
Preconditioned Spectral Descent for Deep Learning:
Supplemental Material

David E. Carlson,1 Edo Collins,2 Ya-Ping Hsieh,2 Lawrence Carin,3 Volkan Cevher2
1 Department of Statistics, Columbia University

2 Laboratory for Information and Inference Systems (LIONS), EPFL
3 Department of Electrical and Computer Engineering, Duke University

Parameter SGD ADAgrad RMSprop SSD SSD-F ADAspec RMSspec
W Step size 10−1 10−1 10−3 1/

√
MJ 1/

√
MJ 1

2 × 10−3 1
2 × 10−3

λ – 10−3 10−3 – – 10−3 10−3

α – – .95 – – – .95
Projections – – – – 30 30 30

Table 1: Parameter Settings for Learning RBMs. RMSprop parameters chosen to match [5]. SGD
parameters chosen to match [26]. SSD and A-SSD stepsizes and geometries chosen to match [1].
The stepsize on W is given for the RBM. λ corresponds to the damping factor in the history terms
in the ADA and RMS methods. Projections refers to the numbers of projections used in the Random
SVD algorithm [9] in the approximate #-operator (Section 2.4).

Parameter SGD ADAgrad RMSprop SSD ADAspec RMSspec
Batch size 100 100 100 500/1500 500/1500 500/1500
W Step size 5 · 10−2 3 · 10−2 2 · 10−2 2 · 10−2/5 · 10−3 10−2 10−3/10−2

λ – 10−1 10−1 – 5 · 10−2 5 · 10−2

α – – .9 – – .9
Projections – – – 30 30 30

Table 2: Parameter Settings for Learning NNs/CNNs. See caption of Table 1 for a description of
parameters.

Algorithm 3 Sharp Operator
Inputs: X
[U,s,V]=SVD(X)
Return X# = ||s||1UVT

Algorithm 4 Flat Operator
Inputs: x
Return x[= ||x||1 × SIGN(x)

1

Algorithm 5 Approximate Sharp Operator
Inputs: X ∈ RM×J , approximation level R, stabilizing value ε
[U, s,V] = RANDOMSVD(X, R) (Rank R approximation from [9])
Y = X−UDIAG(s)VT

l = ||Y||S∞ (power method)
Return X# = ||s||1UVT + (||s||1/(l + ε))Y

A Additional Method Details

A.1 Non-Euclidean Gradient Descent for Deep Learning Models

The purpose of this subsection is to show that || · ||∞ and || · ||S∞ are much better choices than || · ||2
and || · ||F for analyzing deep learning models. Our insight builds on a novel lemma regarding the
properties of the log-sum-exp function. In Section 3 we show that, for many deep learning models,
training is equivalent to the optimization problem

minθ g(θ) + lse(α(θ)), (7)

where g(·) and α(·) are functions depending on the input data and the chosen model, and lse(·)
denotes the log-sum-exp function: lse(α) = log

∑N
i=1 exp(αi). The analysis for g(·) and α(·)

must be done on a case-by-case basis. This is discussed for feed-forward neural networks in Section
3.2, and implicitly treated this way for RBMs in [1]. Our aim here is to give a general treatise for
lse(·). The following simple theorem sheds some light on the behavior of lse(·), whose proof can
be found in the Supplemental Section B.

Theorem A.1 Let F (·) = lse(·). Suppose that the entries of α are (possibly dependent) N zero-
mean sub-Gaussian random variables. Then it holds that

L∞E||α||2∞ = O(logN), L2E||α||22 = Ω(N
logN). (8)

We remark that Theorem A.1 can be easily strengthened to hold with overwhelming probability; for
illustration purposes we will only work with expectation results. As well, the constants L∞ and
L2 are similar, with L2 ≤ 1

2 and Ω(logN) and L∞ ≤ 1 [1]. This emphasizes that `∞ is dra-
matically better for lse(·) optimization. In [1], it was demonstrated that the `∞ bound combined
with the properites of α(·) propagates to a S∞ bound on matrix parameters in an RBM. This sim-
ilarly happens in the feed-forward neural nets. We give this result in Section 3.2 and give specific
mathematical details in Supplemental Section D.

