
Supplementary Material
A Proof of Lemma 1

Proof. Let

R(u) =
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@f(x) +AT y
@g(y)�Ax

◆

be a vector containing the stacked primal and dual residuals (sub-gradients) for (1). Then the opti-
mality condition for (1) can be written succinctly as

0 2 R(u?
). (29)

Using this notation, it can be seen that the iterates of PDHG satisfy
0 2 R(uk+1

) +Mk(u
k+1 � uk

). (30)
Subtracting (30) from (29) yields

Mk(u
k+1 � uk

) 2 R(u?
)�R(uk+1

).

Now, f and g are convex and therefore R is monotone. Taking the inner product with (u? � uk+1
)

gives us
(u? � uk+1

)

TMk(u
k+1 � uk

) � 0. (31)
Now, observe the simple identity

kuk � u?k2Mk
= kuk+1 � ukk2Mk

+ kuk+1 � u?k2Mk
+ 2(uk � uk+1

)

TMk(u
k+1 � u?

).

Applying (31) to this identity yields the result.

B Proof of Lemma 2

Proof. From Assumption C, we may assume without loss of generality that Y is bounded (the case
of bounded X follows by nearly identical arguments). In this case, we have kyk  Cy for all y 2 Y.

Note that

kuk+1 � u?k2Mk+1
= �2(yk+1 � y?)TA(xk+1 � x?

) +

1

⌧k+1
kxk+1 � x?k2 + 1

�k+1
kyk+1 � y?k2

�� 2CykAkopkxk+1 � x?k+ 1

⌧k+1
kxk+1 � x?k2 + 1

�k+1
kyk+1 � y?k2. (32)

When kxk+1 � x?k grows sufficiently large, the term involving the square of this norm dominates
the value of (32). Since {⌧k} and {�k} are bounded from above, it follows that there is some positive
Cx such that whenever

1

⌧k+1
kxk+1 � x?k2 + 1

�k+1
kyk+1 � y?k2 � Cx (33)

we have
1

⌧k+1
kxk+1 � x?k2 + 1

�k+1
kyk+1 � y?k2 � 4CykAkopkxk+1 � x?k. (34)

Combining (34) with (32) yields

2kuk+1 � u?k2Mk+1
� 1

⌧k+1
kxk+1 � x?k2 + 1

�k+1
kyk+1 � y?k2 (35)

whenever (33) holds. In this case, we have

kuk+1�u?k2Mk
= �2(yk+1 � yk)TA(xk+1 � x?

) +

1

⌧k
kxk+1 � x?k2 + 1

�k
kyk+1 � y?k2

� �2(yk+1 � y?)TA(xk+1 � x?
) +

�k
⌧k+1

kxk+1 � x?k2 + �k
�k+1

kyk+1 � y?k2

= kuk+1 � u?k2Mk+1
� �k

⌧k+1
kxk+1 � x?k2 � �k

�k+1
kyk+1 � y?k2

� (1� 2�k)kuk+1 � u?k2Mk+1
. (36)
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Applying (36) to Lemma 1, we see that

kuk � u?k2Mk
� (1� 2�k)kuk+1 � u?k2Mk+1

. (37)

Note that limk!1 �k = 0, and so we may assume without loss of generality that 1� 2�k > 0 (this
assumption is only violated for finitely many k).

Now, consider the case that (33) does not hold. We have

kuk+1 � u?k2Mk
�kuk+1 � u?k2Mk+1

� �k

⌧k+1
kxk+1 � x?k2 � �k

�k+1
kyk+1 � y?k2

�kuk+1 � u?k2Mk+1
� �kCx. (38)

Applying (38) to Lemma 1 yields

kuk � u?k2Mk
� kuk+1 � u?k2Mk+1

� �kCx. (39)

From (37) and (39), it follows by induction that

ku0 � u?k2M0
�

Y

i2IC

(1� 2�i)kuk+1 � u?k2Mk+1
�

X

i

�iCx (40)

where IC = {i | 1
⌧i+1

kxi+1 � x?k2 + 1
�i+1

kyi+1 � y?k2 � Cx}. Note again that we have assumed
without loss of generality that i is large, and thus 1� 2�i > 0.

We can rearrange (40) to obtain

kuk+1 � u?k2Mk+1


ku0 � u?k2M0
+ Cx

P

i �i
Q

i(1� 2�i)
< 1

which shows that {kuk � u?k2Mk
} remains bounded.

Finally, note that since {⌧k}, {�k}, and {kuk � u?kMk} are bounded from above, it follows from
(32) that { 1

⌧k
kxk�x?k2} is bounded from above. But { 1

�k
kyk�y?k2} is also bounded from above,

and so {kuk � u?k2Hk
} is bounded as well.
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