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Abstract

We propose a new deep architecture for topic modeling, based on Poisson Fac-
tor Analysis (PFA) modules. The model is composed of a Poisson distribution to
model observed vectors of counts, as well as a deep hierarchy of hidden binary
units. Rather than using logistic functions to characterize the probability that a
latent binary unit is on, we employ a Bernoulli-Poisson link, which allows PFA
modules to be used repeatedly in the deep architecture. We also describe an ap-
proach to build discriminative topic models, by adapting PFA modules. We derive
efficient inference via MCMC and stochastic variational methods, that scale with
the number of non-zeros in the data and binary units, yielding significant effi-
ciency, relative to models based on logistic links. Experiments on several corpora
demonstrate the advantages of our model when compared to related deep models.

1 Introduction

Deep models, understood as multilayer modular networks, have been gaining significant interest
from the machine learning community, in part because of their ability to obtain state-of-the-art per-
formance in a wide variety of tasks. Their modular nature is another reason for their popularity.
Commonly used modules include, but are not limited to, Restricted Boltzmann Machines (RBMs)
[10], Sigmoid Belief Networks (SBNs) [22], convolutional networks [18], feedforward neural net-
works, and Dirichlet Processes1 (DPs). Perhaps the two most well-known deep model architectures
are the Deep Belief Network (DBN) [11] and the Deep Boltzmann Machine (DBM) [25], the former
composed of RBM and SBN modules, whereas the latter is purely built using RBMs.

Deep models are often employed in topic modeling. Specifically, hierarchical tree-structured models
have been widely studied over the last decade, often composed of DP modules. Examples of these
include the nested Chinese Restaurant Process (nCRP) [1], the hierarchical DP (HDP) [27], and
the nested HDP (nHDP) [23]. Alternatively, topic models built using modules other than DPs have
been proposed recently, for instance the Replicated Softmax Model (RSM) [12] based on RBMs,
the Neural Autoregressive Density Estimator (NADE) [17] based on neural networks, the Over-
replicated Softmax Model (OSM) [26] based on DBMs, and Deep Poisson Factor Analysis (DPFA)
[6] based on SBNs.

DP-based models have attractive characteristics from the standpoint of interpretability, in the sense
that their generative mechanism is parameterized in terms of distributions over topics, with each
topic characterized by a distribution over words. Alternatively, non-DP-based models, in which
modules are parameterized by a deep hierarchy of binary units [12, 17, 26], do not have parameters
that are as readily interpretable in terms of topics of this type, although model performance is often
excellent. The DPFA model in [6] is one of the first representations that characterizes documents
based on distributions over topics and words, while simultaneously employing a deep architecture
based on binary units. Specifically, [6] integrates the capabilities of Poisson Factor Analysis (PFA)

1Deep models based on DP priors are usually called hierarchical models.
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[32] with a deep architecture composed of SBNs [7]. PFA is a nonnegative matrix factorization
framework closely related to DP-based models. Results in [6] show that DPFA outperforms other
well-known deep topic models.

Building upon the success of DPFA, this paper proposes a new deep architecture for topic model-
ing, based entirely on PFA modules. Our model fundamentally merges two key aspects of DP and
non-DP-based architectures, namely: (i) its fully nonnegative formulation relies on Dirichlet dis-
tributions, and is thus readily interpretable throughout all its layers, not just at the base layer as in
DPFA [6]; (ii) it adopts the rationale of traditional non-DP-based models such as DBNs and DBMs,
by connecting layers via binary units, to enable learning of high-order statistics and structured cor-
relations. The probability of a binary unit being on is controlled by a Bernoulli-Poisson link [30]
(rather than a logistic link, as in the SBN), allowing repeated application of PFA modules at all
layers of the deep architecture.

The main contributions of this paper are: (i) A deep architecture for topic models based entirely on
PFA modules. (ii) Unlike DPFA, which is based on SBNs, our model has inherent shrinkage in all
its layers, thanks to the DP-like formulation of PFA. (iii) DPFA requires sequential updates for its
binary units, while in our formulation these are updated in block, greatly improving mixing. (iv)
We show how PFA modules can be used to easily build discriminative topic models. (v) An efficient
MCMC inference procedure is developed, that scales as a function of the number of non-zeros in the
data and binary units. In contrast, models based on RBMs and SBNs scale with the size of the data
and binary units. (vi) We also employ a scalable Bayesian inference algorithm based on the recently
proposed Stochastic Variational Inference (SVI) framework [15].

