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Abstract

In past few years, several techniques have been proposed for training of linear
Support Vector Machine (SVM) in limited-memory setting, where a dual block-
coordinate descent (dual-BCD) method was used to balance cost spent on I/O and
computation. In this paper, we consider the more general setting of regularized
Empirical Risk Minimization (ERM) when data cannot fit into memory. In par-
ticular, we generalize the existing block minimization framework based on strong
duality and Augmented Lagrangian technique to achieve global convergence for
general convex ERM. The block minimization framework is flexible in the sense
that, given a solver working under sufficient memory, one can integrate it with
the framework to obtain a solver globally convergent under limited-memory con-
dition. We conduct experiments on L1-regularized classification and regression
problems to corroborate our convergence theory and compare the proposed frame-
work to algorithms adopted from online and distributed settings, which shows su-
periority of the proposed approach on data of size ten times larger than the memory
capacity.

1 Introduction

Nowadays data of huge scale are prevalent in many applications of statistical learning and data
mining. It has been argued that model performance can be boosted by increasing both number
of samples and features, and through crowdsourcing technology, annotated samples of terabytes
storage size can be generated [3]. As a result, the performance of model is no longer limited by the
sample size but the amount of available computational resources. In other words, the data size can
easily go beyond the size of physical memory of available machines. Under this setting, most of
learning algorithms become slow due to expensive I/O from secondary storage device [26].

When it comes to huge-scale data, two settings are often considered — online and distributed learn-
ing. In the online setting, each sample is processed only once without storage, while in the dis-
tributed setting, one has several machines that can jointly fit the data into memory. However, the
real cases are often not as extreme as these two — there are usually machines that can fit part of the
data, but not all of them. In this setting, an algorithm can only process a block of data at a time.
Therefore, balancing the time spent on I/O and computation becomes the key issue [26]. Although
one can employ an online-fashioned learning algorithm in this setting, it has been observed that on-
line method requires large number of epoches to achieve comparable performance to batch method,
and at each epoch it spends most of time on I/O instead of computation [2, 21, 26]. The situation
for online method could become worse for problem of non-smooth, non-strongly convex objective
function, where a qualitatively slower convergence of online method is exhibited [15, 16] than that
proved for strongly-convex problem like SVM [14].

In the past few years, several algorithms have been proposed to solve large-scale linear Support Vec-
tor Machine (SVM) in the limited memory setting [2, 21, 26]. These approaches are based on a dual
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Block Coordinate Descent (dual-BCD) algorithim, which decomposes the original problem into a
series of block sub-problems, each of them requires only a block of data loaded into memory. The
approach was proved linearly convergent to the global optimum, and demonstrated fast convergence
empirically. However, the convergence of the algorithm relies on the assumption of a smooth dual
problem, which, as we show, does not hold generally for other regularized Empirical Risk Mini-
mizaton (ERM) problem. As a result, although the dual-BCD approach can be extended to the more
general setting, it is not globally convergent except for a class of problems with L2-regularizer.

In this paper, we first show how to adapt the dual block-coordinate descnet method of [2, 26] to
the general setting of regularized Empirical Risk Mimization (ERM), which subsumes most of su-
pervised learning problems ranging from classification, regression to ranking and recommendation.
Then we discuss the convergence issue arises when the underlying ERM is not strongly-convex. A
Primal Proximal Point ( or Dual Augmented Lagrangian ) method is then proposed to address this
issue, which as we show, results in a block minimization algorithm with global convergence to op-
timum for convex regularized ERM problems. The framework is flexible in the sense that, given a
solver working under sufficient-memory condition, it can be integrated into the block minimization
framework to obtain a solver globally convergent under limited-memory condition.

We conduct experiments on L1-regularized classification and regression problems to corroborate
our convergence theory, which shows that the proposed simple dual-augmented technique changes
the convergence behavior dramatically. We also compare the proposed framework to algorithms
adopted from online and distributed settings. In particular, we describe how to adapt a distributed op-
timization framework — Alternating Direction Method of Multiplier (ADMM) [1] — to the limited-
memory setting, and show that, although the adapted algorithm is effective, it is not as efficient as the
proposed framework specially designed for limited-memory setting. Note our experiment does not
adapt into comparison some recently proposed distributed learning algorithms (CoCoA etc.) [7, 10]
that only apply to ERM with L2-regularizer or some other distributed method designed for some
specific loss function [19].

