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6 Bottom-up partitions do not work

The most natural bottom-up construction for creating partitions is not viable as will be now shown
by an example. Bottom-up construction techniques start by pairing labels, either randomly or arbi-
trarily, and then building a predictor of whether the class label is left or right conditioned on the class
label being one of the paired labels. In order to construct a full tree, this operation must compose,
pairing trees with size 2 to create trees of size 4. Here, we show that the straightforward approach
to composition fails.

Suppose we have a one dimensional feature space with examples of class label ¢ having feature
value 7 and we work with threshold predictors. Suppose we have 4 classes 1, 2, 3, 4, and we happen
to pair (1,3) and (2,4). It is easy to build a linear predictor for each of these splits. The next step
is building a predictor for (1,3) vs (2,4) which is impossible because all thresholds in (—o0, 1),
(2,3), and (4, 00) err on two labels while thresholds on (1,2) and (3, 4) err on one label.

7 Proof of Lemma 1

We start from deriving an upper-bound on J(h). For the ease of notation let P, = P(h(z) > 0[i).

Thus
k k
—2Zm|P ) > 0[i) — P(h(z) > 0)| =2) m |Pi =Y m; P,
i=1 j=1

where V(15130 < P < 1. Let oy = min(P;,1 — P;) and recall the purity factor « =
Z,]le m;c; and the balancing factor 3 = P(h(z) > 0). Without loss of generality let 8 < 1.
Furthermore, let

1 1
le{iZiE{l,Q,...,k},PL‘25}7 LQZ{iSiE{l,Q,...,k},PjE [,8,5)}
and Lz={i:ie{l,2,...,k}, P, < S}.
First notice that

8= ZEP’*Z - Z maszmeZmai+a 3)

i€l 1€LoUL3 i€l i€lq
Therefore
J(h) :
=7 = 2omlPi-pl=) ml-a =B+ Y mlai =)+ Y m(B - )
=1 i€l 1€ Lo i€ L3
= D m=B8)= Y moit ) mei— Y mf+ Yy mp- ) mo
i€l i€l i€ Lo i€Lo i€L3 i€L3

Note that >, ., 7 =1—> ,c; m — > ;. m and therefore

J(h)  _
T Z Z T +Z T Z ﬂ-lﬂ + B Z T Z 7T7. Z Urie?

i€Ly i€l i€Ly i€Lo i€l i€ Lo i€Ls
= g mi(l—28) — g 00 + g mic; + B(1—2 g ;) g 0
i€ly i€l 1€ Lo 1€Lo 1€L3
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Furthermore, since — >, ;T + Y i, Tt — D icp. M = —a+ 23, mo; we further
write that

@ = Zm(l—26)—|—ﬁ(1—22m)—a+227riozi
i€l 1€Lo i€Lo
By Equation 3, it can be further rewritten as
J(h)
= (1—2ﬁ)(ﬁ+22 ﬂiai—a)—kﬁ(l—QZ m)—a—i—2.z 0
1€l 1€Lo i€ Lo
= 20-B)(B-a)+2(1-28) Y mai+2 Y mi(ai — fB)
i€l 1€Lo
Since «;’s are bounded by 0.5 we obtain
J(h) 1
- S 201-P)(f-a)+2(1-20) Y mai+2) mi(5 = 6)

i€l i€Lo

< 201-B)(B-a)+2(1-2B8)a+1-28
= 268(1-p)—2a(1-8)+2a(1-28)+1—-283
= 1-28%-2Bc

Thus: 2~ I(h)

8 Proof of Lemma 2

Proof. We first show that J(h) € [0,1]. We start from deriving an upper-bound on J(h), where
h € H is some hypothesis in the hypothesis class. For the ease of notation let P; = P(h(x) > 0[i).
Thus

k
Jh) = 2 Zw |P(h(z) > 0]i) — P(h(z) > 0)] 4)

k k
= 2271’1 Pi—Z’ITij 5
i=1 j=1

where V;—1 2. 10 < P; < 1. The objective J (h) is certainly maximized on the extremes of the

[0, 1] interval. The upper-bound on J(h) can be thus obtained by setting some of the P;’s to 1’s and
remaining ones to 0’s. To be more precise, let

L1:{ZZ€{1,2,,]€},P2:1} and LQZ{ZZG{LQ,,]{Z},PZ:O}
Therefore it follows that

J(h) < 2 Zﬂ'i(l—Zﬂ'j)—i—Zﬂ'iZﬂ'j

_iELl JjEeL1 i€ Lo JjeL:

= 2 Z?TZ‘—(ZTFZ')Z—F(l—Z?TZ‘)ZTFi
Li€Ly i€l 1€l 1€l

= 4 Zﬂ'i—(Zﬂ'i)Q
Li€Ly i€l

Letb= ), ., m; thus

J(h) < 4b(1 —b) = —4b> + 4b (5)

Since b € [0, 1], it is straightforward that —4b? + 4b € [0, 1] and thus J(h) € [0, 1].