2 Model

2.1 Poisson factor analysis as a module

We present the model in terms of document modeling and word counts, but the basic setup is appli-
cable to other problems characterized by vectors of counts (and we consider such a non-document
application when presenting results). Assume xn is an M -dimensional vector containing word
counts for the n-th of N documents, where M is the vocabulary size. We impose the model,

xn ∼ Poisson (Ψ(θn ◦ hn)), where Ψ ∈ R
M×K

+ is the factor loadings matrix with K factors,

θn ∈ R
K
+ are factor intensities, hn ∈ {0, 1}K is a vector of binary units indicating which factors

are active for observation n, and ◦ represents the element-wise (Hadamard) product. One possible
prior specification for this model, recently introduced in [32], is

xmn =
∑K

k=1xmkn , xmkn ∼ Poisson(λmkn) , λmkn = ψmkθknhkn ,

ψk ∼ Dirichlet(η1M ) , θkn ∼ Gamma(rk, (1− b)b−1) , hkn ∼ Bernoulli(πkn) ,
(1)

where 1M is anM -dimensional vector of ones, and we have used the additive property of the Poisson
distribution to decompose the m-th observed count of xn as K latent counts, {xmkn}

K

k=1. Here, ψk

is column k of Ψ, xmn is component m of xn, θkn is component k of θn, and hkn is component k
of hn. Furthermore, we let η = 1/K, b = 0.5 and rk ∼ Gamma(1, 1). Note that η controls for the
sparsity of Ψ, while rk accommodates for over-dispersion in xn via θn (see [32] for details).

There is one parameter in (1) for which we have not specified a prior distribution, specifically
E[p(hkn = 1)] = πkn. In [32], hkn is provided with a beta-Bernoulli process prior by letting
πkn = πk ∼ Beta(cǫ, c(1− ǫ)), meaning that every document has on average the same probability
of seeing a particular topic as active, based on corpus-wide popularity. It further assumes topics are
independent of each other. These two assumptions are restrictive because: (i) in practice, documents
belong to a rather heterogeneous population, in which themes naturally occur within a corpus; letting
documents have individual topic activation probabilities will allow the model to better accommodate
for heterogeneity in the data. (ii) Some topics are likely to co-occur systematically, so being able to
harness such correlation structures can improve the ability of the model for fitting the data.

The hierarchical model in (1), which in the following we denote as xn ∼ PFA(Ψ,θn,hn; η, rk, b),
short for Poisson Factor Analysis (PFA), represents documents, xn, as purely additive combinations
of up toK topics (distributions over words), where hn indicates what topics are active and θn, is the
intensity of each one of the active topics that is manifested in document xn. It is also worth noting
that the model in (1) is closely related to other widely known topic model approaches, such as Latent
Dirichlet Allocation (LDA) [3], HDP [27] and Focused Topic Modeling (FTM) [29]. Connections
between these models are discussed in Section 4.
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2.2 Deep representations with PFA modules

Several models have been proposed recently to address the limitations described above [1, 2, 6, 27].
In particular, [6] proposed using multilayer SBNs [22], to impose correlation structure across topics,
while providing each document with the ability to control its topic activation probabilities, without
the need of a global beta-Bernoulli process [32]. Here we follow the same rationale as [6], but
without SBNs. We start by noting that for a binary vector hn with elements hkn, we can write

hkn = 1(zkn ≥ 1), zkn ∼ Poisson(λ̃kn) , (2)

where zkn is a latent count for variable hkn, parameterized by a Poisson distribution with rate λ̃kn;
1(·) = 1 if the argument is true, and 1(·) = 0 otherwise. The model in (2), recently proposed in

[30], is known as the Bernoulli-Poisson Link (BPL) and is denoted hn ∼ BPL(λ̃n), for λ̃n ∈ R
K
+ .

After marginalizing out the latent count zkn [30], the model in (2) has the interesting property that

p(hkn = 1) = Bernoulli(πkn), where πkn = 1− exp(−λ̃kn). Hence, rather than using the logistic

function to represent binary unit probabilities, we employ πkn = 1− exp(−λ̃kn).

In (1) and (2) we have represented the Poisson rates as λmkn and λ̃kn, respectively, to distinguish
between the two. However, the fact that the count vector in (1) and the binary variable in (2) are
both represented in terms of Poisson distributions suggests the following deep model, based on PFA
modules (see graphical model in Supplementary Material):

xn ∼ PFA
(
Ψ(1),θ(1)n ,h(1)

n ; η(1), r
(1)
k
, b(1)

)
, h(1)

n = 1
(
z(2)n

)
,

z(2)n ∼ PFA
(
Ψ(2),θ(2)n ,h(2)

n ; η(2), r
(2)
k
, b(2)

)
,

...

