
Bounding the Cost of Inference in Probabilistic
Theorem Proving - Supplementary Material

1 Supplemental Material

Here we include additional discussion and experimental results not included in the paper. We give a
proof of correctness of Algorithm CountPathLeaves (reprinted here as Algorithm 1 for convenience).
We give the experimental results of log sample variance as a function of the number of samples
(Figure 1). Additionally, in Section 3, we offer a more detailed discussion of the main complexity
result in the paper.

2 Proof of Correctness for Algorithm CountPathLeaves

Algorithm 1 Function countPathLeaves
1: Input: a subsequence path P
2: Output: fpxq : Z`

Ñ Z`, where x is a domain size and fpxq is the
number of search space leaves generated by P

3: //we represent the recursive polynomial apwc1 -
wc2q as a triple pa,wc1, wc2q, where a P Z, and
wc1, wc2 are either weak compositions (base case)
or triples of this type (recursive case)

4: type WCP = WC INT |WCD (INT,WCP,WCP)
5: evalPoly constructs the polynomial in WCP form
6: function MAKEPOLY((WC nq, pt, a, sq)
7: return WCD (n

2t´a , WC n, WC pn´ 2t´a
qq

8: end function
9: function MAKEPOLY((WCD (c, wc1, wc2qq, pt, a, sqq
10: return WCDpa, makePoly wc1 pt, a, sq, makePoly wc2 pt ´

s, a´ s, sqq
11: end function
12: //applyDec divides out the Or nodes with

counting variables that are decomposers
13: function APPLYDEC(d,(WC a))
14: return WC pa{p2dqq
15: end function
16: function APPLYDEC(d,(WCD (a,b,c)))
17: return WCD (a,applyDec d b,applyDec d c)
18: end function
19: //evalPoly creates a function that takes a

domain and computes the differences of the
constituent weak compositions

20: function EVALPOLY((WCD (a,b,c)),x)
21: return a * (evalPoly b x - evalPoly c x)
22: end function
23: function EVALPOLY((WC a),x)
24: return

`x`a´1
a´1

˘

25: end function
26: t = totalOrNodes(P)
27: dv = orNodesWithDecomposerCountingArgument(P)
28: poly = WC 2t; orNodesAbove=0;orNodesBetween=0
29: for N of P do
30: if N “ pA, xv, p, cyq then
31: poly = makePoly poly (t,orNodesAbove,orNodesBetween)
32: orNodesBetween=0
33: else
34: orNodesAbove++;orNodesBetween++
35: end if
36: end forreturn 2dv˚ evalPoly (applyDec dv poly)

Here we prove that Algorithm CountPath-
Leaves builds a function that correctly
counts the leaves of a dependent count-
ing path. The algorithm takes a dependent
counting path as input (i.e. a totally ordered
sequence of schematic nodes in which ev-
ery lifted Or node counts over the same
set of variables) and it returns a function,
fpxq : Z` Ñ Z`, that takes a domain size
as input and returns the number of leaves
corresponding to the dependent counting
path given the input domain size. The al-
gorithm works constructively by building
a function for a path over n decomposers
in terms of the difference of the functions
of paths over n´ 1 decomposers. Thus the
leaf counting function of any dependent
counting path is expressed in terms of the
base case, a dependent counting path with
zero decomposers. We consider this case
first.

2.1 Base Case- First consider the base
case: a dependent counting path over vari-
able set V (with domain ∆V) that contains
t total lifted Or nodes and no decomposers.

Theorem 2.1 Let P be a dependent count-
ing path containing t lifted Or nodes and
no decomposer labeled edges. Let ∆V

be the size of the domain of the variable
set. Then the lifted Search space associ-
ated with P contains WCp∆V , 2

tq leaves.

Proof: There are 2t possible truth assign-
ments to the t nodes; thus the number of possible counting assignments is the number of ways to
choose 2t non-negative numbers that sum to ∆V . Algorithm 2 (evalNode(Or)) generates a leaf for
each counting assignment. This quantity is the number of weak compositions of ∆V into 2t parts

1

(which we denote by WCp∆V , 2
tq, as described in Equation (2)). Thus the dependent counting path

generates WCp∆V , 2
tq leaves.

 2443

 2444

 2445

 2446

 2447

 2448

 2449

 2450

 2451

 0 20000 40000 60000 80000 100000

Lo
g

Sa
m

pl
e

Va
ria

nc
e

Number of Samples

Number of Samples vs Log Sample Variance:test.pdf

0
10

100
1000

(a) Friends and Smokers, Asthma
2600 objects, 10% evidence

 583

 584

 585

 586

 587

 588

 589

 590

 591

 592

 0 20000 40000 60000 80000 100000

Lo
g

Sa
m

pl
e

Va
ria

nc
e

Number of Samples

Number of Samples vs Log Sample Variance:test.pdf

0
10

100
1000

(b) webKB
410 objects, 10% evidence

 1090

 1095

 1100

 1105

 1110

 1115

 1120

 0 20000 40000 60000 80000 100000

Lo
g

Sa
m

pl
e

Va
ria

nc
e

Number of Samples

Number of Samples vs Log Sample Variance:test.pdf

0
10

100
1000

(c) protein
550 objects, 10% evidence

Figure 1: Log variance as a function of
number of samples, for various
Rao-Blackwellised estimators.

