A Proofs

Proof of entropy relaxation. We apply the entropy power inequality [6], which asserts that for independent *d*-dimensional random vectors $\psi_{1:K}$, the sum

 $\psi = \sum_{k=1}^{K} \psi_k$

satisfies

$$e^{\frac{2h(\psi)}{d}} \ge \sum_{k=1}^{K} e^{\frac{2h(\psi_k)}{d}} \ge \max_{1 \le k \le K} e^{\frac{2h(\psi_k)}{d}},$$
 (10)

where h denotes differential entropy.

In our case, we have

and

$$\theta = \theta = F(\theta_1, \dots, \theta_K)$$

 $\psi_k = F_k\left(\theta_k\right)$

Since

$$\mathbf{H}\left[q\right] = h\left(\psi\right),$$

equation (10) implies

$$\mathbf{H}\left[q\right] \geq \max_{1 \leq k \leq K} h\left(\psi_{k}\right) = \max_{1 \leq k \leq K} \left(\mathbf{H}\left[p_{k}\right] + \mathbb{E}_{p_{k}}\left[\log \det J\left(F_{k}\right)\left(\theta_{k}\right)\right]\right)$$

Defining

$$\tilde{\mathbf{H}}[q] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}_{p_{k}} \left[\log \det J(F_{k})(\theta_{k}) \right] + \min_{1 \le k \le K} \mathbf{H}[p_{k}]$$

we immediately see that

 $\mathbf{H}\left[q\right] \geq \tilde{\mathbf{H}}\left[q\right],$

as required.

Proof of Theorem 4.1. We first define

$$\mathcal{L}_{0}(q) = \mathbb{E}_{q}\left[\log p\left(\theta, X\right) \mid \theta_{1:K}\right] = \log p\left(F\left(\theta_{1:K}\right), X\right).$$

Since $\mathcal{L}(q) = \mathbb{E}_{p_{1:K}} [\mathcal{L}_0(q)]$, where the expectation is taken with respect to the subposteriors, which do not vary with q, it suffices to show that \mathcal{L}_0 is concave in each F^u individually for each fixed $\theta_{1:K}$. Furthermore, since $F(\theta_{1:K})$ is linear in F by the definition of function addition, it actually suffices to show $\ell(\theta) = \log p(F(\theta_{1:K}), X)$ in each θ^u individually. To see why this holds, first observe that for each $u \in V(G)$, we have

$$\ell(\theta) = \log h^{u}(\theta^{u}) + \sum_{u' \in \operatorname{par}(u)} \left(\theta^{u'}\right)^{T} T^{u' \to u}\left(\theta^{u'}\right)$$
(11)

$$+\sum_{v\in\operatorname{ch}(u)}\left[\left(\theta^{u}\right)^{T}T^{u\to v}\left(\theta^{v}\right)-\log A^{v}\left(\theta^{\operatorname{par}(v)}\right)\right]+c_{u},$$
(12)

where c_u is a function of θ that is constant in θ^u . By the log-concavity assumption, the sum of the first two terms of $\ell(\theta)$ in (12) is concave in θ^u . On the other hand, by basic properties of exponential families, each $\log A^v(\theta^{\operatorname{par}(v)})$ is convex in $\theta^{\operatorname{par}(v)}$ and hence in θ^u , making its negative concave. Since the remaining terms are linear or constant, ℓ is in fact concave in θ^u . The claim follows.

Proof of Theorem 4.2. Clearly it suffices to show that each $\mathbb{E}_{p_k}[\log \det J(F_k)(\theta_k)]$ is concave and for this it suffices to show that for fixed θ_k , $\log \det J(F_k)(\theta_k)$ is concave. This is immediate, however, since the Jacobian is a linear function and $\log \det$ is a concave function.

B Variational objective functions

We derive the variational objectives and gradients for the models we analyze. Throughout, we make the convention that for A, $B \in \mathbb{R}^{d \times d}$,

$$\langle \langle A, B \rangle \rangle = \operatorname{Tr} (AB)$$

denotes the trace inner product.

B.1 Bayesian probit regression

In this section, we compute the variational objective for the Bayesian probit regression model. For convenience, we define

$$u_k = \mathbb{E}_{p_k} \left[\beta_k \right] \text{ and } S_k = \mathbb{E}_{p_k} \left[\beta_k \beta_k^T \right]$$

In this notation, the variational objective takes the simple form

$$\begin{aligned} \mathcal{L}(W) &= -\frac{1}{2\sigma^2} \sum_{k=1}^{K} \left[\left\langle \left\langle S_k, W_k^T W_k \right\rangle \right\rangle + 2 \sum_{\ell \neq k} \left\langle \left\langle \mu_k \mu_\ell^T W_\ell^T, W_k \right\rangle \right\rangle \right] \\ &+ \sum_{n=1}^{N} \left[y_n \cdot \mathbb{E}_q \left[\log \Phi_n \right] + (1 - y_n) \cdot \mathbb{E}_q \left[\log \left(1 - \Phi_n \right) \right] \right] \\ &+ \frac{1}{K} \sum_{k=1}^{K} \log \det \left(W_k \right) \end{aligned}$$

where $\Phi_n = \Phi\left(\sum_k \left\langle \left\langle W_k, \ \beta_k x_n^T \right\rangle \right\rangle\right).$

