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Abstract

Detecting the emergence of an abrupt change-point is a classic problem in statis-
tics and machine learning. Kernel-based nonparametric statistics have been pro-
posed for this task which make fewer assumptions on the distributions than tra-
ditional parametric approach. However, none of the existing kernel statistics has
provided a computationally efficient way to characterize the extremal behavior of
the statistic. Such characterization is crucial for setting the detection threshold, to
control the significance level in the offline case as well as the average run length
in the online case. In this paper we propose two related computationally efficient
M -statistics for kernel-based change-point detection when the amount of back-
ground data is large. A novel theoretical result of the paper is the characterization
of the tail probability of these statistics using a new technique based on change-of-
measure. Such characterization provides us accurate detection thresholds for both
offline and online cases in computationally efficient manner, without the need to
resort to the more expensive simulations such as bootstrapping. We show that our
methods perform well in both synthetic and real world data.

1 Introduction
Detecting the emergence of abrupt change-points is a classic problem in statistics and machine
learning. Given a sequence of samples, x

1

, x
2

, . . . , x
t

, from a domain X , we are interested in
detecting a possible change-point ⌧ , such that before ⌧ , the samples x

i

⇠ P i.i.d. for i  ⌧ , where
P is the so-called background distribution, and after the change-point, the samples x

i

⇠ Q i.i.d. for
i � ⌧+1, where Q is a post-change distribution. Here the time horizon t can be either a fixed number
t = T

0

(called an offline or fixed-sample problem), or t is not fixed and we keep getting new samples
(called a sequential or online problem). Our goal is to detect the existence of the change-point in
the offline setting, or detect the emergence of a change-point as soon as possible after it occurs in
the online setting. We will restrict our attention to detecting one change-point, which arises often in
monitoring problems. One such example is the seismic event detection [9], where we would like to
detect the onset of the event precisely in retrospect to better understand earthquakes or as quickly as
possible from the streaming data. Ideally, the detection algorithm can also be robust to distributional
assumptions as we wish to detect all kinds of seismic events that are different from the background.
Typically we have a large amount of background data (since seismic events are rare), and we want
the algorithm to exploit these data while being computationally efficient.

Classical approaches for change-point detection are usually parametric, meaning that they rely on
strong assumptions on the distribution. Nonparametric and kernel approaches are distribution free
and more robust as they provide consistent results over larger classes of data distributions (they
can possibly be less powerful in settings where a clear distributional assumption can be made).
In particular, many kernel based statistics have been proposed in the machine learning litera-
ture [5, 2, 18, 6, 7, 1] which typically work better in real data with few assumptions. However,
none of these existing kernel statistics has provided a computationally efficient way to characterize
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the tail probability of the extremal value of these statistics. Characterization such tail probability is
crucial for setting the correct detection thresholds for both the offline and online cases. Furthermore,
efficiency is also an important consideration since typically the amount of background data is very
large. In this case, one has the freedom to restructure and sample the background data during the
statistical design to gain computational efficiency. On the other hand, change-point detection prob-
lems are related to the statistical two-sample test problems; however, they are usually more difficult
in that for change-point detection, we need to search for the unknown change-point location ⌧ . For
instance, in the offline case, this corresponds to taking a maximum of a series of statistics each cor-
responding to one putative change-point location (a similar idea was used in [5] for the offline case),
and in the online case, we have to characterize the average run length of the test statistic hitting the
threshold, which necessarily results in taking a maximum of the statistics over time. Moreover, the
statistics being maxed over are usually highly correlated. Hence, analyzing the tail probabilities of
the test statistic for change-point detection typically requires more sophisticated probabilistic tools.

