Shared Latent Space
As described in Section 1, the difficulty as regards finding cross-domain instance matching is that the
similarity between instances across source and target domains cannot be directly measured. We have
also stated that although we can find a latent space that can measure the similarity by using kernel
CCA, standard kernel functions, e.g., a Gaussian kernel, cannot reflect the co-occurrence of different
but related features in a kernel calculation between instances. To overcome them, we propose a new
data representation for finding cross-domain instance matching. The proposed method assumes that
each feature in a source feature set, f ∈ Fs, has a q-dimensional latent vector xf ∈ Rq in a
shared space. Likewise, each feature in target feature set, g ∈ F t, has a q-dimensional latent vector
yg ∈ Rq in the shared space. Since all the features in the source and target domains are mapped into
a common shared space, the proposed method can capture the relationship between features both
in each domain and across different domains. We define the sets of latent vectors in the source and
target domains as X = {xf}f∈Fs and Y = {yg}g∈Ft , respectively.

The proposed method assumes that each instance is represented by a distribution (or multiset) of
the latent vectors of the features that are contained in the instance. The ith instance in the source
domain dsi is represented by a set of latent vectors Xi = {xf}f∈ds

i
and the jth instance in the target

domain dtj is represented by a set of latent vectors Yj = {yg}g∈dt
j
. Note that Xi and Yj lie in the

same latent space.

In Section 3, we introduced the kernel embedding representation of a distribution and described how
to measure the difference between two distributions when samples generated from the distribution
are observed. In the proposed method, we employ the kernel embeddings of distributions to repre-
sent the distributions of the latent vectors for the instances. The kernel embedding representations
for the ith source and the jth target domain instances are given by

m(Xi) =
1

|dsi |
∑
f∈ds

i

k(·,xf ), m(Yj) =
1

|dtj |
∑
g∈dt

j

k(·,yg). (6)

Then, the difference between the distributions of the latent vectors are measured by using Eq. (3),
that is, the difference between the ith source and the jth target domain instances is given by

D(Xi,Yj) = ||m(Xi)−m(Yj)||2Hk
. (7)

4.2 Model
The proposed method assumes that paired instances have similar distributions of latent vectors and
unpaired instances have different distributions. In accordance with the assumption, we define the
likelihood of the relationship between the ith source domain instance and the jth target domain
instance as follows:

p(dtj |dsi ,X,Y, θ) =
exp (−D(Xi,Yj))∑N

j′=1 exp (−D(Xi,Yj′))
, (8)
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where, θ is a set of hyper-parameters for the embedding kernel used in Eq. (6). Eq. (8) is in fact
the conditional probability with which the jth target domain instance is chosen given the ith source
domain instance. This formulation is more efficient than we consider a bidirectional matching.
Intuitively, when distribution Xi is more similar to Yj than other distributions {Yj′ | j′ ̸= j}Nj′=1,
the probability has a higher value.

We define the posterior distribution of latent vectors X and Y. By placing Gaussian priors with
precision parameter ρ > 0 for X and Y, that is, p(X|ρ) ∝

∏
x∈X exp

(
−ρ

2 ||x||
2
2

)
, p(Y|ρ) ∝∏

y∈Y exp
(
−ρ

2 ||y||
2
2

)
, the posterior distribution is given by

p(X,Y|O,Θ) =
1

Z
p(X|ρ)p(Y|ρ)

N∏
i=1

p(dti|dsi ,X,Y, θ), (9)

where, O = {(dsi , dti)}Ni=1 is a training set of N instance pairs, Θ = {θ, ρ} is a set of hyper-
parameters and Z =

∫ ∫
p(X,Y,O,Θ)dXdY is a marginal probability, which is constant with

respect to X and Y.

4.3 Learning
We estimate latent vectors X and Y by maximizing the posterior probability of the latent vectors
given by Eq. (9). Instead of Eq. (9), we consider the following negative logarithm of the posterior
probability,

L(X,Y) =

N∑
i=1

D(Xi,Yi) + log

N∑
j=1

exp (−D(Xi,Yj))

+
ρ

2

∑
x∈X

||x||22 +
∑
y∈Y

||y||22

 ,

(10)
and minimize it with respect to the latent vectors. Here, maximizing Eq. (9) is equivalent to min-
imizing Eq. (10). To minimize Eq. (10) with respect to X and Y, we perform a gradient-based
optimization. The gradient of Eq. (10) with respect to each xf ∈ X is given by

∂L(X,Y)

∂xf
=

∑
i:f∈ds

i

∂D(Xi,Yi)

∂xf
− 1

ci

N∑
j=1

eij
∂D(Xi,Yj)

∂xf

+ ρxf (11)

where,

eij = exp (−D(Xi,Yj)) , ci =
N∑
j=1

exp (−D(Xi,Yj)) , (12)

and the gradient of the difference between distributions Xi and Yj with respect to xf is given by
∂D(Xi,Yj)

∂xf
=

1

|dsi |2
∑
l∈ds

i

∑
l′∈ds

i

∂k(xl,xl′)

∂xf
− 2

|dsi ||dtj |
∑
l∈ds

i

∑
g∈dt

i

∂k(xl,yg)

∂xf
. (13)

When the distribution Xi does not include the latent vector xf , the gradient consistently becomes a
zero vector. ∂k(xl,xl′ )

∂xf
is the gradient of an embedding kernel. This depends on the choice of kernel.