... h(L−1)
n = 1

(
z(L)
n

)
,

z(L)
n ∼ PFA

(
Ψ(L),θ(L)

n ,h(L)
n ; η(L), r

(L)
k
, b(L)

)
, h(L)

n = 1
(
z(L+1)
n

)
,

(3)

whereL is the number of layers in the model, and 1(·) is a vector operation in which each component
imposes the left operation in (2). In this Deep Poisson Factor Model (DPFM), the binary units at

layer ℓ ∈ {1, . . . , L} are drawn h
(ℓ)
n ∼ BPL(λ

(ℓ+1)
n ), for λ

(ℓ)
n = Ψ(ℓ)(θ

(ℓ)
n ◦ h

(ℓ)
n ). The form of

the model in (3) introduces latent variables {z
(ℓ)
n }L+1

ℓ=2 and the element-wise function 1(·), rather

than explicitly drawing {h
(ℓ)
n }L

ℓ=1 from the BPL distribution. Concerning the top layer, we let

z
(L+1)
kn

∼ Poisson(λ
(L+1)
k

) and λ
(L+1)
k

∼ Gamma(a0, b0).

2.3 Model interpretation

Consider layer 1 of (3), from which xn is drawn. Assuming h
(1)
n is known, this corresponds to a

focused topic model [29]. The columns of Ψ(1) correspond to topics, with the k-th column ψ
(1)
k

defining the probability with which words are manifested for topic k (each ψ
(1)
k

is drawn from a

Dirichlet distribution, as in (1)). Generalizing the notation from (1), λ
(1)
kn

= ψ
(1)
k
θ
(1)
kn
h
(1)
kn

∈ R
M
+ is

the rate vector associated with topic k and document n, and it is active when h
(1)
kn

= 1. The word-

count vector for document nmanifested from topic k is xkn ∼ Poisson(λ
(1)
kn

), and xn =
∑K1

k=1 xkn,

where K1 is the number of topics in the model. The columns of Ψ(1) define correlation among the

words associated with the topics; for a given topic (column of Ψ(1)), some words co-occur with high
probability, and other words are likely jointly absent.

We now consider a two-layer model, with h
(2)
n assumed known. To generate h

(1)
n , we first draw z

(2)
n ,

which, analogous to above, may be expressed as z
(2)
n =

∑K2

k=1 z
(2)
kn

, with z
(2)
kn

∼ Poisson(λ
(2)
kn

) and

λ
(2)
kn

= ψ
(2)
k
θ
(2)
kn
h
(2)
kn

. Column k of Ψ(2) corresponds to a meta-topic, with ψ
(2)
k

a K1-dimensional
probability vector, denoting the probability with which each of the layer-1 topics are “on” when

layer-2 “meta-topic” k is on (i.e., when h
(2)
kn

= 1). The columns of Ψ(2) define correlation among

the layer-1 topics; for a given layer-2 meta-topic (column of Ψ(2)), some layer-1 topics co-occur
with high probability, and other layer-1 topics are likely jointly absent.
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As one moves up the hierarchy, to layers ℓ > 2, the meta-topics become increasingly more abstract
and sophisticated, manifested in terms of probabilisitic combinations of topics and meta-topics at
the layers below. Because of the properties of the Dirichlet distribution, each column of a particular

Ψ(ℓ) is encouraged to be sparse, implying that a column of Ψ(ℓ) encourages use of a small subset

of columns of Ψ(ℓ−1), with this repeated all the way down to the data layer, and the topics reflected

in the columns of Ψ(1). This deep architecture imposes correlation across the layer-1 topics, and it
does it through use of PFA modules at all layers of the deep architecture, unlike [6] which uses an
SBN for layers 2 through L, and a PFA at the bottom layer. In addition to the elegance of using a
single class of modules at each layer, the proposed deep model has important computational benefits,
as later discussed in Section 3.