This leads to the gradients

$$\nabla_{W_k} \mathcal{L} = \frac{1}{\sigma^2} \left[S_k W_k^T + \sum_{\ell \neq k} \left(\mu_k \mu_\ell^T W_\ell^T + W_\ell \mu_\ell \mu_k^T \right) \right] \\ + \sum_{n=1}^N \mathbb{E}_q \left[\left(\frac{\phi_n}{\Phi_n \left(1 - \Phi_n\right)} \cdot \left(y_n - \Phi_n\right) \right) \cdot \beta_k \right] x_n^T \\ + \frac{W_k^{-1}}{K},$$

where we have additionally defined $\phi_n = \phi\left(\sum_{k=1}^K \left\langle \left\langle W_k, \ \beta_k x_n^T \right\rangle \right\rangle \right)$ and

$$\beta = \sum_{k=1}^{K} W_k \beta_k$$

B.2 Normal-inverse Wishart model

The variational objective for the normal-inverse Wishart model takes the form

where

$$\begin{aligned} \mathcal{L}_{0}\left(W\right) &= -\frac{1}{2} \sum_{k=1}^{K} \left\langle \left\langle R_{k} \left(V^{-1} + X^{T} X \right) R_{k}^{T}, W_{k} D_{k} \right\rangle \right\rangle \\ &+ \frac{N}{2} \sum_{k=1}^{K} \left\langle \left\langle R_{k} \left(\mu \bar{x}^{T} + \bar{x} \mu^{T} \right), W_{k} D_{k} \right\rangle \right\rangle - \frac{N}{2} \sum_{k=1}^{K} \left\langle \left\langle (R_{k} \mu) \left(R_{k} \mu \right)^{T}, W_{k} D_{k} \right\rangle \right\rangle \\ &+ \frac{\nu + N - d - 1}{2} \cdot \log \det \left(\sum_{k=1}^{K} R_{k}^{T} \left[W_{k} D_{k} \right] R_{k} \right), \end{aligned}$$

 $\mathcal{L}(W) = \mathbb{E}_q \left[\mathcal{L}_0(W, \Lambda_{1:K}) \right] + \tilde{H}[q],$

and we have compressed our notation by setting $\mu = \sum_k A_k \mu_k$, $\bar{x} = \frac{1}{N} \sum_n x_n$, $R_k = R(\Lambda_k)$, and $D_k = D(\Lambda_k)$. As before, we have

$$\tilde{\mathbf{H}}[q] = \frac{1}{K} \sum_{k=1}^{K} \log \det (W_k),$$

where we have suppressed the constant depending on the $p_{1:K}$ since it does not vary with W_k .

Recalling that W_k is diagonal, we can obtain the gradients by first computing

$$\nabla_{W_k} \mathcal{L}_0 (W) = D_k \cdot \operatorname{diag} \left[R_k \left(V^{-1} + X^T X \right) R_k^T \right] + \frac{N}{2} \cdot D_k \left(R_k \mu \circ \bar{x} + R_k \bar{x} \circ \mu \right) - \frac{N}{2} \cdot D_k \left(R_k \mu \right) \circ \left(R_k \mu \right) + \frac{\nu + N - d - 1}{2} \cdot D_k \cdot \operatorname{diag} \left[R_k \left(\sum_{\ell=1}^K R_\ell^T \left[W_\ell D_\ell \right] R_\ell \right)^{-1} R_k^T \right],$$

where we have used \circ to denote elementwise vector products. We then find

$$\nabla_{W_{k}}\mathcal{L} = \mathbb{E}_{q}\left[\nabla_{W_{k}}\mathcal{L}_{0}\left(W\right)\right] + \frac{W_{k}^{-1}}{K}$$

B.3 Mixture of Gaussians

Per the description of aggregation in Section 5, we define merged samples in the mixture of Gaussians model by the equations

$$\theta_{\ell}^* = F_{a\ell}\left(\theta_{1:K,1:L}\right) = \sum_{k=1}^{K} W_{k\ell} \theta_{ka_{k\ell}},$$

where $\ell = 1, ..., L$ denotes the cluster index and a_k denotes the alignment mapping indices on the master core to indices on worker core k. Throughout this section, we treat the alignment variables as fixed.