In this paper, we design two related M -statistics for change-point detection based on kernel max-
imum mean discrepancy (MMD) for two-sample test [3, 4]. Although MMD has a nice unbiased
and minimum variance U -statistic estimator (MMD

u

), it can not be directly applied since MMD
u

costs O(n2

) to compute based on a sample of n data points. In the change-point detection case, this
translates to a complexity quadratically grows with the number of background observations and the
detection time horizon t. Therefore, we adopt a strategy inspired by the recently developed B-test
statistic [17] and design a O(n) statistic for change-point detection. At a high level, our methods
sample N blocks of background data of size B, compute quadratic-time MMD

u

of each reference
block with the post-change block, and then average the results. However, different from the simple
two-sample test case, in order to provide an accurate change-point detection threshold, the back-
ground block needs to be designed in a novel structured way in the offline setting and updated
recursively in the online setting.

Besides presenting the new M -statistics, our contributions also include: (1) deriving accurate ap-
proximations to the significance level in the offline case, and average run length in the online case,
for our M -statistics, which enable us to determine thresholds efficiently without recurring to the
onerous simulations (e.g. repeated bootstrapping); (2) obtaining a closed-form variance estimator
which allows us to form the M -statistic easily; (3) developing novel structured ways to design back-
ground blocks in the offline setting and rules for update in the online setting, which also leads to
desired correlation structures of our statistics that enable accurate approximations for tail probability.
To approximate the asymptotic tail probabilities, we adopt a highly sophisticated technique based
on change-of-measure, recently developed in a series of paper by Yakir and Siegmund et al. [16].
The numerical accuracy of our approximations are validated by numerical examples. We demon-
strate the good performance of our method using real speech and human activity data. We also find
that, in the two-sample testing scenario, it is always beneficial to increase the block size B as the
distribution for the statistic under the null and the alternative will be better separated; however, this
is no longer the case in online change-point detection, because a larger block size inevitably causes
a larger detection delay. Finally, we point to future directions to relax our Gaussian approximation
and correct for the skewness of the kernel-based statistics.

2 Background and Related Work

We briefly review kernel-based methods and the maximum mean discrepancy. A reproducing kernel
Hilbert space (RKHS) F on X with a kernel k(x, x0

) is a Hilbert space of functions f(·) : X 7! R
with inner product h·, ·iF . Its element k(x, ·) satisfies the reproducing property: hf(·), k(x, ·)iF =

f(x), and consequently, hk(x, ·), k(x0, ·)iF = k(x, x0
), meaning that we can view the evaluation of

a function f at any point x 2 X as an inner product.

Assume there are two sets with n observations from a domain X , where X = {x
1

, x
2

, . . . , x
n

}
are drawn i.i.d. from distribution P , and Y = {y

1

, y
2

, . . . , y
n

} are drawn i.i.d. from distri-
bution Q. The maximum mean discrepancy (MMD) is defined as [3] MMD

0

[F , P,Q] :=

sup

f2F {E
x

[f(x)]� E
y

[f(y)]} . An unbiased estimate of MMD2

0

can be obtained using U -statistic

MMD2

u

[F , X, Y ] =

1

n(n� 1)

nX

i,j=1,i 6=j

h(x
i

, x
j

, y
i

, y
j

), (1)
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where h(·) is the kernel of the U -statistic defined as h(x
i

, x
j

, y
i

, y
j

) = k(x
i

, x
j

) + k(y
i

, y
j

) �
k(x

i

, y
j

) � k(x
j

, y
i

). Intuitively, the empirical test statistic MMD2

u

is expected to be small (close
to zero) if P = Q, and large if P and Q are far apart. The complexity for evaluating (1) is O(n2

)

since we have to form the so-called Gram matrix for the data. Under H
0

(P = Q), the U -statistic is
degenerate and distributed the same as an infinite sum of Chi-square variables.