A.2 Tighter Majorization Bounds in Deep Learning

It is well-known that most deep learning models result in a non-convex g(·) and α(·), and one can
not reach a global optimum through a convex optimization method. Moreover, obtaining the exact
gradient for either g(·) or lse(α(·)) is a computationally prohibitive task. Therefore, the goal here
is to quickly search for a local minimum of (7) with the help of noisy gradient estimates. Such a
procedure is empirically justified, and is what we adopt in this paper.

Our strategy runs as follows. First, we derive a global majorization bound for g(θ), say g(θ′) ≤
g(θ) + U(θ,θ′). In view of (1), we have arrived at a global majorization bound on the objective
function:

g(θ′) + lse(α(θ′)) ≤ g(θ) + U(θ,θ′) + lse(α(θ))

+ 〈∇lse(α(θ)),α(θ′)−α(θ)〉+
Lp
2
||α(θ′)−α(θ)||2p (9)

, r(θ,θ′).

Setting θk+1 = arg minθ′ r(θk,θ
′) gives our algorithm.

It is evident that our algorithm works well only if the majorization bound (9) is tight. Now,
Theorem A.1 implies that using p = ∞ improves this majorization bound over p = 2 by a factor

2

of at least log2N
N , provided that α(θk) − α(θk+1) has zero-mean sub-Gaussian entries. (Here, the

randomness of α(θk) or α(θk+1) arises from the noise of gradient estimates.) Because we are
changing the parameters we do not necessary expect zero-mean entries, but the scaling result is
bound by || · ||∞ rather than || · ||2.

So far, we have shown that || · ||∞, instead of the commonly adopted || · ||2, is a natural choice for
analyzing deep learning models. When these bounds are applied and propagated to the parameters
by analyzing the max change in α(·), they naturally form a bound on the maximum singular value
on the perturbation about matrix parameter, or the Schatten-∞ norm.

B Proof of Theorem A.1

We will use the following elementary facts: If α1, α2, ..., αN are (possibly dependent) zero-mean
sub-Gaussian random variables, then(

Emax
i
αi

)2
= O(logN),

(
E

N∑
i=1

α2
i

)
= Θ(N). (10)

In [1], it is derived that L∞ ≤ 1 for lse(·). Hence it remains to show L2 = Ω(1
logN).

Consider the bound

lse(y) ≤ lse(x) + 〈∇lse(x),y − x〉+
L2

2
||y − x||22, (11)

which must hold for all x,y. Let y be the all 0 vector, and let x have δ in its first entry, and 0
otherwise. Substituting these into (11), we get

logN ≤ log(eδ +N − 1)− δeδ

eδ +N − 1
+
δ2L2

2
(12)

where we have used the formula ∇lse(x) = exp(x)∑N
i=1 e

xi . Setting δ = logN and rearranging, we get

L2 ≥ 2

(
1

log2N
log

N

2N − 1
+

1

logN
· N

2N − 1

)
= Ω

(
1

logN

)
. (13)

which is the desired result.

C Preconditioned #-Operator Updates

We give the proof of a general form of the iteration (6), which also applies to our [-operator in
the vector case. Let || · || be an arbitrary norm and let its corresponding #-operator be s# =
arg minx

{
〈s,x〉 − 1

2 ||x||
2
}

. It is shown in [1] that the minimizer of

min
y
F (x) + 〈∇F (x),y − x〉+

1

2ε
||y − x||2

is given by
y = x− ε[∇F (x)]#. (14)

Now, our objective function is given by

min
y
F (x) + 〈∇F (x),y − x〉+

1

2ε
||D(y − x)||2 (15)

for some positive definite and diagonal D. Notice that 〈∇F (x),y − x〉 = 〈D−1∇F (x),D(y −
x)〉. Applying (14) to y′ = Dy and x′ = Dx, we see that the minimizer of (15) is y′ = x′ −
ε[D−1∇F (x)]#. Multiplying both sides by D−1 proves (6).