When the embedding kernel is a Gaussian kernel, the gradient is calculated as with Eq. (15) in [21].
Similarly, The gradient of Eq. (10) with respect to each yg ∈ Y is given by

∂L(X,Y)

∂yg
=

N∑
i=1

∂D(Xi,Yi)

∂yg
− 1

ci

∑
j:g∈dt

j

eij
∂D(Xi,Yj)

∂yg

+ ρyg, (14)

where, the gradient of the difference between distributions Xi and Yj with respect to yg can be
calculated as with Eq. (13)

Learning is performed by alternately updating X using Eq. (11) and updating Y using Eq. (14) until
the improvement in the negative log likelihood Eq. (10) converges.

4.4 Matching
After the estimation of the latent vectors X and Y, the proposed method can reveal the matching
between test instances. The matching is found by first measuring the difference between a given
source domain instance and target domain instances using Eq. (7), and then searching for the instance
pair with the smallest difference.
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5 Experiments
In this section, we report our experimental results for three different types of cross-domain datasets:
multi-lingual Wikipedia, document-tag and image-tag datasets.

Setup of proposed method. Throughout these experiments, we used a Gaussian kernel with param-
eter γ ≥ 0: k(xf ,yg) = exp

(
−γ

2 ||xf − yg||22
)

as an embedding kernel. The hyper-parameters of
the proposed method are the dimensionality of a shared latent space q, a regularizer parameter for
latent vectors ρ and a Gaussian embedding kernel parameter γ. After we train the proposed method
with various hyper-parameters q ∈ {8, 10, 12}, ρ ∈ {0, 10−2, 10−1} and γ ∈ {10−1, 100, · · · , 103},
we chose the optimal hyper-parameters by using validation data. When training the proposed
method, we initialized latent vectors X and Y by applying principle component analysis (PCA)
to a matrix concatenating two feature-frequency matrices in the source and target domains. Then,
we employed the L-BFGS method [23] with gradients given by Eqs. (11) (14) to learn the latent
vectors.

Comparison methods. We compared the proposed method with the k-nearest neighbor method
(KNN), canonical correspondence analysis (CCA), kernel CCA (KCCA), bilingual latent Dirichlet
allocation (BLDA), and kernel CCA with the kernel embeddings of distributions (KED-KCCA). For
a test instance in the source domain, our KNN searches for the nearest neighbor source instances in
the training data, and outputs a target instance in the test data, which is located close to the target
instances that are paired with the searched for source instances. CCA and KCCA first learn the
projection of instances into a shared latent space using training data, and then they find matching
between instances by projecting the test instances into the shared latent space. KCCA used a Gaus-
sian kernel for measuring the similarity between instances and chose the optimal Gaussian kernel
parameter and regularizer parameter by using validation data. With BLDA, we first learned the same
model as [1, 11] and found matching between instances in the test data by obtaining the topic dis-
tributions of these instances from the learned model. KED-KCCA uses the kernel embeddings of
distributions described in Section 3 for obtaining the kernel values between the instances. The vec-
tor representations of features were obtained by applying singular value decomposition (SVD) for
instance-feature frequency matrices. Here, we set the dimensionality of the vector representations to
100. Then, KED-KCCA learns kernel CCA with the kernel values as with the above KCCA. With
CCA, KCCA, BLDA and KED-KCCA, we chose the optimal latent dimensionality (or number of
topics) within {10, 20, · · · , 100} by using validation data.

Evaluation method. Throughout the experiments, we quantitatively evaluated the matching perfor-
mance by using the precision with which the true target instance is included in a set of R candidate
instances, S(R), found by each method. More formally, the precision is given by

Precision@R =
1

Nte

Nte∑
i=1

δ (ti ∈ Si(R)) , (15)

where, Nte is the number of test instances in the target domain, ti is the ith true target instance,
Si(R) is R candidate instances of the ith source instance and δ(·) is the binary function that returns
1 if the argument is true, and 0 otherwise.

5.1 Matching between Bilingual Documents
With a multi-lingual Wikipedia document dataset, we examine whether the proposed method can
find the correct matching between documents written in different languages. The dataset includes
34,024 Wikipedia documents for each of six languages: German (de), English (en), Finnish (fi),
French (fr), Italian (it) and Japanese (ja), and documents with the same content are aligned across
the languages. From the dataset, we create 6C2 = 15 bilingual document pairs. We regard the
first component of the pair as a source domain and the other as a target domain. For each of the
bilingual document pairs, we randomly create 10 evaluation sets that consist of 1,000 document
pairs as training data, 100 document pairs as validation data and 100 document pairs as test data.
Here, each document is represented as a bag-of-words without stopwords and low frequency words.

