Preconditioned Spectral Descent for Deep Learning:
Supplemental Material

David E. Carlson,! Edo Collins,? Ya-Ping Hsieh,?> Lawrence Carin,? Volkan Cevher?
! Department of Statistics, Columbia University
2 Laboratory for Information and Inference Systems (LIONS), EPFL
3 Department of Electrical and Computer Engineering, Duke University

Parameter | SGD | ADAgrad | RMSprop SSD SSD-F | ADAspec | RMSspec

W Stepsize | 1071 | 107! 1073 | 1/VMJ | 1/¥yMJ | $x1073 | 1 x1073
A — 1077 103 — — 1077 1073
o - - .95 - - - .95

Projections - - - - 30 30 30

Table 1: Parameter Settings for Learning RBMs. RMSprop parameters chosen to match [5]. SGD
parameters chosen to match [26]. SSD and A-SSD stepsizes and geometries chosen to match [1]].
The stepsize on W is given for the RBM. X corresponds to the damping factor in the history terms
in the ADA and RMS methods. Projections refers to the numbers of projections used in the Random
SVD algorithm [9] in the approximate #-operator (Section [2.4).

Parameter SGD ADAgrad | RMSprop SSD ADAspec | RMSspec

Batch size 100 100 100 500/1500 500/1500 | 500/1500

W Stepsize | 5-10 2 | 3-102 | 2-10°2 | 2-10 25-10 % | 102 | 10 3/10 2

A 1071 1071 51072 5-10~2
&) - - 9 - - 9
Projections — - - 30 30 30

Table 2: Parameter Settings for Learning NNs/CNNs. See caption of Table [I] for a description of
parameters.

Algorithm 3 Sharp Operator
Inputs: X
[U,s,V]=svD(X)
Return X# = ||s||;UVT

Algorithm 4 Flat Operator
Inputs: =
Return 2° = ||z||; x SIGN(x)

Algorithm 5 Approximate Sharp Operator

Inputs: X € RM*J approximation level R, stabilizing value ¢

[U, s, V] = RANDOMSVD(X, R) (Rank R approximation from [9]])
Y = X — UpiaG(s)V?

1 =1Y||se (power method)

Return X# = ||s|[;UVT + (||s||1/(I + €))Y

A Additional Method Details

A.1 Non-Euclidean Gradient Descent for Deep Learning Models

The purpose of this subsection is to show that || - || and || - ||s.. are much better choices than || - ||2
and || - || p for analyzing deep learning models. Our insight builds on a novel lemma regarding the
properties of the log-sum-exp function. In Section 3 we show that, for many deep learning models,
training is equivalent to the optimization problem

ming g(6) + Ise(a()), ©)

where ¢(-) and «(-) are functions depending on the input data and the chosen model, and Ise(-)
denotes the log-sum-exp function: Ise(a) = log S~ | exp(a’). The analysis for g(-) and a(-)
must be done on a case-by-case basis. This is discussed for feed-forward neural networks in Section
[3.2] and implicitly treated this way for RBMs in [1]]. Our aim here is to give a general treatise for
Ise(-). The following simple theorem sheds some light on the behavior of Ise(-), whose proof can
be found in the Supplemental Section

Theorem A.1 Ler F(-) = lse(-). Suppose that the entries of o are (possibly dependent) N zero-
mean sub-Gaussian random variables. Then it holds that

LoEllall = 0ogN), LoEllall} = Q). ®)

We remark that Theorem can be easily strengthened to hold with overwhelming probability; for
illustration purposes we will only work with expectation results. As well, the constants L., and
Lo are similar, with Ly, < % and Q(log N) and Lo, < 1 [I]l. This emphasizes that ¢, is dra-
matically better for Ise(-) optimization. In [}, it was demonstrated that the ¢, bound combined
with the properites of a(-) propagates to a S, bound on matrix parameters in an RBM. This sim-
ilarly happens in the feed-forward neural nets. We give this result in Section [3.2]and give specific

mathematical details in Supplemental Section D]

A.2 Tighter Majorization Bounds in Deep Learning

It is well-known that most deep learning models result in a non-convex g(-) and «(-), and one can
not reach a global optimum through a convex optimization method. Moreover, obtaining the exact
gradient for either g(-) or Ise(a(+)) is a computationally prohibitive task. Therefore, the goal here
is to quickly search for a local minimum of (7)) with the help of noisy gradient estimates. Such a
procedure is empirically justified, and is what we adopt in this paper.

Our strategy runs as follows. First, we derive a global majorization bound for g(0), say g(0') <
g(0) + U(0,6’). In view of (I), we have arrived at a global majorization bound on the objective
function:

9(6) +lse(c(6')) < g(0) + U(8,6') + Ise(x(8))
L
+ (Vise(a(9)), (0") — (0)) + 7 [x(8) — a(B)[[; (9)
2£7(0,0).
Setting 01 = argming r(0y, 0’) gives our algorithm.

It is evident that our algorithm works well only if the majorization bound (9) is tight. Now,
Theorem implies that using p = oo improves this majorization bound over p = 2 by a factor

2
of at least IO%VN , provided that a(0%) — a(0y1) has zero-mean sub-Gaussian entries. (Here, the

randomness of a(6y) or a(61) arises from the noise of gradient estimates.) Because we are
changing the parameters we do not necessary expect zero-mean entries, but the scaling result is
bound by || - || rather than || - ||2.

So far, we have shown that || - ||, instead of the commonly adopted || - ||2, is a natural choice for
analyzing deep learning models. When these bounds are applied and propagated to the parameters
by analyzing the max change in «(-), they naturally form a bound on the maximum singular value
on the perturbation about matrix parameter, or the Schatten-oo norm.