2 Problem Setup

In this work, we consider the regularized Empirical Risk Minimization problem, which given a data
set D = {(Φn,yn)}Nn=1, estimates a model through

min
w∈Rd,ξn∈Rp

F (w, ξ) = R(w) +

N∑
n=1

Ln(ξn)

s.t. Φnw = ξn, n ∈ [N ]

(1)

where w ∈ Rd is the model parameter to be estimated, Φn is a p by d design matrix that encodes
features of the n-th data sample, Ln(ξn) is a convex loss function that penalizes the discrepancy
between ground truth and prediction vector ξn ∈ Rp, and R(w) is a convex regularization term
penalizing model complexity.

The formulation (1) subsumes a large class of statistical learning problems ranging from classifi-
cation [27], regression [17], ranking [8], and convex clustering [24]. For example, in classification
problem, we have p = |Y|where Y consists of the set of all possible labels and Ln(ξ) can be defined
as the logistic loss Ln(ξ) = log(

∑
k∈Y exp(ξk)) − ξyn as in logistic regression or the hinge loss

Ln(ξ) = maxk∈Y(1− δk,yn + ξk− ξyn) as used in support vector machine; in a (multi-task) regres-
sion problem, the target variable consists ofK real values Y = RK , the prediction vector has p = K
dimensions, and a square loss Ln(ξ) = 1

2‖ξ−yn‖
2
2 is often used. There are also a variety of regular-

izers R(w) employed in different applications, which includes the L2-regularizer R(w) = λ
2 ‖w‖

2

in ridge regression, L1-regularizer R(w) = λ‖w‖1 in Lasso, nuclear-norm R(w) = λ‖w‖∗ in
matrix completion, and a family of structured group norms R(w) = λ‖w‖G [11]. Although the
specific form of Ln(ξ), R(w) does not affect the implementation of the limited-memory training
procedure, two properties of the functions — strong convexity and smoothness — have key effects
on the behavior of the block minimization algorithm.
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Definition 1 (Strong Convexity). A function f(x) is strongly convex iff it is lower bounded by a
simple quadratic function

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖x− y‖2 (2)

for some constant m > 0 and ∀x,y ∈ dom(f).
Definition 2 (Smoothness). A function f(x) is smooth iff it is upper bounded by a simple quadratic
function

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
‖x− y‖2 (3)

for some constant 0 ≤M <∞ and ∀x,y ∈ dom(f).

For instance, the square loss and logistic loss are both smooth and strongly convex 1, while the hinge-
loss satisfies neither of them. On the other hand, most of regularizers such as L1-norm, structured
group norm, and nuclear norm are neither smooth nor strongly convex, except for the L2-regularizer,
which satifies both. In the following we will demonstrate the effects of these properties to Block
Minimization algorithms.

Throughout this paper, we will assume that a solver for (1) that works in sufficient-memory condition
is given, and our task is to design an algorithmic framework that integrates with the solver to effi-
ciently solve (1) when data cannot fit into memory. We will assume, however, that the d-dimensional
parameter vector w can be fit into memory.

3 Dual Block Minimization

In this section, we extend the block minimization framework of [26] from linear SVM to the general
setting of regularized ERM (1).The dual of (1) can be expressed as

min
µ∈Rd,αn∈Rp

R∗(−µ) +

N∑
n=1

L∗n(αn)

s.t.

N∑
n=1

ΦTnαn = µ

(4)

where R∗(−µ) is the convex conjugate of R(w) and L∗n(αn) is the convex conjugate of Ln(ξn).
The block minimization algorithm of [26] basically performs a dual Block-Coordinate Descent
(dual-BCD) over (4) by dividing the whole data set D into K blocks DB1

, ...,DBK , and op-
timizing a block of dual variables (αBk ,µ) at a time, where DBk = {(Φn,yn)}n∈Bk and
αBk = {αn|n ∈ Bk}.
In [26], the dual problem (4) is derived explicitly in order to perform the algorithm. However,
for many sparsity-inducing regularizer such as L1-norm and nuclear norm, it is more efficient and
convenient to solve (1) in the primal [6, 28]. Therefore, here instead of explicitly forming the dual
problem, we express it implicitly as

