
Supplementary information of “Bounding
errors of Expectation-Propagation”
A Improving on the Brascamp-Lieb bound

In this section, we detail our mathematical results concerning the extension of the Brascamp-Lieb
bound.

We will note LC(x) = exp (−φ(x)) a log-concave distribution. We assume that φ is strongly
convex, and slowly changing, ie:

∀x φ
′′
(x) ≥ βm (32)

∀d ∈ [3, 4, 5, 6]
∣∣∣φ(d)(x)

∣∣∣ ≤ Kd (33)

A.1 The original Brascamp-Lieb theorem

Let µLC = ELC (x) be the expected value of LC. The original Brascamp-Lieb result [1976]
concerns bounding fractional centered moments of LC by the corresponding fractional moments of
a Gaussian of variance β−1m , centered at µLC . Noting g(x) = N

(
x|µLC , β−1m

)
that Gaussian, we

have:
∀α ≥ 1 ELC (|x− µLC |α) ≤ Eg (|x− µLC |α) (34)

However, we are not interested in their full result, but only in a restricted version of it which only
concerns even moments. This version simply reads:

∀k ∈ Nm2k = ELC

(
|x− µLC |2k

)
≤ (2k − 1)m2k−2β

−1
m (35)

m2k ≤ (2k − 1)!!β−km (36)
where (2k − 1)!! is the double-factorial: the product of all odd terms between 1 and 2k − 1. Eq.
(35) might be a new result. Note that equality only occurs when f(x) = 1 and LC is Gaussian.
Note also that the bounds on the higher derivatives of φ are not needed for this result, but only for
our extension.

We offer here a proof of eq. (35) (from which eq. (36) is a trivial consequence), which is slightly
different from Brascamp & Lieb’s original proof. We believe this proof to be original, though it is
still quite similar to the original proof.

Proof. Let’s decompose LC(x) into two parts:

• g(x) = N
(
x|µLC , β−1m

)
the bounding Gaussian with same mean as LC

• f(x) = LC(x)
g(x) the remainder

f is easily shown to be log-concave, which means that it is unimodal. We will note x? the mode of
f . f is increasing on ]−∞, x?] and decreasing on [x?,∞[. We thus know the sign of f

′
(x):

sign
(
f
′
(x)
)

= sign (x? − x) (37)

Consider the integral:
´ +∞
−∞ g(x)f

′
(x)dx. By integration by parts (or by Stein’s lemma), we have:ˆ +∞

−∞
g(x)f

′
(x)dx =

ˆ +∞

−∞
g(x)f(x)βm(x− µ)dx

= βm(µ− µ)ˆ +∞

−∞
g(x)f

′
(x)dx = 0 (38)
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We now split the integral at µLC and x?, assuming without loss of generality that x? ≤ µLC :
ˆ x?

−∞
gf
′
+

ˆ µLC

x?

gf
′
+

ˆ ∞
µLC

gf
′

= 0

ˆ x?

−∞
gf
′
+

ˆ µLC

x?

gf
′

= −
ˆ ∞
µLC

gf
′

≥ 0 (39)

Now consider a statistic Sk(x) = (x− µLC)
2k−1. Again using integration by parts, we have the

following equality:ˆ
g(x)f

′
(x)Sk(x)dx =

ˆ
g(x)f(x)

(
βmSk(x)(x− µ)− S

′

k(x)
)
dx

ˆ
g(x)f

′
(x) (x− µLC)

2k−1
dx =

ˆ
LC(x)

(
βm (x− µLC)

2k − (2k − 1) (x− µLC)
2k−2

)
= βmm2k − (2k − 1)m2k−2 (40)

At this point, we only need to prove that
´
gf
′
Sk ≤ 0 to finish our proof, from eq. (40). We will

actually prove a slightly stronger result: that even if we cut the integral at µLC , both halves are still
negative:

ˆ µLC

−∞
gf
′
Sk ≤ 0 (41)

ˆ ∞
µLC

gf
′
Sk ≤ 0 (42)

Eq. (42) is trivial. g is positive everywhere, while Sk(x) ≥ 0 and f
′
(x) ≤ 0 for x ≥ µLC .