B Proof of Theorem[A.]]

We will use the following elementary facts: If oy, aa, ..., oy are (possibly dependent) zero-mean
sub-Gaussian random variables, then

N
(Emaxai)Z = O(log N), (Ezo@) = O(N). (10)
i=1

In [T]}, it is derived that Lo < 1 for Ise(-). Hence it remains to show Ly = Q(152)-

Consider the bound
L
lse(y) <lse(x)+ (Vise(x),y — x) + %Hy - a:||§, (11)

which must hold for all &, y. Let y be the all 0 vector, and let & have ¢ in its first entry, and 0
otherwise. Substituting these into (TT), we get

566 52L2
+
eS+N -1 2

log N <log(e® + N — 1) — (12)

where we have used the formula Vise(x) = 5’;}’%

i=1"

Setting § = log IV and rearranging, we get

1 N 1 N 1
Ly>2 1 : —a(——). 13
2= <1og2N %558 1 logN 2N—1) (1ogN) (13)

which is the desired result.

C Preconditioned #-Operator Updates

We give the proof of a general form of the iteration @), which also applies to our b-operator in
the vector case. Let || - || be an arbitrary norm and let its corresponding #-operator be s7# =
arg ming {(s, @) — 3||||*}. It is shown in [I] that the minimizer of

1
min F(z) + (VF(x),y — x) + 2*6||’y—€l»'|\2

is given by
y=x — e[VF(x)]*. (14)
Now, our objective function is given by
. 1
min F(z) + (VF(z),y — @) + o|[D(y —)| (15)

for some positive definite and diagonal D. Notice that (VF(z),y — z) = (D"'VF(z),D(y —
x)). Applying to y’ = Dy and &’ = Dz, we see that the minimizer of isy =x —
¢[D~'V F(z)]#. Multiplying both sides by D~ proves (6).

D Feedforward Neural Net Schatten-co Bound Result

Since the softmax classifier log-likelihood objective function has the bound

f(@) < [f(0)+(Vef(6),¢—-0) +*Z(max((hn.g.j = hn.6.5)°

+2 mjax|hn,¢,j - hn,@,j - <v9hn,0,j7 ¢ — 0>‘>3

this requires that we analyze (hp, ¢,; — hn,g,;)? and |hn ¢ ; — hne; — (Vehne.j. @ — 0)]. Note
that the following relationships hold and are standard

Xyl < [IX][s= [[yll2,
12" Xyl < [1Xllse |lyll2 []2]l2,
leoyll: < [lzll [yl

Besides, the following elementary formulae hold:

szh‘j = ((Ote+1h)® n (Wéaf)) aeT7

vaehj = W?((vaeﬂ hj) © Tl'(WeOée)).

Considering a single data point, for (ke ; — he j)?, we can get the bound for block-coordinate-wise
updates for W, to W, + U by noting

(hw,ru; — hw, ;)

= (/0 tr (((Vaz+1hwz+tU7j) © n/((Wg + tU)Otg)) a?UT) dt)Z

(/0 (Var hwirtv) @1 (We +1U)ay)) " Uodt)?

IA

1
(/ 1(Varhwireug) ©0' (We + tU)ay) |2 ||U]]s [Jovel|2dt)?

< 0l[Z llelf3 Jnax [[(V arpi hweteu) © 1/ (We + tU)ay)|[3.

The important term here is

(Veag bw,+10.5) © 7' (W + tU)) |]3.

If we approximate this term locally at ¢ = 0, then this term can be bound

d
(Ve hworeo,3) © 1 (We +10))5,y < 11(Vear hw, I3 max —=n()]a=ar-

Union bound can be applied to make this apply to all data points. This recovers the form in Section
The second term,|hy, ¢, j — hin.0,; — (Vohn,e,;, ® — 0)|, can be bound for W, to W, + U with

IA

max lhw,+u,; — hw,; — (Vw,hw,,;, U)|
1
| / ((VathWﬁ-tU,j) O) T]/((Wg + tU)Otg) — (VathWg,j) ® ’I]l((Wg)a())T Uagdt‘
0
1
/0 (Vo hw+1u,) © 10 (We +tU)aw) = (Vay, hw,,j) © 1/ (We)ew)ll2 [[U][se [|ewl]2dt

1
U] 5> IIOéeIIz/O (Ve hw, o) ©1' (We + tU0)ar) = (Ve hw,) © 0" (We)ow)||2dt.

The important term here is

1
/0 (Ve hworiog) © ' (W4 tU)ar) = (Vag,, hw,.) © 1 (We)ay)|[2dt
1 d

< el
< gmaxlly

It is possible to bounded this term, but it is highly pessimistic. Instead, approximating this by the
quantity around ¢ = 0 gives

(Vap hw,41u3) ©1'(We + tU)a)) -

d
<5 U(Vaghw,) O (Weaw)) © Ueulls +[I(2 Var hw+u g)li=o © 0 (We)ew))|l2)-
For deep networks, the second term will vanish faster then the first. It is ignored heuristically. We
separate this into
-1 -1
<5 IIVaee hwejllool 1 (Wea)lloo U o< 5V hw, oo 10 (W ecte) oo Ul 5= [lexe]|2-

Combining with (T6)) recovers the term in the text,

1
< SIOls= Pl Vass hw, lloo I (Weewe)) oo el 5.

	Additional Method Details
	Non-Euclidean Gradient Descent for Deep Learning Models
	Tighter Majorization Bounds in Deep Learning

	Proof of Theorem A.1
	Preconditioned #-Operator Updates
	Feedforward Neural Net Schatten- Bound Result