To improve the computational efficiency and obtain an easy-to-compute threshold for hypothesis
testing, recently, [17] proposed an alternative statistic for MMD2

0

called B-test. The key idea of the
approach is to partition the n samples from P and Q into N non-overlapping blocks, X

1

, . . . , X
N

and Y
1

, . . . , Y
N

, each of constant size B. Then MMD2

u

[F , X
i

, Y
i

] is computed for each pair of
blocks and averaged over the N blocks to result in MMD2

B

[F , X, Y ] =

1

N

P
N

i=1

MMD2

u

[F , X
i

, Y
i

].
Since B is constant, N ⇠ O(n), and the computational complexity of MMD2

B

[F , X, Y ] is O(B2n),
a significant reduction compared to MMD2

u

[F , X, Y ]. Furthermore, by averaging MMD2

u

[F , X
i

, Y
i

]

over independent blocks, the B-statistic is asymptotically normal leveraging over the central limit
theorem. This latter property also allows a simple threshold to be derived for the two-sample test
rather than resorting to more expensive bootstrapping approach. Our later statistics are inspired
by B-statistic. However, the change-point detection setting requires significant new derivations
to obtain the test threshold since one cares about the maximum of MMD2

B

[F , X, Y ] computed
at different point in time. Moreover, the change-point detection case consists of a sum of highly
correlated MMD statistics, because these MMD2

B

are formed with a common test block of data.
This is inevitable in our change-point detection problems because test data is much less than the
reference data. Hence, we cannot use the central limit theorem (even a martingale version), but have
to adopt the aforementioned change-of-measure approach.

Related work. Other nonparametric change-point detection approach has been proposed in the
literature. In the offline setting, [5] designs a kernel-based test statistic, based on a so-called running
maximum partition strategy to test for the presence of a change-point; [18] studies a related problem
in which there are s anomalous sequences out of n sequences to be detected and they construct a
test statistic using MMD. In the online setting, [6] presents a meta-algorithm that compares data in
some “reference window” to the data in the current window, using some empirical distance measures
(not kernel-based); [1] detects abrupt changes by comparing two sets of descriptors extracted online
from the signal at each time instant: the immediate past set and the immediate future set; based on
soft margin single-class support vector machine (SVM), they build a dissimilarity measure (which is
asymptotically equivalent to the Fisher ratio in the Gaussian case) in the feature space between those
sets without estimating densities as an intermediate step; [7] uses a density-ratio estimation to detect
change-point, and models the density-ratio using a non-parametric Gaussian kernel model, whose
parameters are updated online through stochastic gradient decent. The above work lack theoretical
analysis for the extremal behavior of the statistics or average run length.

3 M -statistic for offline and online change-point detection
Give a sequence of observations {. . . , x�2

, x�1

, x
0

, x
1

, . . . , x
t

}, x
i

2 X , with {. . . , x�2

, x�1

, x
0

}
denoting the sequence of background (or reference) data. Assume a large amount of reference data is
available. Our goal is to detect the existence of a change-point ⌧ , such that before the change-point,
samples are i.i.d. with a distribution P , and after the change-point, samples are i.i.d. with a different
distribution Q. The location ⌧ where the change-point occurs is unknown. We may formulate this
problem as a hypothesis test, where the null hypothesis states that there is no change-point, and
the alternative hypothesis is that there exists a change-point at some time ⌧ . We will construct our
kernel-based M -statistic using the maximum mean discrepancy (MMD) to measure the difference
between distributions of the reference and the test data.

We denote by Y the block of data which potentially contains a change-point (also referred to as the
post-change block or test block). In the offline setting, we assume the size of Y can be up to B

max

,
and we want to search for a location of the change-point ⌧ within Y such that observations after ⌧
are from a different distribution. Inspired by the idea of B-test [17], we sample N reference blocks
of size B

max

independently from the reference pool, and index them as XB

max

i

, i = 1, . . . , N . Since
we search for a location B (2  B  B

max

) within Y for a change-point, we construct sub-block
from Y by taking B contiguous data points, and denote them as Y B . To form the statistic, we
correspondingly construct sub-blocks from each reference block by taking B contiguous data points
out of that block, and index these sub-blocks as X(B)

i

(illustrated in Fig. 1(a)). We then compute
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Figure 1: Illustration of (a) offline case: data are split into blocks of size B
max

, indexed backwards from time
t, and we consider blocks of size B, B = 2, . . . , B

max

; (b) online case. Assuming we have large amount of
reference or background data that follows the null distribution.