Eq. (41) is slightly harder. From eq. (39),
´ x?

−∞ gf
′

+
´ µLC

x? gf
′ ≥ 0, where the first term is posi-

tive, and the second negative. When we multiply the integrand by the decreasing positive function
−Sk(x) = − (x− µLC)

2k−1, the order in the terms is preserved. To say it in equations:
ˆ x?

−∞
gf
′
(−Sk) ≥

(
− (x? − µLC)

2k−1
)ˆ x?

−∞
gf
′

≥
(
− (x? − µLC)

2k−1
)(
−
ˆ µLC

x?

gf
′
)

≥
ˆ µLC

x?

gf
′
Sk (43)

from which we finally find eq. (41), which concludes our proof. Note that there is the equality´
gf
′
Sk = 0 IFF f

′
(x) = 0, justifying our earlier comment about m2k = (2k − 1)β−1m m2k−2 IFF

LC(x) = g(x).

A.2 Extending the Brascamp-Lieb theorem

The original Brascamp-Lieb result tells us that the spread of LC(x) (as measured by its even mo-
ments) can’t be too important, but it doesn’t tell us whether such distributions are close to being
Gaussian, which is what EP requires. By constraining the higher derivatives of φ(x), we are able to
constrain how far LC is from a Gaussian distribution. This is the essence of our extension of the
Brascamp-Lieb theorem. We derived the following:

Theorem 2. Extension of the Brascamp-Lieb theorem

With LC a strongly log-concave distribution with slowly changing log-function (eqs. (32), (33)), we
have the following inequalities:
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∣∣∣φ′ (µLC)
∣∣∣ ≤ K3

2βm
(44)∣∣∣∣m3

m2

∣∣∣∣ ≤ 2
K3

β2
m

(45)∣∣∣∣m5

m2

∣∣∣∣ ≤ 17K3

β3
m

(46)

which generalizes to: ∣∣∣∣m2k+1

m2

∣∣∣∣ ≤ Ck K3

βk+1
m

(47)

The following first order expansions of m2, m3 and m4:∣∣∣m−12 − φ
′′

2 (µLC)
∣∣∣ ≤ K2

3

β2
m

+
K4

2βm
(48)∣∣∣φ′′(µLC)m2 − 1

∣∣∣ ≤ K2
3

β3
m

+
K4

2β2
m

(49)∣∣∣∣φ′′(µLC)m3 +

(
φ
′
(µLC)m2 +

φ(3)(µLC)

2
m4

)∣∣∣∣ ≤ 17

6

K3K4

β4
m

+
5

8

K5

β3
m

(50)∣∣∣φ′′(µLC)m4 − 3m2

∣∣∣ ≤ 19

2

K2
3

β4
m

+
5

2

K4

β3
m

(51)

which generalizes to:

m2k+2 ≈ (2k + 1)

φ′′(µLC)
m2k (52)

≈ (2k + 1)!!
[
φ
′′
(µLC)

]−(k+1)

(53)

And the following higher order relationships:∣∣∣∣φ′(µLC) +
φ(3)(µLC)

2
m2

∣∣∣∣ ≤ K3K4

3β3
m

+
K5

8β2
m

(54)∣∣∣∣m−12 − φ
′′
(µLC)− φ(3)(µLC)

2

m3

m2
− φ(4)(µLC)

3!

m4

m2

∣∣∣∣ ≤ 17

24

K3K5

β3
m

+
K6

8β2
m

(55)

Note that we refer to eq. (48), (50) and (51) as first order expansions because you can read them as,
respectively:

m2 ≈
(
φ
′′
(µLC)

)−1
m3 ≈ −

(
φ
′′
(µLC)

)−1(
φ
′
(µLC)m2 +

φ(3)(µLC)

2
m4

)
m4 ≈ 3

(
φ
′′
(µLC)

)−1
m2

These relationships are not exhaustive, and one could find many such relationships for even higher
orders. The list presented here only concerns results which we will need for our bound on EP.