Using this notation, we define

$$\mathcal{L}_{0}(W, \ \theta_{1:K,1:L}) = -\frac{1}{2\tau^{2}} \sum_{\ell=1}^{L} ||\theta_{\ell}^{*}||_{2}^{2} - \frac{1}{2\sigma^{2}} \sum_{\ell=1}^{L} \sum_{i=1}^{n} \gamma_{i\ell}(W) ||\theta_{\ell}^{*} - x_{i}||_{2}^{2},$$

where

$$\gamma_{n\ell} = \frac{\tilde{\gamma}_{n\ell}}{\sum_{\ell'=1}^{L} \tilde{\gamma}_{n\ell'}}$$

and

$$\tilde{\gamma}_{n\ell} = \exp\left(-\frac{1}{2\sigma^2} \left|\left|\theta_{\ell}^* - x_n\right|\right|_2^2\right).$$

The variational objective then takes the form

$$\mathcal{L}(W) = \mathbb{E}_{p_{1:K}} \left[\mathcal{L}_0(W, \theta_{1:K,1:L}) \right] + \tilde{H}[q],$$

with the usual equation

$$\tilde{\mathbf{H}}[q] = \frac{1}{K} \sum_{k=1}^{K} \sum_{\ell=1}^{L} \log \det \left(W_{k\ell} \right).$$

Some calculation then shows that the gradients with respect to the various $W_{k\ell}$ are given by

$$\nabla_{k\ell} \mathcal{L}_0 \left(W, \ \theta_{1:K,1:L} \right) = \frac{1}{2\sigma^4} \sum_{n=1}^N \gamma_{n\ell} \left(1 - \gamma_{i\ell} \right) ||\theta_\ell^* - x_n||_2^2 \cdot \theta_{ka_{k\ell}} \left(\theta_\ell^* - x_n \right)^T \\ - \left(\frac{1}{\tau^2} + \frac{\sum_{n=1}^N \gamma_{n\ell}}{\sigma^2} \right) \cdot \theta_{ka_{k\ell}} \left(\theta_\ell^* - \tilde{x}_\ell \right)^T,$$

where

$$\tilde{x}_{\ell} = \left(\frac{1}{\tau^2} + \frac{\sum_{n=1}^N \gamma_{n\ell}}{\sigma^2}\right)^{-1} \sum_{n=1}^N \frac{\gamma_{n\ell}}{\sigma^2} \cdot x_n.$$

This covers the case of general PSD matrices $W_{k\ell}$. When the matrices are restricted to be diagonal, we get the simplified gradient

$$\nabla_{k\ell} \mathcal{L}_0 \left(W, \ \theta_{1:K,1:L} \right) = \frac{1}{2\sigma^4} \sum_{n=1}^N \gamma_{i\ell} \left(1 - \gamma_{n\ell} \right) ||\theta_\ell^* - x_n||_2^2 \cdot \theta_{ka_{k\ell}} \circ \left(\theta_\ell^* - x_n \right) \\ - \left(\frac{1}{\tau^2} + \frac{\sum_{n=1}^N \gamma_{n\ell}}{\sigma^2} \right) \cdot \theta_{ka_{k\ell}} \circ \left(\theta_\ell^* - \tilde{x}_\ell \right),$$

where \circ denotes elementwise multiplication of vectors.

Since

$$\nabla_{k\ell} \mathcal{L} (W) = \mathbb{E}_{p_{1:K}} \left[\nabla_{k\ell} \mathcal{L} (W, \theta_{1:K,1:L}) \right] + \frac{W_{k\ell}^{-1}}{K},$$

this gives us all the information we need to implement an optimization procedure for the objective.

C Extended empirical evaluation

Figure 4: Five-dimensional probit regression (d = 5). Moment approximation error for the uniform and Gaussian averaging baselines and VCMC, relative to serial MCMC. We assessed three groups of functions: (*left*) first moments, with $f(\beta) = \beta_j$ for $1 \le j \le d$; (*center*) pure second moments, with $f(\beta) = \beta_j^2$ for $1 \le j \le d$; and (*right*) mixed second moments, with $f(\beta) = \beta_i \beta_j$ for $1 \le i < j \le d$.

Figure 5: High-dimensional probit regression (d = 300). Moment approximation error for the uniform and Gaussian averaging baselines and VCMC, relative to serial MCMC, for subposteriors (*left*) and partial posteriors (*right*). Here we show the pure second moments.

Figure 6: Five-dimensional normal-inverse Wishart model (d = 5). Moment approximation error for the uniform and Gaussian averaging baselines and VCMC, relative to serial MCMC. Letting ρ_j denote the j^{th} largest eigenvalue of Λ^{-1} , we assessed three groups of functions: (*left*) first moments, with $f(\Lambda) = \rho_j$ for $1 \le j \le d$; (*center*) pure second moments, with $f(\Lambda) = \rho_j^2$ for $1 \le j \le d$; and (*right*) mixed second moments, with $f(\Lambda) = \rho_i \rho_j$ for $1 \le i < j \le d$.