2.4 PFA modules for discriminative tasks

Assume that there is a label yn ∈ {1, . . . , C} associated with document n. We seek to learn the
model for mapping xn → yn simultaneously with learning the above deep topic representation. In
fact, the mapping xn → yn is based on the deep generative process for xn in (3). We represent yn
via the C-dimensional one-hot vector ŷn, which has all elements equal to zero except one, with the
non-zero value (which is set to one) located at the position of the label. We impose the model

ŷn ∼ Multinomial(1, λ̂n) , λ̂cn = λcn/
∑C

c=1 λcn , (4)

where λ̂cn is element c of λ̂n, λn = B(θ
(1)
n ◦ h

(1)
n ) and B ∈ R

C×K

+ , is a matrix of nonnegative
classification weights, with prior distribution bk ∼ Dirichlet(ζ1C), where bk is a column of B.
Combining (3) with (4) allows us to learn the mapping xn → yn via the shared first-layer local

representation, θ
(1)
n ◦ h

(1)
n , that encodes topic usage for document n. This sharing mechanism

allows the model to learn topics, Ψ(1), and meta-topics, {Ψ(ℓ)}L
ℓ=2, biased towards discrimination,

as opposed to just explaining the data, xn. We call this construction discriminative deep Poisson
factor modeling. It is worth noting that this is the first time that PFA and multi-class classification
have been combined into a joint model. Although other DP-based discriminative topic models have
been proposed [16, 21], they rely on approximations in order to combine the topic model, usually
LDA, with softmax-based classification approaches.

3 Inference

A very convenient feature of the model in (3) is that all its conditional posterior distributions can be
written in closed form due to local conjugacy. In this section, we focus on Markov chain Monte Carlo
(MCMC) via Gibbs sampling as reference implementation and a stochastic variational inference
approach for large datasets, where the fully Bayesian treatment becomes prohibitive.

Other alternatives for scaling up inference in Bayesian models such as the parameter server [13,
19], conditional density filtering [9] and stochastic gradient-based approaches [4, 5, 28] are left as
interesting future work.

MCMC Due to local conjugacy, Gibbs sampling for the model in (3) amounts to sam-
pling in sequence from the conditional posterior of all the parameters of the model, namely

{Ψ(ℓ),θ
(ℓ)
n ,h

(ℓ)
n , r

(ℓ)
k

}L
ℓ=1 and λ(L+1). The remaining parameters of the model are set to fixed

values: η = 1/K, b = 0.5 and a0 = b0 = 1. We note that priors for η, b, a0 and b0 exist that
result in Gibbs-style updates, and can be easily incorporated into the model if desired; however, we
opted to keep the model as simple as possible, without compromising flexibility. The most unique
conditional posteriors are shown below, without layer index for clarity,

ψk ∼ Dirichlet(η + x1k·, . . . , η + xMk·) ,

θkn ∼ Gamma(rkhkn + x·kn, b
−1) ,

hkn ∼ δ(x·kn = 0)Bernoulli(π̃kn(π̃kn + 1− πkn)
−1) + δ(x·kn ≥ 1) ,

(5)

where xmk· =
∑N

n=1 xmkn, x·kn =
∑M

m=1 xmkn and π̃kn = πkn(1 − b)rk . Omitted details,
including those for the discriminative DPFM in Section 2.4, are given in the Supplementary Material.
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Initialization is done at random from prior distributions, followed by layer-wise fitting (pre-training).
In the experiments, we run 100 Gibbs sampling cycles per layer. In preliminary trials we observed
that 50 cycles are usually enough to obtain good initial values of the global parameters of the model,

namely {Ψ(ℓ), r
(ℓ)
k

}L
ℓ=1 and λ(L+1).

Stochastic variational inference (SVI) SVI is a scalable algorithm for approximating poste-
rior distributions consisting of EM-style local-global updates, in which subsets of a dataset (mini-
batches) are used to update in closed-form the variational parameters controlling both the local and
global structure of the model in an iterative fashion [15]. This is done by using stochastic optimiza-
tion with noisy natural gradients to optimize the variational objective function. Additional details
and theoretical foundations of SVI can be found in [15].

In practice the algorithm proceeds as follows, where again we have omitted the layer index for

clarity: (i) let {Ψ(t), r
(t)
k
,λ(t)} be the global variables at iteration t. (ii) Sample a mini-batch from

the full dataset. (iii) Compute updates for the variational parameters of the local variables using

φmkn ∝ exp(E[logψmk] + E[log θkn]) ,

θkn ∼ Gamma(E[rk]E[hkn] +
∑M

m=1φmkn, b
−1) ,

hkn ∼ E[p(x·kn = 0)]Bernoulli(E[π̃kn](E[π̃kn] + 1− E[πkn])
−1) + E[p(x·kn ≥ 1)] ,

where E[xmkn] = φmkn and E[π̃kn] = E[πkn](1 − b)E[rk]. In practice, expectations for θkn and
hkn are computed in log-domain. (iv) Compute a local update for the variational parameters of the
global variables (only Ψ is shown) using