G(α) = min
w,ξ

L(α,w, ξ), (5)

where L(α,w, ξ) is the Lagrangian function of (1), and maximize (5) w.r.t. a block of variables
αBk from the primal instead of dual by strong duality

max
αBk

{
min
w,ξ
L(α,w, ξ)

}
= min

w,ξ

{
max
αBk

L(α,w, ξ)

}
(6)

with other dual variables {αBj = αtBj}j 6=k fixed. The maximization of dual variables αBk in (6)
then enforces the primal equalities Φnw = ξn, n ∈ Bk, which results in the block minimization
problem

min
w∈Rd,ξn∈Rp

R(w) +
∑
n∈Bk

Ln(ξn) + µtTBkw

s.t. Φnw = ξn, n ∈ Bk,
(7)

1The logistic loss is strongly convex when its input ξ are within a bounded range, which is true as long as
we have a non-zero regularizer R(w).
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where µtBk =
∑
n/∈Bk ΦTnα

t
n. Note that, in (7), variables {ξn}n/∈Bk have been dropped since they

are not relevant to the block of dual variables αBk , and thus given the d dimensional vector µtBk ,
one can solve (7) without accessing data {(Φn,yn)}n/∈Bk outside the block Bk. Throughout the
dual-BCD algorithm, we maintain d-dimensional vector µt =

∑N
n=1 ΦTnα

t
n and compute µtB via

µtB = µt −
∑
n∈Bk

ΦTnα
t
n (8)

in the beginning of solving each block subproblem (7). Since subproblem (7) is of the same form to
the original problem (1) except for one additional linear augmented term µTBkw, one can adapt the
solver of (1) to solve (7) easily by providing an augmented version of the gradient

∇wF̄ (w, ξ) = ∇wF (w, ξ) + µtBk

to the solver, where F̄ (.) denotes the function with augmented terms and F (.) denotes the function
without augmented terms. Note the augmented term µtBk is constant and separable w.r.t. coordi-
nates, so it adds little overhead to the solver. After obtaining solution (w∗, ξ∗Bk) from (7), we can
derive the corresponding optimal dual variables αBk for (6) according to the KKT condition and
maintain µ subsequently by

αt+1
n = ∇ξnLn(ξ∗n), n ∈ Bk (9)

µt+1 = µtBk +
∑
n∈Bk

ΦTnα
t+1
n . (10)

The procedure is summarized in Algorithm 1, which requires a total memory capacity of O(d +
|DBk | + p|Bk|). The factor d comes from the storage of µt, wt, factor |DBk | comes from the
storage of data block, and the factor p|Bk| comes from the storage of αBk . Note this requires the
same space complexity as that required in the original algorithm proposed for linear SVM [26],
where p = 1 for the binary classification setting.

4 Dual-Augmented Block Minimization

The Block Minimization Algorithm 1, though can be applied to the general regularized ERM prob-
lem (1), it is not guaranteed that the sequence {αt}∞t=0 produced by Algorithm 1 converges to global
optimum of (1). In fact, the global convergence of Algorithm 1 only happens for some special cases.
One sufficient condition for the global convergence of a Block-Coordinate Descent algorithm is that
the terms in objective function that are not separable w.r.t. blocks must be smooth (Definition 2).

The dual objective function (4) (expressed using only α) comprises two terms
R∗(−

∑N
n=1 ΦTnαn) +

∑N
n=1 L

∗
n(αn), where second term is separable w.r.t. to {αn}Nn=1,

and thus is also separable w.r.t. {αBk}Kk=1, while the first term couples variables αB1
, ...,αBK

involving all the blocks. As a result, if R∗(−µ) is a smooth function according to Definition 2, then
Algorithm 1 has global convergence to the optimum. However, the following theorem states this is
true only when R(w) is strongly convex.

Theorem 1 (Strong/Smooth Duality). Assume f(.) is closed and convex. Then f(.) is smooth with
parameter M if and only if its convex conjugate f∗(.) is strongly convex with parameter m = 1

M .

A proof of above theorem can be found in [9]. According to Theorem 1, the Block Minimization
Algorithm 1 is not globally convergent if R(w) is not strongly convex, which however, is the case
for most of regularizers other than the L2-norm R(w) = 1

2‖w‖
2, as discussed in Section 2.