MMD2

u

between (X(B)

i

, Y (B)

), and average over blocks

Z
B

:=

1

N

NX

i=1

MMD2

u

(X(B)

i

, Y (B)

) =

1

NB(B � 1)

NX

i=1

BX

j,l=1,j 6=l

h(X(B)

i,j

, X(B)

i,l

, Y (B)

j

, Y (B)

l

), (2)

where XB

i,j

denotes the jth sample in X(B)

i

, and Y (B)

j

denotes the j th sample in Y B . Due to the
property of MMD2

u

, under the null hypothesis, E[Z
B

] = 0. Let Var[Z
B

] denote the variance of Z
B

under the null. The expression of Z
B

is given by (6) in the following section. We see the variance
depends on the block size B and the number of blocks N . As B increases Var[Z

B

] decreases (also
illustrated in Figure 5 in the appendix). Considering this, we standardize the statistic, maximize over
all values of B to define the offline M -statistic, and detect a change-point whenever the M -statistic
exceeds the threshold b > 0:

M := max

B2{2,3,...,B
max

}
Z
B

/
p
Var[Z

B

]| {z }
Z

0
B

> b, {offline change-point detection} (3)

where varying the block-size from 2 to B
max

corresponds to searching for the unknown change-point
location. In the online setting, suppose the post-change block Y has size B

0

and we construct it
using a sliding window. In this case, the potential change-point is declared as the end of each block
Y . To form the statistic, we take NB

0

samples without replacement (since we assume the reference
data are i.i.d.with distribution P ) from the reference pool to form N reference blocks, compute
the quadratic MMD2

u

statistics between each reference block and the post-change block, and then
average them. When there is a new sample (time moves from t to t+1), we append the new sample
in the reference block, remove the oldest sample from the post-change block, and move it to the
reference pool. The reference blocks are also updated accordingly: the end point of each reference
block is moved to the reference pool, and a new point is sampled and appended to the front of each
reference block, as shown in Fig. 1(b). Using the sliding window scheme described above, similarly,
we may define an online M -statistic by forming a standardized average of the MMD2

u

between the
post-change block in a sliding window and the reference block:

Z
B

0

,t

:=

1

N

NX

i=1

MMD2

u

(X(B

0

,t)

i

, Y (B

0

,t)

), (4)

where B
0

is the fixed block-size, X(B

0

,t)

i

is the ith reference block of size B
0

at time t, and Y (B

0

,t) is
the the post-change block of size B

0

at time t. In the online case, we have to characterize the average
run length of the test statistic hitting the threshold, which necessarily results in taking a maximum
of the statistics over time. The online change-point detection procedure is a stopping time, where
we detect a change-point whenever the normalized Z

B

0

,t

exceeds a pre-determined threshold b > 0:

T = inf{t : Z
B

0

,t

/
p

Var[Z
B

0

]

| {z }
M

t

> b}. {online change-point detection} (5)

Note in the online case, we actually take a maximum of the standardized statistics over time. There is
a recursive way to calculate the online M -statistic efficiently, explained in Section A in the appendix.
At the stopping time T , we claim that there exists a change-point. There is a tradeoff in choosing
the block size B

0

in online setting: a small block size will incur a smaller computational cost, which
may be important for the online case, and it also enables smaller detection delay for strong change-
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point magnitude; however, the disadvantage of a small B
0

is a lower power, which corresponds to
a longer detection delay when the change-point magnitude is weak (for example, the amplitude of
the mean shift is small). Examples of offline and online M -statistics are demonstrated in Fig. 2
based on synthetic data and a segment of the real seismic signal. We see that the proposed offline
M -statistic powerfully detects the existence of a change-point and accurately pinpoints where the
change occurs; the online M -statistic quickly hits the threshold as soon as the change happens.
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(a): Offline, null (b): Offline, ⌧ = 250 (c): Online, ⌧ = 250 (d) seismic signal