ψ̂mk = η +NN−1
B

∑NB

n=1φmkn , (6)

where N and NB are sizes of the corpus and mini-batch, respectively. Finally, we update the global

variables as ψ
(t+1)
k

= (1 − ρt)ψ
(t)
k

+ ρtψ̂k, where ρt = (t + τ)−κ. The forgetting rate, κ ∈
(0.5, 1] controls how fast previous information is forgotten and the delay, τ ≥ 0, down-weights
early iterations. These conditions for κ and τ guarantee that the iterative algorithm converges to a
local optimum of the variational objective function. In the experiments, we set κ = 0.7 and τ = 128.
Additional details of the SVI algorithm for the model in (3) are given in the Supplementary Material.

Importance of computations scaling as a function of number of non-zeros From a practical
standpoint, the most important feature of the model in (3) is that inference does not scale as a
function of the size of the corpus, but as a function of its number of non-zero elements, which is
advantageous in cases where the input data is sparse (often the case). For instance, 2% of the entries
in the widely studied 20 Newsgroup corpus are non-zero; similar proportions are also observed in
the Reuters and Wikipedia data. Furthermore, this feature also extends to all the layers of the model

regardless of {h
(ℓ)
n } being latent. Similarly, for the discriminative DPFM in Section 2.4, inference

scales withN , notCN , because the binary vector ŷn has a single non-zero entry. This is particularly
appealing in cases where C is large.

In order to show that this scaling behavior holds, it is enough to see that by construction, from (1),

if xmn =
∑K

k=1 xmkn = 0 (or z
(ℓ)
mn for ℓ > 1), thus xmkn = 0, ∀k with probability 1. Besides,

from (2) we see that if hkn = 0 then zkn = 0 with probability 1. As a result, update equations for

all parameters of the model except for {h
(ℓ)
n }, depend only on non-zero elements of xn and {z

(ℓ)
n }.

Updates for the binary variables can be cheaply obtained in block from h
(ℓ)
kn

∼ Bernoulli(π
(ℓ)
kn

) via

λ̃
(ℓ)
kn

, as previously described.

It is worth mentioning that models based on multinomial or Poisson likelihoods such as LDA [3],
HDP [27], FTM [29] and PFA [32], also enjoy this property. However, the recently proposed deep
PFA [6], does not use PFA modules on layers other than the first one. It uses SBNs or RBMs that
are known to scale with the number of binary variables as opposed to their non-zero elements.

4 Related work

Connections to other DP-based topic models PFA is a nonnegative matrix factorization model
with Poisson link that is closely related to other DP-based models. Specifically, [32] showed that
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by making p(hkn = 1) = 1 and letting θkn have a Dirichlet, instead of a Gamma distribution as
in (1), we can recover LDA by using the equivalence between Poisson and multinomial distributions.
By looking at (5)-(6), we see that PFA and LDA have the same blocked Gibbs [3] and SVI [14]
updates, respectively, when Dirichlet distributions for θkn are used. In [32], the authors showed that
using the Poisson-gamma representation of the negative binomial distribution and a beta-Bernoulli
specification for p(hkn) in (1), we can recover the FTM formulation and inference in [29]. More
recently, [31] showed that PFA is comparable to HDP in that the former builds group-specific DPs
with normalized gamma processes. A more direct relationship between a three-layer HDP [27] and a
two-layer version of (3) can be established by grouping documents by categories. In the HDP, three
DPs are set for topics, document-wise topic usage and category-wise topic usage. In our model,

Ψ(1) represent K1 topics, θ
(1)
n ◦ h

(1)
n encodes document-wise topic usage and Ψ(2) encodes topic

usage for K2 categories. In HDP, documents are assigned to categories a priori, but in our model

document-category soft assignments are estimated and encoded via θ
(2)
n ◦ h

(2)
n . As a result, the

model in (3) is a more flexible alternative to HDP in that it groups documents into categories in an
unsupervised manner.

Similar models Non-DP-based deep models for topic modeling employed in the deep learning
literature typically utilize RBMs or SBNs as building blocks. For instance, [12] and [20] extended
RBMs via DBNs to topic modeling and [26] proposed the over-replicated softmax model, a deep
version of RSM that generalizes RBMs.