In this section, we propose a remedy to this problem, which by a Dual-Augmented Lagrangian
method (or equivalently, Primal Proximal Point method), creates a dual objective function of desired
property that iteratively approaches the original objective (1), and results in fast global convergence
of the dual-BCD approach.
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Algorithm 1 Dual Block Minimization
1. Split data D into blocks B1, B2, ..., BK .
2. Initialize µ0 = 0.
for t = 0, 1, ... do

3.1. Draw k uniformly from [K].
3.2. Load DBk and αtBk into memory.
3.3. Compute µtBk from (8).
3.4. Solve (7) to obtain (w∗, ξ∗Bk).
3.5. Compute αt+1

Bk
by (9).

3.6. Maintain µt+1 through (10).
3.7. Save αt+1

Bk
out of memory.

end for

Algorithm 2 Dual-Aug. Block Minimization
1. Split data D into blocks B1, B2, ..., BK .
2. Initialize w0 = 0, µ0 = 0.
for t = 0, 1, ... (outer iteration) do

for s = 0, 1, ..., S do
3.1.1. Draw k uniformly from [K].
3.1.2. Load DBk , αsBk into memory.
3.1.3. Compute µsBk from (15).
3.1.4. Solve (14) to obtain (w∗, ξ∗Bk).
3.1.5. Compute αs+1

Bk
by (16).

3.1.6. Maintain µs+1 through (17).
3.1.7. Save αs+1

Bk
out of memory.

end for
3.2. wt+1 = w∗(αS).

end for
4.1 Algorithm

The Dual Augmented Lagrangian (DAL) method (or equivalently, Proximal Point Method) modifies
the original problem by introducing a sequence of Proximal Maps

wt+1 = argmin
w

F (w) +
1

2ηt
‖w −wt‖2, (11)

where F (w) denotes the ERM problem (1) Under this simple modification, instead of doing Block-
Coordinate Descent in the dual of original problem (1), we perform Dual-BCD on the proximal sub-
problem (11). As we show in next section, the dual formulation of (11) has the required property
for global convergence of the Dual BCD algorithm — all terms involving more than one block of
variables αBk are smooth. Given the current iterate wt, the Dual-Augmented Block Minimization
algorithm optimizes the dual of proximal-point problem (11) w.r.t. one block of variables αBk at a
time, keeping others fixed {αBj = α

(t,s)
Bj
}j 6=k:

max
αBk

min
w,ξ
L(w, ξ,α) = min

w,ξ
max
αBk

L(w, ξ,α) (12)

where L(.) is the Lagrangian of (11)

L(w, ξ,α) = F (w, ξ) +

N∑
n=1

αTn (Φnw − ξn) +
1

2ηt
‖w −wt‖2. (13)

Once again, the maximization w.r.t. αBk in (12) enforces the equalities Φnw = ξn, n ∈ Bk and
thus leads to a primal sub-problem involving only data in block Bk:

min
w∈Rd,ξn∈Rp

R(w) +
∑
n∈Bk

Ln(ξn) + µ
(t,s)T
Bk

w +
1

2ηt
‖w −wt‖2

s.t. Φnw = ξn, n ∈ Bk,
(14)

where µ(t,s)
Bk

=
∑
n/∈Bk ΦTnα

(t,s)
n . Note that (14) is almost the same as (7) except that it has a

proximal-point augmented term. Therefore, one can follow the same procedure as in Algorithm 1 to
maintain the vector µ(t,s) =

∑N
n=1 ΦTnα

(t,s)
n and computes

µ
(t,s)
Bk

= µ(t,s) −
∑
n∈Bk

ΦTnα
(t,s)
n (15)

before solving each block subproblem (14). After obtaining solution (w∗, ξ∗Bk) from (14), we update
dual variables αBk as

α(t,s+1)
n = ∇ξnLn(ξ∗n), n ∈ Bk. (16)

and maintain µ subsequently as

µ(t,s+1) = µ
(t,s)
Bk

+
∑
n∈Bk

ΦTnα
(t,s+1)
n . (17)
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The sub-problem (14) is of similar form to the original ERM problem (1). Since the augmented
term is a simple quadratic function separable w.r.t. each coordinate, given a solver for (1) working
in sufficient-memory condition, one can easily adapt it by modifying