We now proceed to prove the main statement of Lemma 2, if h induces a maximally pure and
balanced partition then .J(h) = 1. Since h is maximally balanced, P(h(xz) > 0) = 0.5. Simul-
taneously, since i is maximally pure V;—1 5. 5} (P(h(xz) > 0[i) = 0 or P(h(x) > 0li) = 1).
Substituting that into Equation 5 yields that J(h) = 1. O
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9 Proof of Theorem 1

Proof. The analysis studies a tree construction algorithm where we recursively find the leaf node
with the highest weight, and choose to split it into two children. Consider the tree constructed
over t steps where in each step we take one leaf node and split it into two. Let n be the heaviest
node at time ¢ and its weight w,, be denoted by w for brevity. Consider splitting this leaf to two
children ny and n;. For the ease of notation let wy = wy, and w; = w,,. Also for the ease
of notation let 5 = P(h,(x) > 0) and P, = P(h,(z) > 0]i). Let m; be the shorthand for
Tn,; @and h be the shorthand for h,,. Recall that § = Zle m; P; and Zf:l m; = 1. Also notice that

wo = w(1l—pf) and w; = wp. Let 7 be the k-element vector with ith entry equal to 7;. Furthermore
let G(m) = Zle m; In (%)
mi(1—P;) 7P

Before the split the contribution of node n to G; was wG (7). Letmy,; = 5 andm,, ; = 5

be the probabilities that a randomly chosen x drawn from P has label ¢ given that x reaches nodes
ng and n, respectively. For brevity, let 7, ; be denoted by m ; and m,, ; be denoted by ;.

Furthermore let 7y be the k-element vector with i** entry equal to 7o ; and let 71 be the k-element
vector with 34" entry equal to 71 ;. Notice that w = (1 — ) + 871. After the split the contribution
of the same, now internal, node n changes to w((1— 3)G(mg) + 8G(71)). We denote the difference
between them as A; and thus

Ay i= Gy = Gray = w | G(m) = (1= B)G(mo) — BG(m1)] . ©)

We aim to lower-bound A;. The entropy reduction of Equation 6 [4] corresponds to a gap in the

Jensen’s inequality applied to the concave function G(7r). This leads to the lower-bound on A,
given in Lemma 4 (the lemma is proven in Section 10 in the Supplementary material).

Lemma 4. The entropy reduction A of Equation 6 can be lower-bounded as follows
J(h)2G,
t 2 TE
88(1 — p)tink

Lemma 4 implies that the larger the objective J(h) is at time ¢, the larger the entropy reduction ends
up being, which further reinforces intuitions to maximize J. In general, it might not be possible to
find any hypothesis with a large enough objective J(h) to guarantee sufficient progress at this point
so we appeal to a weak learning assumption. This assumption can be used to further lower-bound
Ay. The lower-bound can then be used (details are in Section 9 in the Supplementary material) to
obtain the main theoretical statement of the paper captured in Theorem 1.

From the definition of ~ it follows that 1 — v > 5 > ~. Also note that the weak hypothesis
assumption guarantees J(h) > 2, which applied to the lower-bound on A; captured in Lemma 4
yields

e
A, > #
2(1 —v)%tIlnk
2
Letn =,/ ﬁy. Then Ay > "Mit . Thus we obtain the recurrence inequality
2 2
n°Gy n
Gi1 <G — A <Gy — ——— =G |1 — —
e T t{ 16t]

One can now compute the minimum number of splits required to reduce G; below «, where a €
[0, 1]. Applying the proof technique from [4] (the proof of Theorem 10) gives the final statement of
Theorem 1. O

10 Proof of Lemma 4

Proof. Without loss of generality assume that P, < P, < --- < Pg. As mentioned before, the
entropy reduction A; corresponds to a gap in the Jensen’s inequality applied to the concave function
G (7). Also recall that Shannon entropy is strongly concave with respect to £1-norm (see e.g., Exam-
ple 2.5 in Shalev-Shwartz [24]). As a specific consequence (see e.g. Theorem 2.1.9 in Nesterov [26])
we obtain

wdJ (h)?

w k ’
Atzwﬁ(l—ﬁ)”ﬂ'o—ﬂ’ln%:m (;W(H-ﬁﬂ) = B-p) (7
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where the last equality results from the definition of J(h) = 2 Zle | P — B