Proof. We will first give an outline of the proof, and then dive into all the equations of the full proof.
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The key component of the proof is Stein’s lemma (ie: integration by parts). For LC = exp (−φ(x)),
it reads: for any statistic S(x) with at-most-polynomial growth:

ELC

(
φ
′
(x)S(x)− S

′
(x)
)

= 0 (56)

which we will only use for statistics of the form Sk(x) = (x− µLC)
k. This gives us the following

relationships:

ELC

(
φ
′
(x)
)

= 0 (57)

ELC

(
φ
′
(x)(x− µLC)

)
= 1 (58)

ELC

(
φ
′
(x)(x− µLC)2

)
= 0 (59)

ELC

(
φ
′
(x)(x− µLC)3

)
= 3m2 (60)

and further relationships of the same form that we won’t need. The key intuition in understanding
why LC is almost Gaussian is the following: φ

′
(x) ≈ φ

′′
(µLC)(x − µ). The Stein relationships

for LC are thus almost the same relationships that would be obeyed by the Gaussian gµLC
(x) =

N
(
x|µLC ,

(
φ
′′
(µLC)

)−1)
. This is why LC is close to gµLC

.

For all these relationships, we will perform a Taylor expansion around µLC , which now gives us
self-consistency relationships between the different moments of LC. For example, just keeping the
first term in eq. (57) gives us eq. (44):

φ
′
(µLC) ≈ 0

We need to be careful with how we deal with the remainder of the Taylor approximation. Using the
Taylor-Lagrange formula, we can bound the error that results from cutting off the Taylor series after
some term, with a term of the form C × (x− µ)

k for some constant C. The expected value under
LC of that term can then bounded from the Brascamp-Lieb theorem. For example, to perform the
cut-off of eq. (57) we just did, we start from the Taylor-Lagrange expression:∣∣∣φ′(x)− φ

′
(µLC)− φ

′′
(µLC)(x− µLC)

∣∣∣ ≤ K3

2
(x− µLC)

2 (61)

which, when we take the expected value, becomes:∣∣∣ELC (φ′(x)
)
− φ

′
(µLC)

∣∣∣ ≤ K3

2
m2 ≤

K3

2βm
(62)

where we have applied the Brascamp-Lieb theorem. This concludes the proof of eq. (44), and our
introduction to the full proof.

Let’s now prove the second relationship of the theorem: eq. (45). We start from eq. (59). We
perform the expansion of φ

′
(x) up to the φ

′′
(µLC)(x − µLC) term. From Taylor-Lagrange, the

error is: ∣∣∣φ′(x)− φ′(µLC)− φ
′′
(µLC)(x− µLC)

∣∣∣ ≤ K3

2
(x− µLC)

2∣∣∣φ′(x) (x− µLC)
2 − φ′(µLC) (x− µLC)

2 − φ
′′
(µLC) (x− µLC)

3
∣∣∣ ≤ K3

2
(x− µLC)

4(63)

We now take the expected value:∣∣∣φ′(µLC)m2 + φ
′′
(µLC)m3 − ELC

(
φ
′
(x)
)∣∣∣ ≤ K3

2
m4 (64)
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Finally, we divide by m2, take out the φ
′
(µLC) term from the absolute value, use the bound on m4

m2

from eq. (35), and lower bound φ
′′
(µLC):∣∣∣∣φ′′(µLC)

m3

m2

∣∣∣∣ ≤ K3

2

m4

m2
+
∣∣∣φ′(µLC)

∣∣∣
≤ K3

2βm
(3) +

K3

2βm

≤ 2K3

βm
(65)∣∣∣∣m3

m2

∣∣∣∣ ≤ 2K3

β2
m

(66)

which gives us eq. (45).