Recently, [24] proposed a framework for generative deep models using exponential family modules.
Although they consider Poisson-Poisson and Gamma-Gamma factorization modules akin to our
PFA modules, their model lacks the explicit binary unit linking between layers commonly found in
traditional deep models. Besides, their inference approach, black-box variational inference, is not as
conceptually simple, but it scales with the number of non-zeros as our model.

DPFA, proposed in [6], is the model closest to ours. Nevertheless, our proposed model has a num-
ber of key differentiating features. (i) Both of them learn topic correlations by building a multilayer
modular representation on top of PFA. Our model uses PFA modules throughout all layers in a con-
ceptually simple and easy to interpret way. DPFA uses Gaussian distributed weight matrices within
SBN modules; these are hard to interpret in the context of topic modeling. (ii) SBN architectures
have the shortcoming of not having block closed-form conditional posteriors for their binary vari-
ables, making them difficult to estimate, especially as the number of variables increases. (iii) Factor
loading matrices in PFAs have natural shrinkage to counter overfitting, thanks to the Dirichlet prior
used for their columns. In SBN-based models, shrinkage has to be added via variable augmenta-
tion at the cost of increasing inference complexity. (iv) Inference for SBN modules scales with the
number of hidden variables in the model, not with the number of non-zero elements, as in our case.

5 Experiments

Benchmark corpora We present experiments on three corpora: 20 Newsgroups (20 News),
Reuters corpus volume I (RCV1) and Wikipedia (Wiki). 20 News is composed of 18,845 doc-
uments and 2,000 words, partitioned into a 11,315 training set and a 7,531 test set. RCV1 has
804,414 newswire articles containing 10,000 words. A random 10,000 subset of documents is used
for testing. For Wiki, we obtained 107 random documents, from which a subset of 1,000 is set aside
for testing. Following [14], we keep a vocabulary consisting of 7,702 words taken from the top
10,000 words in the Project Gutenberg Library.

As performance measure we use held-out perplexity, defined as the geometric mean of the inverse
marginal likelihood of every word in the set. We cannot evaluate the intractable marginal for our
model, thus we compute the predictive perplexity on a 20% subset of the held-out set. The remaining
80% is used to learn document-specific variables of the model. The training set is used to estimate
the global parameters of the model. Further details on perplexity evaluation for PFA models can be
found in [6, 32].

We compare our model (denoted DPFM) against LDA [3], FTM [29], RSM [12], nHDP [23] and
DPFA with SBNs (DPFA-SBN) and RBMs (DPFA-RBM) [6]. For all these models we use the
settings described in [6]. Inference methods for RSM and DPFA are contrastive divergence with
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Table 1: Held-out perplexities for 20 News, RCV1 and Wiki. Size indicates number of topics and/or
binary units, accordingly.

Model Method Size 20 News RCV1 Wiki

DPFM SVI 128-64 818 961 791
DPFM MCMC 128-64 780 908 783
DPFA-SBN SGNHT 1024-512-256 —– 942 770
DPFA-SBN SGNHT 128-64-32 827 1143 876
DPFA-RBM SGNHT 128-64-32 896 920 942
nHDP SVI (10,10,5) 889 1041 932

LDA Gibbs 128 893 1179 1059
FTM Gibbs 128 887 1155 991
RSM CD5 128 877 1171 1001

step size 5 (CD5) and stochastic gradient Nse-Hoover thermostats (SGNHT) [5], respectively. For
our model, we run 3,000 samples (first 2,000 as burnin) for MCMC and 4,000 iterations with 200-
document mini-batches for SVI. For the Wiki corpus, MCMC-based DPFM is run on a random
subset of 106 documents. The code used, implemented in Matlab, will be made publicly available.

Table 1 show results for the corpora being considered. Figures for methods other than DPFM were
taken from [6]. We see that multilayer models (DPFM, DPFA and nHDP) consistently outperform
single layer ones (LDA, FTM and RSM), and that DPFM has the best performance across all cor-
pora for models of comparable size. OSM result (not shown) are about 20 units better than RSM
in 20 News and RCV1, see [26]. We also see that MCMC yields better perplexities when com-
pared to SVI. The difference in performance between these two inference methods is likely due
to the mean-field approximation and the online nature of SVI. We verified empirically (results not
shown) that doubling the number of hidden units, adding a third layer or increasing the number
of samples/iterations for DPFM does not significantly change the results in Table 1. As a note on
computational complexity, one iteration of the two-layer model on the 20 News corpus takes ap-
proximately 3 and 2 seconds, for MCMC and SVI, respectively. For comparison, we also ran the
DPFA-SBN model in [6] using a two-layer model of the same size; in their case it takes about 24, 4
and 5 seconds to run one iteration using MCMC, conditional density filtering (CDF) and SGNHT,
respectively. Runtimes for DPFA-RBM are similar to those of DPFA-SBN, LDA and RSM are faster
than 1-layer DPFM, FTM is comparable to the latter, and nHDP is slower than DPFM.