3

D Feedforward Neural Net Schatten-∞ Bound Result

Since the softmax classifier log-likelihood objective function has the bound

f(φ) ≤ f(θ) + 〈∇θf(θ),φ− θ〉+
1

N

N∑
n=1

(1

2
max
j

(hn,φ,j − hn,θ,j)2

+2 max
j
|hn,φ,j − hn,θ,j − 〈∇θhn,θ,j ,φ− θ〉|),

this requires that we analyze (hn,φ,j − hn,θ,j)2 and |hn,φ,j − hn,θ,j − 〈∇θhn,θ,j ,φ − θ〉|. Note
that the following relationships hold and are standard

||Xy||2 ≤ ||X||S∞ ||y||2,
||zTXy||2 ≤ ||X||S∞ ||y||2 ||z||2,
||x� y||2 ≤ ||x||∞ ||y||2.

Besides, the following elementary formulae hold:

∇W`
hj =

(
(∇α`+1

hj)� η′(W`α`)
)
αT` ,

∇α`
hj = WT

` ((∇α`+1
hj)� η′(W`α`)).

Considering a single data point, for (hφ,j − hθ,j)2, we can get the bound for block-coordinate-wise
updates for W` to W` + U by noting

(hW`+U,j − hW`,j)
2

= (

∫ 1

0

tr
((

(∇α`+1
hW`+tU,j)� η′((W` + tU)α`)

)
αT` U

T
)
dt)2

= (

∫ 1

0

(
(∇α`+1

hW`+tU,j)� η′((W` + tU)α`)
)T

Uα`dt)
2

≤ (

∫ 1

0

||(∇α`+1
hW`+tU,j)� η′((W` + tU)α`)||2 ||U||S∞ ||α`||2dt)2

≤ ||U||2S∞ ||α`||22 max
t∈[0,1]

||(∇α`+1
hW`+tU,j)� η′((W` + tU)α`)||22.

The important term here is

||(∇α`+1
hW`+tU,j)� η′((W` + tU)α`)||22.

If we approximate this term locally at t = 0, then this term can be bound

||(∇α`+1
hW`+tU,j)� η′((W` + tU)α`)||22

∣∣
t=0
≤ ||(∇α`+1

hW`,j)||22 max
x′

d

dx
η(x)|x=x′ .

Union bound can be applied to make this apply to all data points. This recovers the form in Section
3.2. The second term,|hn,φ,j − hn,θ,j −〈∇θhn,θ,j ,φ− θ〉|, can be bound for W` to W` +U with

max
j
|hW`+U,j − hW`,j − 〈∇W`

hW`,j ,U〉|

= |
∫ 1

0

(
(∇α`+1

hW`+tU,j)� η′((W` + tU)α`)− (∇α`+1
hW`,j)� η′((W`)α`)

)T
Uα`dt|

≤
∫ 1

0

||(∇α`+1
hW`+tU,j)� η′((W` + tU)α`)− (∇α`+1

hW`,j)� η′((W`)α`)||2 ||U||S∞ ||α`||2dt

= ||U||S∞ ||α`||2
∫ 1

0

||(∇α`+1
hW`+tU,j)� η′((W` + tU)α`)− (∇α`+1

hW`,j)� η′((W`)α`)||2dt.

4

The important term here is∫ 1

0

||(∇α`+1
hW`+tU,j)� η′((W` + tU)α`)− (∇α`+1

hW`,j)� η′((W`)α`)||2dt

≤ 1

2
max
t
|| d
dt

((∇α`+1
hW`+tU,j)� η′((W` + tU)α`))||2.

It is possible to bounded this term, but it is highly pessimistic. Instead, approximating this by the
quantity around t = 0 gives

≤̃1

2
(||((∇α`+1

hW`,j)� η′((W`)α`))�Uα`||2 + ||(d
dt
∇α`+1

hW`+tU,j)|t=0� η′((W`)α`))||2).

For deep networks, the second term will vanish faster then the first. It is ignored heuristically. We
separate this into

≤̃1

2
||∇α`+1

hW`,j ||∞||η′(W`α`))||∞||Uα`||2≤̃
1

2
||∇α`+1

hW`,j ||∞||η′(W`α`))||∞||U||S∞ ||α`||2.

Combining with (16) recovers the term in the text,

≤ 1

2
||U||S∞ |2||∇α`+1

hW`,j ||∞||η′(W`α`))||∞|α`||22.

5

	Additional Method Details
	Non-Euclidean Gradient Descent for Deep Learning Models
	Tighter Majorization Bounds in Deep Learning

	Proof of Theorem A.1
	Preconditioned #-Operator Updates
	Feedforward Neural Net Schatten- Bound Result