Figure 2 shows the matching precision for each of the bilingual pairs of the Wikipedia dataset.
With all the bilingual pairs, the proposed method achieves significantly higher precision than the
other methods with a wide range of R. Table 1 shows examples of predicted matching with the
Japanese-English Wikipedia dataset. Compared with KCCA, which is the second best method, the
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Figure 2: Precision of matching prediction and its standard deviation on multi-lingual Wikipedia
datasets.

Table 1: Top five English documents matched by the proposed method and KCCA given five
Japanese documents in the Wikipedia dataset. Titles in bold typeface indicate correct matching.

(a) Japanese Input title: SDカード (SD card)
Proposed Intel, SD card, Libavcodec, MPlayer, Freeware

KCCA BBC World News, SD card, Morocco, Phoenix, 24 Hours of Le Mans

(b) Japanese Input title: 炭疽症 (Anthrax)
Proposed Psittacosis, Anthrax, Dehydration, Isopoda, Cataract

KCCA Dehydration, Psittacosis, Cataract, Hypergeometric distribution, Long Island Iced Tea

(c) Japanese Input title: ドップラー効果 (Doppler effect)
Proposed LU deconmposition, Redshift, Doppler effect, Phenylalanine, Dehydration

KCCA Long Island Iced Tea, Opportunity cost, Cataract, Hypergeometric distribution, Intel

(d) Japanese Input title: メキシコ料理 (Mexican cuisine)
Proposed Mexican cuisine, Long Island Iced Tea, Phoenix, Baldr, China Radio International

KCCA Taoism, Chariot, Anthrax, Digital Millennium Copyright Act, Alexis de Tocqueville

(e) Japanese Input title: フリーウェア (Freeware)
Proposed BBC World News, Opportunity cost, Freeware, NFS, Intel

KCCA Digital Millennium Copyright Act, China Radio International, Hypergeometric distribution, Taoism, Chariot

proposed method can find both the correct document and many related documents. For example,
in Table 1(a), the correct document title is “SD card”. The proposed method outputs the SD card’s
document and documents related to computer technology such as “Intel” and “MPlayer”. This is
because the proposed method can capture the relationship between words and reflect the difference
between documents across different domains by learning the latent vectors of the words.

5.2 Matching between Documents and Tags, and between Images and Tags
We performed experiments matching documents and tailgates, and matching images and tailgates
with the datasets used in [3]. When matching documents and tailgates, we use datasets obtained
from two social bookmarking sites, delicious1 and hatena2, and patent dataset. The
delicious and the hatena datasets include pairs consisting of a web page and a tag list la-
beled by users, and the patent dataset includes pairs consisting of a patent description and a tag list
representing the category of the patent. Each web page and each patent description are represented

1https://delicious.com/
2http://b.hatena.ne.jp/
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Figure 3: Precision of matching prediction and its standard deviation on delicious, hatena,
patent and flickr datasets.

Figure 4: Two examples of input tag lists and the top five images matched by the proposed method
on the flickr dataset.

as a bag-of-words as with the experiments using the Wikipedia dataset, and the tag list is represented
as a set of tags. With the matching of images and tag lists, we use the flickr dataset, which con-
sists of pairs of images and tag lists. Each image is represented as a bag-of-visual-words, which
is obtained by first extracting features using SIFT, and then applying K-means clustering with 200
components to the SIFT features. For all the datasets, the numbers of training, test and validation
pairs are 1,000, 100 and 100, respectively.

Figure 3 shows the precision of the matching prediction of the proposed and comparison methods
for the delicious, hatena, patent and flickr datasets. The precision of the comparison
methods with these datasets was much the same as the precision of random prediction. Nevertheless,
the proposed method achieved very high precision particularly for the delicious, hatena and
patent datasets. Figure 4 shows examples of input tag lists and the top five images matched by
the proposed method with the flickr dataset. In the examples, the proposed method found the
correct images and similar related images from given tag lists.

6 Conclusion

We have proposed a novel kernel-based method for addressing cross-domain instance matching tasks
with bag-of-words data. The proposed method represents each feature in all the domains as a latent
vector in a shared latent space to capture the relationship between features. Each instance is rep-
resented by a distribution of the latent vectors of features associated with the instance, which can
be regarded as samples from the unknown distribution corresponding to the instance. To calculate
difference between the distributions efficiently and nonparametrically, we employ the framework of
kernel embeddings of distributions, and we learn the latent vectors so as to minimize the difference
between the distributions of paired instances in a reproducing kernel Hilbert space. Experiments
on various types of cross-domain datasets confirmed that the proposed method significantly outper-
forms the existing methods for cross-domain matching.
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