Figure 1 shows a representative meta-topic, ψ
(2)
k

, from the two-layer model for 20 News. For the

five largest weights in ψ
(2)
k

(y-axis), which correspond to layer-1 topic indices (x-axis), we also

show the top five words in their layer-1 topic, ψ
(1)
k

. We observe that this meta-topic is loaded with
religion specific topics, judging by the words in them. Additional graphs, and tables showing the
top words in each topic for 20 News and RCV1 are provided in the Supplementary Material.
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Figure 1: Representative meta-topics obtained from (left) 20 News and (right) medical records.

Meta-topic weights ψ
(2)
k

vs. layer-1 topics indices, with word lists corresponding to the top five

words in layer-1 topics, ψ
(1)
k

.

Classification We use 20 News for document classification, to evaluate the discriminative DPFM
model described in Section 2.4. We use test set accuracy on the 20-class task as performance mea-
sure and compare our model against LDA, DocNADE [17], RSM and OSM. Results for these four
models were obtained from [26], where multinomial logistic regression with cross-entropy loss func-
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Table 2: Test accuracy on 20 News. Subscript accompanying model names indicate their size.

Model LDA128 DocNADE512 RSM512 OSM512 DPFM128 DPFM128−64

Accuracy (%) 65.7 68.4 67.7 69.1 72.11 72.67

tion was used as classification module. Test accuracies in Table 2 show that our model significantly
outperforms the others being considered. Note as well that our one-layer model still improves upon
the four times larger OSM, by more than 3%. We verified that our two-layer model outperforms
well known supervised methods like multinomial logistic regression, SVM, supervised LDA and
two-layer feedforward neural networks, for which test accuracies ranged from 67% to 72.14%, using
term frequency-inverse document frequency features. We could not improve results by increasing
the size of our model, however, we may be able to do so by following the approach of [33], where a
single classification module (SVM) is shared by 20 one-layer topic models (LDAs). Exploration of
more sophisticated deep model architectures for discriminative DPFMs is left as future work.

Medical records The Duke University Health System medical records database used here, is a
5 year dataset generated within a large health system including three hospitals and an extensive
network of outpatient clinics. For this analysis, we utilized self-reported medication usage from
over 240,000 patients that had over 4.4 million patient visits. These patients reported over 34,000
different types of medications which were then mapped to one of 1,691 pharmaceutical active ingre-
dients (AI) taken from RxNorm, a depository of medication information maintained by the National
Library of Medicine that includes trade names, brand names, dosage information and active ingredi-
ents. Counts for patient-medication usage reflected the number of times an AI appears in a patients
record. Compound medications that include multiple active ingredients incremented counts for all
AI in that medication. Removing AIs with less than 10 overall occurrences and patients lacking
medication information, results in a 1,019×131,264 matrix of AIs vs. patients.

Results for a MCMC-based DPFM of size 64-32, with the same setting used for the first exper-
iment, indicate that pharmaceutical topics derived from this analysis form clinically reasonable
clusters of pharmaceuticals, that may be prescribed to patients for various ailments. In particu-
lar, we found that layer-1 topic 46 includes a cluster of insulin products: Insulin Glargine, Insulin
Lispro, Insulin Aspart, NPH Insulin and Regular Insulin. Insulin dependent type-2 diabetes patients
often rely on tailored mixtures of insulin products with different pharmacokinetic profiles to en-
sure glycemic control. In another example, we found in layer-1 topic 22, an Angiotensin Receptor
Blocker (ARB), Losartan with a HMGCoA Reductase inhibitor, Atorvastatin and a heart specific
beta blocker, Carvedilol. This combination of medications is commonly used to control hyperten-
sion and hyperlipidemia in patients with cardiovascular risk. The second layer correlation structure
between topics of drug products also provide interesting composites of patient types based on the
first-layer pharmaceutical topics. Specifically, layer-2 factor 22 in Figure 1 reveals correlation be-
tween layer-1 drug factors that would be used to treat types of respiratory patients that had chronic
obstructive respiratory disease and/or asthma (Albuterol, Montelukast) and seasonal allergies. Ad-
ditional graphs, including top medications for all pharmaceutical topics found by our model are
provided in the Supplementary Material.