Now, let’s prove the bound on m5 (eq. (46)). The demonstration is quite similar to the m3 bound.
We start from another Stein relationship:

ELC

(
φ
′
(x) (x− µLC)

4
)

= 4m3

With the same Taylor-Lagrange expansion as in eq. (63) and after taking the expected value, we
have: ∣∣∣4m3 − φ

′
(µLC)m4 − φ

′′
(µLC)m5

∣∣∣ ≤ K3

2
m6 (67)

Which we divide by m2 and manipulate further:∣∣∣∣φ′′(µLC)
m5

m2

∣∣∣∣ ≤ 4

∣∣∣∣m3

m2

∣∣∣∣+
∣∣∣φ′(µLC)

∣∣∣ m4

m2
+
K3

2

m6

m2

≤ 8K3

β2
m

+
K3

2βm

3

βm
+
K3

2

15

β2
m

≤ 17K3

β2
m∣∣∣∣m5

m2

∣∣∣∣ ≤ 17K3

β3
m

(68)

which gives us eq. (46).

In order to show that any odd centered moment admits a similar bound (as we mention it the main
text), we proceed by induction. The Stein relationships:

E
(
φ
′
(x) (x− µLC)

2k − 2k (x− µLC)
2k−1

)
= 0

give us the inductive step through steps identical to the preceeding equations, and we have already
have the initialization (from eq. 66). We can thus find similar bounds for any higher odd moment of
LC(x).

Now we will prove the first order expansions, starting with the one for m2 (eq. (48)). We now start
from eq. (58), which is:

ELC

(
φ
′
(x) (x− µLC)

)
= 1

First step, the Taylor-Lagrange expansion. We cut off the Taylor series at φ
(3)(µLC)

2 (x− µLC)
2. We

can bound the error with:∣∣∣∣φ′(x) (x− µLC)− φ
′
(µLC) (x− µLC)− φ

′′
(µLC) (x− µLC)

2 − φ(3)(µLC)

2
(x− µLC)

3

∣∣∣∣ ≤ K4

3!
(x− µLC)

4

(69)
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which becomes, when we take the expected value:∣∣∣∣1− 0− φ
′′
(µLC)m2 −

φ(3)(µLC)

2
m3

∣∣∣∣ ≤ K4

3!
m4∣∣∣φ′′(µLC)m2 − 1

∣∣∣ ≤ 1

2

∣∣∣φ(3)(µLC)
∣∣∣ |m3|+

K4

3!
m4∣∣∣m−12 − φ

′′
(µLC)

∣∣∣ ≤ 1

2

∣∣∣φ(3)(µLC)
∣∣∣ ∣∣∣∣m3

m2

∣∣∣∣+
K4

3!

m4

m2
(70)

≤ K2
3

β2
m

+
K4

2βm
(71)

which proves eq. (48), from which eq. (49) is a trivial consequence.

Now, the m3 first order expansion (eq. (50)). We start from the Stein relationship from eq. (59)
(which we already used to prove the bound on

∣∣∣m3

m2

∣∣∣).
ELC

(
φ
′
(x) (x− µLC)

2
)

= 0

The difference between the m3 bound and the m3 first order expansion is that we take a higher-
order expansion of φ

′
(x). This time, we stop at φ(4)(µLC) (x− µLC)

3. The Taylor-Lagrange error
is bounded by K5

4! (x− µLC)
4. This gives us the following bound once we take the expected value.∣∣∣∣φ′(µLC)m2 + φ
′′
(µLC)m3 +

φ(3)(µLC)

2
m4 +

φ(4)(µLC)

3!
m5

∣∣∣∣ ≤ K5

4!
m6 (72)

In that equation, m5 is an order of magnitude smaller than the other terms, and we take it out of the
absolute value:∣∣∣∣φ′′(µLC)m3 −

(
−φ′(µLC)m2 −

φ(3)(µLC)

2
m4

)∣∣∣∣ ≤
∣∣φ(4)(µLC)

∣∣
3!

|m5|+
K5

4!
m6

≤ K4

3!