Figure 2: Examples of offline and online M -statistic with N = 5: (a) and (b), offline case without and with a
change-point (B

max

= 500 and the maximum is obtained when B = 263); (c) online case with a change-point
at ⌧ = 250, stopping-time T = 268 (detection delay is 18), and we use B

0

= 50; (d) a real seismic signal and
M -statistic with different kernel bandwidth. All thresholds are theoretical values and are marked in red.

4 Theoretical Performance Analysis
We obtain an analytical expression for the variance Var[Z

B

] in (3) and (5), by leveraging the corre-
spondence between the MMD2

u

statistics and U -statistic [11] (since Z
B

is some form of U -statistic),
and exploiting the known properties of U -statistic. We also derive the covariance structure for the
online and offline standardized Z

B

statistics, which is crucial for proving theorems 3 and 4.
Lemma 1 (Variance of Z

B

under the null.) Given any fixed block size B and number of blocks
N , under the null hypothesis,

Var[Z
B

] =

✓
B

2

◆�1


1

N
E[h2

(x, x0, y, y0)] +
N � 1

N
Cov [h(x, x0, y, y0), h(x00, x000, y, y0)]

�
, (6)

where x, x0, x00, x000, y, and y0 are i.i.d. with the null distribution P .

Lemma 1 suggests an easy way to estimate the variance Var[Z
B

] from the reference data. To esti-
mate (6), we need to first estimate E[h2

(x, x0, y, y0)], by each time drawing four samples without re-
placement from the reference data, use them for x, x0, y, y0, evaluate the sampled function value, and
then form a Monte Carlo average. Similarly, we may estimate Cov [h(x, x0, y, y0), h(x00, x000, y, y0)].

Lemma 2 (Covariance structure of the standardized Z
B

statistics.) Under the null hypothesis,
given u and v in [2, B

max

], for the offline case

r
u,v

:= Cov (Z 0
u

, Z 0
v

) =

s✓
u

2

◆✓
v

2

◆�✓
u _ v

2

◆
, (7)

where u _ v = max{u, v}, and for the online case,

r0
u,v

:= Cov(M
u

,M
u+s

) = (1� s

B
0

)(1� s

B
0

� 1

), for s � 0.

In the offline setting, the choice of the threshold b involves a tradeoff between two standard perfor-
mance metrics: (i) the significant level (SL), which is the probability that the M -statistic exceeds
the threshold b under the null hypothesis (i.e., when there is no change-point); and (ii) power, which
is the probability of the statistic exceeds the threshold under the alternative hypothesis. In the online
setting, there are two analogous performance metrics commonly used for analyzing change-point
detection procedures [15]: (i) the expected value of the stopping time when there is no change, the
average run length (ARL); (ii) the expected detection delay (EDD), defined to be the expected stop-
ping time in the extreme case where a change occurs immediately at ⌧ = 0. We focus on analyzing
SL and ARL of our methods, since they play key roles in setting thresholds. We derive accurate
approximations to these quantities as functions of the threshold b, so that given a prescribed SL or
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ARL, we can solve for the corresponding b analytically. Let P1 and E1 denote, respectively, the
probability measure and expectation under the null.

Theorem 3 (SL in offline case.) When b ! 1 and b/
p
B

max

! c for some constant c, the signif-
icant level of the offline M -statistic defined in (3) is given by

P1

(
max

B2{2,3,...,B
max

}

Z
Bp

Var[Z
B

]

> b

)
= b2e�

1

2

b

2 ·
B

maxX

B=2

(2B � 1)

2

p
2⇡B(B � 1)

⌫

 
b

s
2B � 1

B(B � 1)

!
+o(1),

(8)
where the special function ⌫(u) ⇡ (2/u)(�(u/2)�0.5)

(u/2)�(u/2)+�(u/2)

, � is the probability density function and
�(x) is the cumulative distribution function of the standard normal distribution, respectively.