∇wF̄ (w, ξ) = ∇wF (w, ξ) + µtBk + (w −wt)/ηt

∇2
wF̄ (w, ξ) = ∇2

wF (w, ξ) + I/ηt,

where F̄ (.) denotes the function with augmented terms and F (.) denotes the function without aug-
mented terms. The Block Minimization procedure is repeated until every sub-problem (14) reaches
a tolerance εin. Then the proximal point method update wt+1 = w∗(α(t,s)) is performed, where
w∗(α(t,s)) is the solution of (14) for the latest dual iterate α(t,s). The resulting algorithm is sum-
marized in Algorithm 2.

4.2 Analysis

In this section, we analyze the convergence rate of Algorithm 2 to the optimum of (1). First, we
show that the proximal-point formulation (11) has a dual problem with desired property for the
global convergence of Block-Coordinate Descent. In particular, since the dual of (11) takes the form

min
αn∈Rp

R̃∗(−
N∑
n=1

ΦTnαn) +

N∑
n=1

L∗n(αn) (18)

where R̃∗(.) is the convex conjugate of R̃(w) = R(w)+ 1
2ηt
‖w−wt‖2, and since R̃(w) is strongly

convex with parameter m = 1/ηt, the convex conjugate R̃∗(.) is smooth with parameter M = ηt
according to Theorem 1. Therefore, (18) is in the composite form of a convex, smooth function plus
a convex, block-separable function. This type of function has been widely studied in the literature
of Block-Coordinate Descent [13]. In particular, one can show that a Block-Coordinate Descent
applied on (18) has global convergence to optimum with a fast rate by the following theorem.

Theorem 2 (BCD Convergence). Let the sequence {αs}∞s=1 be the iterates produced by Block
Coordinate Descent in the inner loop of Algorithm 2, andK be the number of blocks. Denote F̃ ∗(α)

as the dual objective function of (18) and F̃ ∗opt the optimal value of (18). Then with probability 1−ρ,

F̃ ∗(αs)− F̃ ∗opt ≤ ε, for s ≥ βK log(
F̃ ∗(α0)− F̃ ∗opt

ρε
) (19)

for some constant β > 0 if (i) Ln(.) is smooth, or (ii) Ln(.) is polyhedral function and R(.) is also
polyhedral or smooth. Otherwise, for any convex Ln(.), R(.) we have

F̃ ∗(αs)− F̃ ∗opt ≤ ε, for s ≥ cK

ε
log(

F̃ ∗(α0)− F̃ ∗opt
ρε

) (20)

for some constant c > 0.

Note the above analysis (in appendix) does not assume exact solution of each block subproblem.
Instead, it only assumes each block minimization step leads to a dual ascent amount proportional to
that produced by a single (dual) proximal gradient ascent step on the block of dual variables. For
the outer loop of Primal Proximal-Point (or Dual Augmented Lagrangian) iterates (11), we show the
following convergence theorem.

Theorem 3 (Proximal Point Convergence). Let F (w) be objective of the regularized ERM problem
(1), and R = maxv maxw{‖v − w‖ : F (w) ≤ F (w0), F (v) ≤ F (w0)} be the radius of initial
level set. The sequence {wt}∞t=1 produced by the Proximal-Point update (11) with ηt = η has

F (wt+1)− Fopt ≤ ε, for t ≥ τ log(
ω

ε
). (21)

for some constant τ, ω > 0 if both Ln(.) and R(.) are (i) strictly convex and smooth or (ii) polyhe-
dral. Otherwise, for any convex F (w) we have

F (wt+1)− Fopt ≤ R2/(2ηt).
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The following theorem further shows that solving sub-problem (11) inexactly with tolerance ε/t
suffices for convergence to ε overall precision, where t is the number of outer iterations required.
Theorem 4 (Inexact Proximal Map). Suppose, for a given dual iterate wt, each sub-problem (11)
is solved inexactly s.t. the solution ŵt+1 has

‖ŵt+1 − proxηtF (wt)‖ ≤ ε0. (22)

