
A Proofs

In order to prove Lemma 1, we use the following result which is a modification of [11]. In particular,
the following lemma is a generalization of Theorem 5.1 from [11], and its proof (omitted here)
follows from generalizing the proof of that theorem.
Lemma 4. Suppose  
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1. (Convexity of  ): Assume that  is convex (with probability one),

2. (Smoothness of  ): Assume that  is smooth in the following sense: the first, second and
third derivatives exist at all interior points of S (with probability one),
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(b) ✓⇤ is an interior point of S ,
(c) r2P (✓⇤) is positive definite (and hence invertible),
(d) rQ(✓⇤) = 0,
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The following lemma is a fundamental result relating the variance of the gradient of the log likeli-
hood to Fisher information matrix for a large class of probability distributions [17].
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Lemma 5. Suppose L satisfies the regularity conditionsin Assumptions 1 and 2. Then, for any
example x, we have:
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We now prove Lemma 1.

(Proof of Lemma 1). We first define
 
i

(✓) = L (Y |X, ✓) ,

where X ⇠ � and Y ⇠ p(Y |X, ✓⇤) for i = 1, · · · ,m
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We now prove Lemma 2.

(Proof of Lemma 2). Define
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Using Assumption 2 on point-wise self concordancy of I(x, ✓) now finishes the proof.
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(Proof of Theorem 1). The proof is a careful combination of Lemmas 1, 2 and 3.

Lower Bound: For any � that satisfies I
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(✓⇤), we can apply Lemma 1 to write:

E
h
L
U

⇣
b✓
�

⌘
� L

U

(✓⇤)
i
� (1� ✏

m2)

Tr
�
I
�

(✓⇤)�1I
U

(✓⇤)
�

m
2

� L2

1

cm2

2

.

The lower bound follows.

Upper Bound: We begin by showing that if Assumptions 1 and 2 are satisfied, then, from Lemma 2,
we have that with probability � 1� �, it holds that:
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