6 Conclusion

We presented a new deep model for topic modeling based on PFA modules. We have combined the
interpretability of DP-based specifications found in traditional topic models with deep hierarchies of
hidden binary units. Our model is elegant in that a single class of modules is used at each layer, but
at the same time, enjoys the computational benefit of scaling as a function of the number of zeros
in the data and binary units. We described a discriminative extension for our deep architecture, and
two inference methods: MCMC and SVI, the latter for large datasets. Compelling experimental
results on several corpora and on a new medical records database demonstrated the advantages of
our model.

Future directions include working towards alternatives for scaling up inference algorithms based on
gradient-based approaches, extending the use of PFA modules in deep architectures to more sophis-
ticated discriminative models, multi-modal tasks with mixed data types, and time series modeling
using ideas similar to [8].

Acknowledgements This research was supported in part by ARO, DARPA, DOE, NGA and ONR.

8



References

[1] D. M. Blei, D. M. Griffiths, M. I. Jordan, and J. B. Tenenbaum. Hierarchical topic models and the nested
Chinese restaurant process. In NIPS, 2004.

[2] D. M. Blei and J. D. Lafferty. A correlated topic model of science. AOAS, 2007.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. JMLR, 2003.

[4] T. Chen, E. B. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In ICML, 2014.

[5] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and H. Neven. Bayesian sampling using stochastic
gradient thermostats. In NIPS, 2014.

[6] Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin. Scalable deep Poisson factor analysis for topic
modeling. In ICML, 2015.

[7] Z. Gan, R. Henao, D. Carlson, and L. Carin. Learning deep sigmoid belief networks with data augmenta-
tion. In AISTATS, 2015.

[8] Z. Gan, C. Li, R. Henao, D. Carlson, and L. Carin. Deep temporal sigmoid belief networks for sequence
modeling. In NIPS, 2015.

[9] R. Guhaniyogi, S. Qamar, and D. B. Dunson. Bayesian conditional density filtering. arXiv:1401.3632,
2014.

[10] G. Hinton. Training products of experts by minimizing contrastive divergence. Neural computation, 2002.

[11] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural computation,
2006.

[12] G. E. Hinton and R. R. Salakhutdinov. Replicated softmax: an undirected topic model. In NIPS, 2009.

[13] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P. Xing. More
effective distributed ML via a stale synchronous parallel parameter server. In NIPS, 2013.

[14] M. Hoffman, F. R. Bach, and D. M. Blei. Online learning for latent Dirichlet allocation. In NIPS, 2010.

[15] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. JMLR, 2013.

[16] S. Lacoste-Julien, F. Sha, and M. I. Jordan. DiscLDA: Discriminative learning for dimensionality reduc-
tion and classification. In NIPS, 2009.

[17] H. Larochelle and S. Lauly. A neural autoregressive topic model. In NIPS, 2012.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 1998.

[19] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed machine learning
with the parameter server. In NIPS, 2014.

[20] L. Maaloe, M. Arngren, and O. Winther. Deep belief nets for topic modeling. arXiv:1501.04325, 2015.

[21] J. D. Mcauliffe and D. M. Blei. Supervised topic models. In NIPS, 2008.

[22] R. M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 1992.

[23] J. Paisley, C. Wang, D. M. Blei, and M. I. Jordan. Nested hierarchical Dirichlet processes. PAMI, 2015.

[24] R. Ranganath, L. Tang, L. Charlin, and D. M. Blei. Deep exponential families. In AISTATS, 2014.

[25] R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In AISTATS, 2009.

[26] R. R. S. Srivastava, Nitish and G. E. Hinton. Modeling documents with deep Boltzmann machines. In
UAI, 2013.

[27] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes. JASA, 2006.

[28] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In ICML, 2011.

[29] S. Williamson, C. Wang, K. Heller, and D. Blei. The IBP compound Dirichlet process and its application
to focused topic modeling. In ICML, 2010.

[30] M. Zhou. Infinite edge partition models for overlapping community detection and link prediction. In
AISTATS, 2015.

[31] M. Zhou and L. Carin. Negative binomial process count and mixture modeling. PAMI, 2015.

[32] M. Zhou, L. Hannah, D. Dunson, and L. Carin. Beta-negative binomial process and Poisson factor anal-
ysis. In AISTATS, 2012.

[33] J. Zhu, A. Ahmed, and E. P. Xing. MedLDA: maximum margin supervised topic models. JMLR, 2012.

9