The proof of theorem 3 uses a change-of-measure argument, which is based on the likelihood ratio
identity (see, e.g., [12, 16]). The likelihood ratio identity relates computing of the tail probability
under the null to computing a sum of expectations each under an alternative distribution indexed by
a particular parameter value. To illustrate, assume the probability density function (pdf) under the
null is f(u). Given a function g

!

(x), with ! in some index set ⌦,, we may introduce a family of al-
ternative distributions with pdf f

!

(u) = e✓g!(u)� 
!

(✓)f(u), where  
!

(✓) := log

R
e✓g!(u)f(u)du

is the log moment generating function, and ✓ is the parameter that we may assign an arbitrary value.
It can be easily verified that f

!

(u) is a pdf. Using this family of alternative, we may calculate the
probability of an event A under the original distribution f , by calculating a sum of expectations:

P{A} = E
P

!2⌦

e`!P
s2⌦

e`s
;A

�
=

X

!2⌦

E
!

[e`! ;A],

where E[U ;A] := E[UI{A}], the indicator function I{A} is one when event A is true and zero
otherwise, E

!

is the expectation using pdf f
!

(u), `
!

= log[f(u)/f
!

(u)] = ✓g
!

(u)�  
!

(✓), is the
log-likelyhood ratio, and we have the freedom to choose a different ✓ value for each f

!

.

The basic idea of change-of-measure in our setting is to treat Z 0
B

:= Z
B

/Var[Z
B

], as a random field
indexed by B. Then to characterize SL, we need to study the tail probability of the maximum of this
random field. Relate this to the setting above, Z 0

B

corresponds to g
!

(u), B corresponds to !, and
A corresponds to the threshold crossing event. To compute the expectations under the alternative
measures, we will take a few steps. First, we choose a parameter value ✓

B

for each pdf associated
with a parameter value B, such that ˙ 

B

(✓
B

) = b. This is equivalent to setting the mean under each
alternative probability to the threshold b: E

B

[Z 0
B

] = b and it allows us to use the local central limit
theorem since under the alternative measure boundary cross has much larger probability. Second,
we will express the random quantities involved in the expectations, as a functions of the so-called
local field terms: {`

B

� `
s

: s = B,B ± 1, . . .}, as well as the re-centered log-likelihood ratios:
˜`
B

= `
B

� b. We show that they are asymptotically independent as b ! 1 and b grows on the order
of

p
B, and this further simplifies our calculation. The last step is to analyze the covariance structure

of the random field (Lemma 2 in the following), and approximate it using a Gaussian random field.
Note that the terms Z 0

u

and Z 0
v

have non-negligible correlation due to our construction: they share
the same post-change block Y (B). We then apply the localization theorem (Theorem 5.2 in [16]) to
obtain the final result.

Theorem 4 (ARL in online case.) When b ! 1 and b/
p
B

0

! c0 for some constant c0, the aver-
age run length (ARL) of the stopping time T defined in (5) is given by

E1
[T ] =

eb
2

/2

b2
·
(

(2B
0

� 1)p
2⇡B

0

(B
0

� 1)

· ⌫
 
b

s
2(2B

0

� 1)

B
0

(B
0

� 1)

!)�1

+ o(1). (9)

Proof for Theorem 4 is similar to that for Theorem 3, due to the fact that for a given m > 0,

P1{T  m} = P1
⇢

max

1tm

M
t

> b

�
. (10)

Hence, we also need to study the tail probability of the maximum of a random field M
t

=

Z
B

0

,t

/
p

Z
B

0

,t

for a fixed block size B
0

. A similar change-of-measure approach can be used, ex-
cept that the covariance structure of M

t

in the online case is slightly different from the offline case.
This tail probability turns out to be in a form of P1{T  m} = m� + o(1). Using similar argu-

6



ments as those in [13, 14], we may see that T is asymptotically exponentially distributed. Hence,
P1{T  m}� [1� exp(��m)] ! 0. Consequently E1{T} ⇠ ��1, which leads to (9).