17K3

β4
m

+
K5

4!

15

β3
m

≤ 17

6

K3K4

β4
m

+
5

8

K5

β3
m

(73)

which proves eq. (50).

Finally, we prove the last first order expansion: eq. (51) concerning m4. We start from the last Stein
relationship: eq. (60):

ELC

(
φ
′
(x) (x− µLC)

3
)

= 3m2

We cut-off the Taylor series after φ(3)(µLC)
2 (x− µLC)

2. After taking the expected value, the error
is: ∣∣∣∣3m2 − φ

′
(µLC)m3 − φ

′′
(µLC)m4 −

φ(3)(µLC)

2
m5

∣∣∣∣ ≤ K4

3!
m6 (74)

In this expression, φ
′
(µLC)m3 and φ(3)(µLC)

2 m5 are both smaller by an order of magnitude, and we
remove them from the absolute value, to finally obtain:∣∣∣φ′′(µLC)m4 − 3m2

∣∣∣ ≤ ∣∣∣φ′(µLC)
∣∣∣ |m3|+

∣∣∣∣φ(3)(µLC)

2

∣∣∣∣ |m5|+
K4

3!
m6

≤ K3

2βm

2K3

β3
m

+
K3

2

17K3

β4
m

+
K4

3!

15

β3
m

≤ 19

2

K2
3

β4
m

+
5

2

K4

β3
m

(75)
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which proves eq. (51).

In order to find the first order developments of higher order even moments, one proceeds identically
to here but from the Stein relationships:

E
(
φ
′
(x) (x− µLC)

2k+1 − (2k + 1) (x− µLC)
2k
)

(76)

from which, by the same approach as the proof of eq. 51, we have:

m2k+2 ≈
(2k + 1)

φ′′(µLC)
m2k (77)

and by induction, we prove that:

m2k+2 ≈ (2k + 1)!!
[
φ
′′
(µLC)

]−(k+1)

(78)

which justifies our claim in the main text.

We are only left with proving the final two relationships. For eq. (54), this corresponds to doing a
further expansion of the first Stein relationship (eq. (57), from which we proved that φ

′
(µLC) ≈ 0):

ELC

(
φ
′
(x)
)

= 0

We stop the Taylor series after φ
(4)(µLC)

3! (x− µLC)
3. After taking the expected value, we get:∣∣∣∣φ′(µLC) +

φ(3)(µLC)

2
m2 +

φ(4)(µLC)

3!
m3

∣∣∣∣ ≤ K5

4!
m4 (79)

We extract the m3 term which is an order of magnitude smaller than the other ones, and obtain:∣∣∣∣φ′(µLC) +
φ(3)(µLC)

2
m2

∣∣∣∣ ≤ ∣∣∣∣φ(4)(µLC)

3!

∣∣∣∣ |m3|+
K5

4!
m4

≤ K4

3!

2K3

β3
m

+
K5

4!

3

β2
m

≤ K3K4

3β3
m

+
K5

8β2
m

(80)

which proves eq. (54).

At last, we reach the proof of eq. (55). We start from the second Stein relationship (eq. (58), which
we already used to get the first order expansion of m2):

ELC

(
φ
′
(x) (x− µLC)

)
= 1

We stop the Taylor series after φ
(5)(µLC)

4! (x− µLC)
4. After taking the expected value, we get:∣∣∣∣1− φ′′(µLC)m2 −

φ(3)(µLC)

2
m3 −

φ(4)(µLC)

3!
m4 −

φ(5)(µLC)

4!
m5

∣∣∣∣ ≤ K6

5!
m6 (81)

We divide by m2, then extract the m5 term and obtain:∣∣∣∣m−12 − φ
′′
(µLC) +

φ(3)(µLC)

2

m3

m2
+
φ(4)(µLC)

3!

m4

m2

∣∣∣∣ ≤ ∣∣∣∣φ(5)(µLC)

4!