Then let {ŵt}∞t=1 be the sequence of iterates produced by inexact proximal updates and {wt}∞t=1
as that generated by exact updates. After t iterations, we have

‖ŵt −wt‖ ≤ tε0. (23)

Note for Ln(.), R(.) being strictly convex and smooth, or polyhedral, t is of order O(log(1/ε)),
and thus it only requires O(K log(1/ε) log(t/ε)) = O(K log2(1/ε)) overall number of block min-
imization steps to achieve ε suboptimality. Otherwise, as long as Ln(.) is smooth, for any convex
regularizer R(.), t is of order O(1/ε), so it requires O(K(1/ε) log(t/ε)) = O(K log(1/ε)

ε ) total
number of block minimization steps.

4.3 Practical Issues

4.3.1 Solving Sub-Problem Inexactly
While the analysis in Section 4.2 assumes exact solution of subproblems, in practice, the Block
Minimization framework does not require solving subproblem (11), (14) exactly. In our experiments,
it suffices for the fast convergence of proximal-point update (11) to solve subproblem (14) for only a
single pass of all blocks of variables αB1 ,..., αBK , and limit the number of iterations the designated
solver spends on each subproblem (7), (14) to be no more than some parameter Tmax.

4.3.2 Random Selection w/o Replacement
In Algorithm 1 and 2, the block to be optimized is chosen uniformly at random from k ∈ {1, ...,K},
which eases the analysis for proving a better convergence rate [13]. However, in practice, to avoid
unbalanced update frequency among blocks, we do random sampling without replacement for both
Algorithm 1 and 2, that is, for every K iterations, we generate a random permutation π1, ..., πK of
block index 1, ..,K and optimize block subproblems (7), (14) according to the order π1, .., πK . This
also eases the checking of inner-loop stopping condition.

4.3.3 Storage of Dual Variables
Both the algorithms 1 and 2 need to store the dual variables αBk into memory and load/save them
from/to some secondary storage units, which requires a time linear to p|Bk|. For some problems,
such as multi-label classification with large number of labels or structured prediction with large
number of factors, this can be very expensive. In this situation, one can instead maintain µB̄k =∑
n∈Bk ΦTnαn = µ − µBk directly. Note µB̄k has I/O and storage cost linear to d, which can be

much smaller than p|Bk| in a low-dimensional problem.

5 Experiment
In this section, we compare the proposed Dual Augmented Block Minimization framework (Algo-
rithm 2) to the vanilla Dual Block Coordinate Descent algorithm [26] and methods adopted from
Online and Distributed Learning. The experiments are conducted on the problem of L1-regularized
L2-loss SVM [27] and the (Lasso) (L1-regularized Regression) problem [17] in the limited-memory
setting with data size 10 times larger than the available memory. For both problems, we use state-
of-the-art randomized coordinate descent method [13, 27] as the solver for solving sub-problems
(7), (14), (59), (63), and we set parameter ηt = 1, λ = 1 (of L1-regularizer) for all experiments.
Four public benchmark data sets are used— webspam, rcv1-binary for classification and year-pred,
E2006 for regression, which can be obtained from the LIBSVM data set collections. For year-pred
and E2006, the features are generated from Random Fourier Features [12, 23] that approximate the
effect of Gaussian RBF kernel. Table 1 summarizes the data statistics. The algorithms in compar-
ison and their shorthands are listed below, where all solvers are implemented in C/C++ and run on
64-bit machine with 2.83GHz Intel(R) Xeon(R) CPU. We constrained the process to use no more
than 1/10 of memory required to store the whole data.

• OnlineMD: Stochastic Mirror Descent method specially designed for L1-regularized prob-
lem proposed in [15] with step size chosen from 10−2-102 for best performance.
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Table 1: Data Statistics: Summary of data statistics when stored using sparse format. The last two
columns specify memory consumption in (MB) of the whole data and that of a block when data is
split into K = 10 partitions.