Theorem 4 shows that ARL ⇠ O(eb
2

) and, hence, b ⇠ O(

p
log ARL). On the other hand, the

EDD is typically on the order of b/� using the Wald’s identity [12] (although a more careful anal-
ysis should be carried out in the future work), where � is the Kullback-Leibler (KL) divergence
between the null and alternative distributions (on a order of a constant). Hence, given a desired ARL
(typically on the order of 5000 or 10000), the error made in the estimated threshold will only be
translated linearly to EDD. This is a blessing to us and it means typically a reasonably accurate b
will cause little performance loss in EDD. Similarly, Theorem 3 shows that SL ⇠ O(e�b

2

) and a
similar argument can be made for the offline case.

5 Numerical examples
We test the performance of the M -statistic using simulation and real world data. Here we only
highlight the main results. More details can be found in Appendix C. In the following examples, we
use a Gaussian kernel: k(Y, Y 0

) = exp
��kY � Y 0k2/2�2

�
, where � > 0 is the kernel bandwidth

and we use the “median trick” [10, 8] to get the bandwidth which is estimated using the background
data.

Accuracy of Lemma 1 for estimating Var[Z
B

]. Fig. 5 in the appendix shows the empirical dis-
tributions of Z

B

when B = 2 and B = 200, when N = 5. In both cases, we generate 10000
random instances, which are computed from data following N (0, I), I 2 R20⇥20 to represent the
null distribution. Moreover, we also plot the Gaussian pdf with sample mean and sample variance,
which matches well with the empirical distribution. Note the approximation works better when the
block size decreases. (The skewness of the statistic can be corrected; see discussions in Section 7).

Accuracy of theoretical results for estimating threshold. For the offline case, we compare the
thresholds obtained from numerical simulations, bootstrapping, and using our approximation in
Theorem 3, for various SL values ↵. We choose the maximum block size to be B

max

= 20. In
the appendix, Fig. 6(a) demonstrates how a threshold is obtained by simulation, for ↵ = 0.05, the
threshold b = 2.88 corresponds to the 95% quantile of the empirical distribution of the offline M -
statistic. For a range of b values, Fig. 6(b) compares the empirical SL value ↵ from simulation with
that predicted by Theorem 3, and shows that theory is quite accurate for small ↵, which is desirable
as we usually care of small ↵’s to obtain thresholds. Table 1 shows that our approximation works
quite well to determine thresholds given ↵’s: thresholds obtained by our theory matches quite well
with that obtained from Monte Carlo simulation (the null distribution is N (0, I), I 2 R20⇥20), and
even from bootstrapping for a real data scenario. Here, the “bootstrap” thresholds are for a speech
signal from the CENSREC-1-C dataset. In this case, the null distribution P is unknown, and we only
have 3000 samples speech signals. Thus we generate bootstrap samples to estimate the threshold,
as shown in Fig. 7 in the appendix. These b’s obtained from theoretical approximations have little
performance degradation, and we will discuss how to improve in Section 7.

Table 1: Comparison of thresholds for offline case, determined by simulation, bootstrapping and theory re-
spectively, for various SL value ↵.