2.2 Constructive Case - Decomposer as Non-Counting
argument- Now consider the case in which the dependent
counting path contains a single decomposer-labeled edge
with a lifted Or nodes above it and t´ a lifted Or nodes
below it that do not count over the decomposer variable.
Algorithm 1 (evalNode(And)) generates WCp∆V , 2

aq

counting assignments above the decomposer label. At
the decomposer label, each counting assignment (consist-
ing of 2a parts) decomposes into 2a assignments (each
consisting of a single part). Each non-zero decomposed
assignment spawns a decomposed subtree that counts over
the original assignment. Thus, each weak composition
spawns a subtree for each of its non-zero parts. We must
count the number of leaves generated by only the non-zero
parts of each weak composition.

Theorem 2.2 Let P be a dependent counting path con-
taining a decomposer-labeled edge with a lifted Or nodes
above it and t´a lifted Or nodes below it that do not count
over the decomposer variable. Let ∆V be the size of the do-
main of the variable set. Then the lifted Search space asso-
ciated with P contains 2apWCp∆V , 2

tq´WCp∆V , 2
t´

2t´aqq leaves.

Proof: First, consider the number of leaves generated by
decomposition of only the first of the 2a elements of each
weak composition. With no decomposer label, the number
of leaves is WCp∆V , 2

tq; we wish to subtract out those
leaves that have the first term equal to 0 after a lifted Or
nodes. The 0 term will split into 2t´a zero terms over the
remaining t´ a nodes; thus, we can count the number of
leaves with the first element of its counting assignment
equal to 0 after a nodes as WCp∆V , 2

t ´ 2t´aq. There-
fore, we can represent the number of leaves with non-zero
first element after a lifted conditioning assignments as
WCp∆V , 2

tq ´WCp∆V , 2
t ´ 2t´aq. This relationship

holds for each of the 2a positions in the weak composi-
tions above the decomposer; the number of leaves in the
decomposed model equals 2apWCp∆V , 2

tq ´WCp∆V , 2
t ´ 2t´aqq.

Thus the dependent counting path with a single decomposer label is represented in terms of a multiple
of the difference of two dependent counting paths with no decomposers. Constructing the leaf
counting function for paths with n decomposers requires recursively applying this splitting rule to
each weak composition in the expression for n´ 1 decomposers. Lines 6´ 11 of Algorithm 1 detail
this procedure.

Model \c 0 10 100 1000
FSCA 0.0266 0.0083 0.0061 0.0467
WebKB 0.0250 0.0371 0.0559 1.0218
Protein 0.0213 0.0361 0.1130 0.3523

Table 1: Time per sample for various complexity
bounds on several models.

2.3 Paths with Decomposer Variables
as Counting Arguments- Dependent
counting paths that contain lifted Or nodes
that count over variables that have been de-
composed on will generate fewer leaves,
because the collection of d lifted Or
nodes with a decomposer counting variable
counts over a domain of 1 instead of ∆V ;
We can modify the leaf counting function detailed in 2.2 by dividing out the additional leafs.

2

Theorem 2.3 Let P be a dependent counting path containing t lifted Or nodes, a decomposer-
labeled edge with a lifted Or nodes above it and t´ a lifted Or nodes below. let d be the number of
lifted Or nodes that count over V below the decomposer label. Let ∆V be the size of the domain of
the variable set. Then the lifted Search space associated with P contains p2d`aqpWCp∆V , 2

t´dq ´

WCp∆V , 2
t´d ´ 2t´a´dqq leaves.

Proof: Each lifted Or node with a decomposer variable as its counting variable counts over a domain
of 1 instead of ∆V , and hence will generate 2d leaves instead of WCp∆V , 2

dq leaves. Thus the
number of leaves generated by these Or nodes is independent of the domain ∆V . Thus we can remove
those nodes from the formula given in Theorem 2.2 by dividing the number of parts of each weak
composition by 2d, and then multiplying the resulting function by 2d. The procedure is detailed in
lines 13´ 18 of Algorithm 1.

3 Additional Complexity Results

Here we offer a more detailed discussion of Theorem 3.1, the primary complexity result of the paper:

Theorem 3.1 Given a lifted And/Or Schematic S with associated Tree Decomposition DS “ pC, T q,
the overall time and space complexity of inference in S is OpmaxCiPCSSCpCiqq.

This result follows from the fact that SSC correctly counts the number of leaves generated by any
cluster. In terms of space complexity, it suffices to cache only the leaf nodes of each cluster, so the
space complexity result given in Theorem 3.1 is a strict upper bound; with a little more work, we can
state the space complexity exactly.

Corollary 3.2 Given a lifted And/Or Schematic S with associated Tree Decomposition DS “ pC, T q,
the overall space complexity of inference in S is

ř

CiPC SSCpCiq.

Similarly, we can compute a more precise expression for time complexity by computing the exact
number of copies of each node N P NodespSq produced by Algorithm evalNode. To compute
the number of leaves produced for a node N , we must (1) find the set CN of all clusters Ci s.t.
N P Ci, (2) for each Ci “ tN1, . . . , Nku extract the path PN

i “ tN1, . . . , Nu, and (3) compute
SSN pNq “ maxCiPCN

SSCpP
N
i q. Given this information, the exact number of leaves in the search

space produced by Algorithm evalNode on S simply a sum of the copies its produces of each node.

Corollary 3.3 Given a lifted And/Or Schematic S with associated Tree Decomposition DS “ pC, T q,
the overall time complexity of inference in S is

ř

NiPNodespSq SSN pNiq).

3

	Supplemental Material
	Proof of Correctness for Algorithm CountPathLeaves
	Base Case
	Constructive Case - Decomposer as Non-Counting argument
	Paths with Decomposer Variables as Counting Arguments

	Additional Complexity Results