Data #train #test dimension #non-zeros Memory Block
webspam 315,000 31,500 680,714 1,174,704,031 20,679 2,068

rcv1 202,420 20,242 7,951,176 656,977,694 12,009 1,201
year-pred 463,715 51,630 2,000 927,893,715 13,702 1,370

E2006 16,087 3,308 30,000 8,088,636 8,088 809

Figure 1: Relative function value difference to the optimum and Testing RMSE (Accuracy) on
LASSO (top) and L1-regularized L2-SVM (bottom). (RMSE best for year-pred: 9.1320; for E2006:
0.4430), (Accuracy best for for webspam: 0.4761%; best for rcv1: 2.213%).
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• D-BCD2: Dual Block-Coordinate Descent method (Algorithm 1).
• DA-BCD: Dual-Augmented Block Minimization (Algorithm 2).
• ADMM: ADMM for limited-memory learning (Algorithm 3 in appendix-B).
• BC-ADMM: Block-Coordinate ADMM that updates a randomly chosen block of dual vari-

ables at a time for limited-memory learning (Algorithm 4 in appendix-B) .

We use wall clock time that includes both I/O and computation as measure for training time in all
experiments. In Figure 5, three measures are plotted versus the training time: Relative objective
function difference to the optimum, Testing RMSE and Accuracy. Figure 5 shows the results, where
as expected, the dual Block Coordinate Descent (D-BCD) method without augmentation cannot im-
prove the objective after certain number of iterations. However, with extremely simple modification,
the Dual-Augmented Block Minimization (DA-BCD) algorithm becomes not only globally conver-
gent but with a rate several times faster than other approaches. Among all methods, the convergence
of Online Mirror Descent (SMIDAS) is significantly slower, which is expected since (i) the online
Mirror Descent on a non-smooth, non-strongly convex function converges at a rate qualitatively
slower than the linear convergence rate of DA-BCD and ADMM [15, 16], and (ii) Online method
does not utilize the available memory capacity and thus spends unbalanced time on I/O and com-
putation. For methods adopted from distributed optimization, the experiment shows BC-ADMM
consistently, but only slightly, improves ADMM, and both of them converge much slower than the
DA-BCD approach, presumably due to the conservative updates on the dual variables.
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2The objective value obtained from D-BCD fluctuates a lot, in figures we plot the lowest values achieved by
D-BCD from the beginning to time t.
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[13] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming, 2014.

[14] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-gradient solver for
svm. Mathematical programming, 2011.

[15] S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1-regularized loss minimization. JMLR, 2011.

[16] N. Srebro, K. Sridharan, and A. Tewari. On the universality of online mirror descent. In NIPS, 2011.

[17] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
1996.

[18] R. Tomioka, T. Suzuki, and M. Sugiyama. Super-linear convergence of dual augmented lagrangian algo-
rithm for sparsity regularized estimation. JMLR, 2011.

[19] I. Trofimov and A. Genkin. Distributed coordinate descent for l1-regularized logistic regression. arXiv
preprint, 2014.

[20] P. Wang and C. Lin. Iteration complexity of feasible descent methods for convex optimization. JMLR,
2014.

[21] I. Yen, C. Chang, T. Lin, S., and S. Lin. Indexed block coordinate descent for large-scale linear classifi-
cation with limited memory. In SIGKDD. ACM, 2013.

[22] I. Yen, C. Hsieh, P. Ravikumar, and I. Dhillon. Constant nullspace strong convexity and fast convergence
of proximal methods under high-dimensional settings. In NIPS, 2014.

[23] I. Yen, T. Lin, S. Lin, P. Ravikumar, and I. Dhillon. Sparse random feature algorithm as coordinate descent
in hilbert space. In NIPS, 2014.

[24] I. Yen, X. Lin, K. Zhong, P. Ravikumar, and I. Dhillon. A convex exemplar-based approach to MAD-
Bayes dirichlet process mixture models. In ICML, 2015.

[25] I. Yen, K. Zhong, C. Hsieh, P. Ravikumar, and I. Dhillon. Sparse linear programming via primal and dual
augmented coordinate descent. In NIPS, 2015.

[26] H. Yu, C. Hsieh, . Chang, and C. Lin. Large linear classification when data cannot fit in memory. SIGKDD,
2010.

[27] G. Yuan, K. Chang, C. Hsieh, and C. Lin. A comparison of optimization methods and software for
large-scale L1-regularized linear classification. JMLR, 2010.

[28] K. Zhong, I. Yen, I. Dhillon, and P. Ravikumar. Proximal quasi-Newton for computationally intensive
l1-regularized m-estimators. In NIPS, 2014.

9