↵
B

max

= 10 B
max

= 20 B
max

= 50

b (sim) b (boot) b (the) b (sim) b (boot) b (the) b (sim) b (boot) b (the)
0.20 1.78 1.77 2.00 1.97 2.29 2.25 2.21 2.47 2.48
0.15 2.02 2.05 2.18 2.18 2.63 2.41 2.44 2.78 2.62
0.10 2.29 2.45 2.40 2.47 3.09 2.60 2.70 3.25 2.80

For the online case, we also compare the thresholds obtained from simulation (using 5000 instances)
for various ARL and from Theorem 4, respectively. As predicated by theory, the threshold is con-
sistently accurate for various null distributions (shown in Fig. 3). Also note from Fig. 3 that the
precision improves as B

0

increases. The null distributions we consider include N (0, 1), exponen-
tial distribution with mean 1, a Erdos-Renyi random graph with 10 nodes and probability of 0.2 of
forming random edges, and Laplace distribution.

Expected detection delays (EDD). In the online setting, we compare EDD (with the assumption
⌧ = 0) of detecting a change-point when the signal is 20 dimensional and the transition happens
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Figure 3: In online case, for a range of ARL values, comparison b obtained from simulation and from Theorem
4 under various null distributions.

from a zero-mean Gaussian N (0, I
20

) to a non-zero mean Gaussian N (µ, I
20

), where the post-
change mean vector µ is element-wise equal to a constant mean shift. In this setting, Fig. 10(a)
demonstrates the tradeoff in choosing a block size: when block size is too small the statistical power
of the M -statistic is weak and hence EDD is large; on the other hand, when block size is too large,
although statistical power is good, EDD is also large because the way we update the test block.
Therefore, there is an optimal block size for each case. Fig. 10(b) shows the optimal block size
decreases as the mean shift increases, as expected.

6 Real-data
We test the performance of our M -statistics using real data. Our datasets include: (1) CENSREC-
1-C: a real-world speech dataset in the Speech Resource Consortium (SRC) corpora provided by
National Institute of Informatics (NII)1; (2) Human Activity Sensing Consortium (HASC) challenge
2011 data2. We compare our M -statistic with a state-of-the-art algorithm, the relative density-
ratio (RDR) estimate [7] (one limitation of the RDR algorithm, however, is that it is not suitable
for high-dimensional data because estimating density ratio in the high-dimensional setting is ill-
posed). To achieve reasonable performance for the RDR algorithm, we adjust the bandwidth and
the regularization parameter at each time step and, hence, the RDR algorithm is computationally
more expensive than the M -statistics method. We use the Area Under Curve (AUC) [7] (the larger
the better) as a performance metric. Our M -statistics have competitive performance compared with
the baseline RDR algorithm in the real data testing. Here we report the main results and the details
can be found in Appendix D. For the speech data, our goal is to detect the onset of speech signal
emergent from the background noise (the background noises are taken from real acoustic signals,
such as background noise in highway, airport and subway stations). The overall AUC for the M -
statistic is .8014 and for the baseline algorithm is .7578. For human activity detection data, we aim at
detection the onset of transitioning from one activity to another. Each data consists of human activity
information collected by portable three-axis accelerometers. The overall AUC for the M -statistic is
.8871 and for the baseline algorithm is .7161.

7 Discussions
We may be able to improve the precision of the tail probability approximation in theorems 3 and 4 to
account for skewness of Z 0

B

. In the change-of-measurement argument, we need to choose parameter
values ✓

B

such that ˙ 
B

(✓
B

) = b. Currently, we use a Gaussian assumption Z 0
B

⇠ N (0, 1) and,
hence,  

B

(✓) = ✓2/2, and ✓
B

= b. We may improve the precision if we are able to estimate
skewness (Z 0

B

) for Z 0
B

. In particular, we can include the skewness in the log moment generating
function approximation  

B

(✓) ⇡ ✓2/2+(Z 0
B

)✓3/6 when we estimate the change-of-measurement
parameter: setting the derivative of this to b and solving a quadratic equation (Z 0

B

)✓2/2 + ✓ = b

for ✓0
B

. This will change the leading exponent term in (8) from e�b

2

/2 to be e 
0
B

(✓

0
B

)�✓0
B

b. A similar
improvement can be done for the ARL approximation in Theorem 4.
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