Note that the following holds w > 2:&%’ where recall that w is the weight of the heaviest leaf in the
tree, i.e. the leaf with the highest weight, at round ¢. This leaf is selected to the currently considered

split [4]. In particular, the lower-bound on w is the consequence of the following

k
Gt:ZwlZWu In (771 > < Zwl Ink < 2twlnk,
1i

leL =1 lel

where w = max;ec, w;. Thus w > thf—l;k which when substituted to Equation 7 gives the final
statement of the lemma. O

11 Proof of Lemma 3

Proof. We bound the number of swaps that any node makes. Consider Rs = 4 and let j be the node
that is about to split and s be the orphan node that will be recycled (thus C,. = Cy). The condition
in Equation 2 implies that the swap is done if C; > 4(C,. + 1) = 4(Cs + 1). Algorithm 1 makes s a
child of j during the swap and sets its counter to C7°" = |C;/2] > 2(C, + 1) = 2(Cs + 1). Then
C, gets updated. Since the value of C7°" at least doubles after a swap and all counters are bounded
by the number of examples n, the node can be involved in at most log, n swaps. O

12 Equivalent forms of the objective function

Consider the objective function as given in Equation 1
k
J(h) =2 " mi|P(h(z) > 0) — P(h(x) > 0]i)].
i=1

Recall that X' denotes the set of all examples and let X; denote the set of examples in class i. Also
let |X'| denote the cardinality of set X’ and let |X;| denote the cardinality of set X;. Then we can
re-write the objective as

Pwex L(A(x) > 0) > ien, 1(A(z) > 0)

X ||

J(h)

k
2Z7Ti
i=1

k
= 2Zm [Eo[1(h(z) > 0)] = Eo[1(h(z) > 0[2)]]

= 2E[[E.[1(h(z) > 0)] — E.[1(h(z) > 0[2)]]].
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Toy example of the behavior of LOMtree algorithm

Figure 4 shows the toy example of the behavior of LOMtree algorithm for the first few data points.
Without loss of generality we consider the root node (exactly the same actions would be performed
in any other tree node). Notice that the algorithm achieves simultaneously balanced and pure split
of classes reaching the considered node.

e denotes the expectation E,[h(x)], and el, e2, e3, e4 denote the expectations E,[h(x)]i = 1],
E.[h(z)|i = 2], Ey[h(x)|i = 3], and E,[h(z)|¢ = 4]. For simplicity we assume score h(z) can only
be either 1 (if the example is sent to the right) or —1 (if the example is sent to the left). The figure
should be read as follows (we explain how to read first few illustrations):

a)

d)

g

a) Root is initialized. Expectation e is initialized to 0.

b) The first example x1 comes with label 1 (we denote it as (x1,1)). el is initialized to 0.
The difference between e and el is computed: e — el = 0. The difference is non-positive
thus the example is sent to the right child of the root, which is now being created (the left
child is created along with the right child as we always create both children of any node
simultaneously).

c) Expectations e and el get updated. It is shown that root and its right child saw an example
of class 1.

d) The second example 2 comes with label 2 (we denote it as (22, 2)). e2 is initialized to 0.
The difference between e and e2 is computed: e — e2 = 1. The difference is positive thus
the example is sent to the left child of the root.

e) Expectations e and e2 get updated. It is shown that root saw examples of class 1 and 2,
whereas its resp. left and right child saw example of class resp. 2 and 1.

f ...
(x1,1)
[ e | 0] e | 0| e |
el 0 . el 1
§o o0 I3
(x2,2) (x3,1)
w 1] az | RN 12 | IR
el 1 el 1 el 1
a e2 0 e2 -1 e2 -1

VoA At

(x4,3)
e /3] .z | HIEA 123 N
el 1 el 1 el 1
e2 -1 e2 -1 e2 -1
N swA SN
(x5,4)

w23 N .23 EREE

el 1 el 1

e2 -1 e2 -1

{2,3 {1 3 -1 {2,3 {1,4} e3 -1

oo’ &eo oo’

Figure 4: Toy example of the behavior of LOMtree algorithm in the tree root.



14 Experiments - dataset details

Below we provide the details of the datasets that we were using for the experiments in Section 4:
e Isolet: downloaded from http://www.cs.huji.ac.il/~shais/datasets/
ClassificationDatasets.html

e Sector and Aloi: downloaded from http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multiclass.html

o [mageNet [27]: features extracted according to http://www.di.ens.fr/willow/
research/cnn/, dataset obtained from the authors.

e ODP [20]: obtained from Paul Bennett. Our version has significantly more classes than
reported in the cited paper because we use the entire dataset.
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