∣∣∣∣ ∣∣∣∣m5

m2

∣∣∣∣+
K6

5!

m6

m2

≤ K5

4!

17K3

β3
m

+
K6

5!

15

β2
m

≤ 17

24

K3K5

β3
m

+
K6

8β2
m

(82)

proving eq. (55) and concluding our proof.
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B Quality of fixed-points of EP

In this section, we give a detailed proof of our bounds on the quality of the EP approximation.

We assume that all sites fi = exp (−φi(x)) are βm-strongly log-concave, with slowly changing
log-functions. That is:

∀i, x, φ
′′

i (x) ≥ βm (83)

∀d ∈ [3, 4, 5, 6]
∣∣∣φ(3)d (x)

∣∣∣ ≤ Kd (84)

The target distribution p(x) then inherits those properties from the sites. Noting φp(x) =
− log (p(x)) =

∑
i φi(x), then φp is nβm-strongly log-concave and for d ∈ [3, 4, 5, 6],∣∣∣φ(d)p (x)

∣∣∣ ≤ nKd (85)

Let qi (x|ri, βi) be the site-approximations of a fixed-point of EP, q (x|r =
∑
i ri, β =

∑
i βi) be

the corresponding approximation of p(x) and hi(x) the corresponding hybrid distributions. From
our hypothesis on the sites, all hybrids are (βm + β−i)-strongly log-concave, with slowly varying
log-function (with constants Kd). We can thus apply our results from section A to all hybrids and
the target distribution.

Some results to keep in mind on the hybrids: first of all,

− ∂ log (hi(x))

∂x
= φ

′

i(x) + β−ix− r−i (86)

This expression is important as it is the one that appears in the Stein relationships.

Also, because q(x) is a Gaussian distribution of mean and variance µEP , vEP and with natural
parameters r, β:

r = βµEP (87)
β = v−1EP (88)

Finally, we have: ∑
i

β−iµEP =
∑
i,j 6=i

βjµEP

= (n− 1)
∑
j

βjµEP

= (n− 1)βµEP

= (n− 1) r

= (n− 1)
∑
j

rj

=
∑
i,j 6=i

rj∑
β−iµEP =

∑
i

r−i (89)

B.1 Lower-bounding the βi

Let’s show that we can lower bound the βi at the fixed-point by βm.

Recall that βi is obtained from the difference between the inverse variance of hi(x) and β−i,
and hi(x) happens to be a (βm + β−i)-strongly log-concave distribution. We can thus apply the
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Brascamp-Lieb inequality to the variance:

mi
2 ≤ 1

βm + β−i
(90)(

mi
2

)−1 ≥ βm + β−i (91)

Thus, βi =
(
mi

2

)−1 − β−i ≥ βm and we have the claimed lower bound.2

Thus all hybrids are actually at least nβm-strongly log-concave (but could theoretically be stronger.
This is one way our bounds can be pessimistic).

B.2 Approximation of various moments by q(x) and the hybrids

In this section, we will show that some moments of p(x) are matched approximately by the moments
of q(x) and/or the moments of the hybrids hi(x).

We will note mp
k the kth centered moment of p(x) and mi

k the moments of the hybrids. We will
use µ, v for the mean and variance of p(x) and µEP , vEP for the mean and variance of q(x) and all
hi(x) (recall that, at a fixed-point of EP, q(x) and all hi(x) share the same mean and variance). The
mean and variance have gained special notation due to their special status.

With these notations, the first three even moments of q are respectively vEP , 3v2EP and 15v3EP ,
while all odd moments are 0.

We will show that the following moments are matched:

Theorem 3. When all sites are strongly log-concave with slowly changing log, fixed-points of EP
provide a good approximation of several moments of p(x):

µ = µEP +O
(
n−2

)
v−1 = v−1EP +O (1)

mp
3 =

∑
i

mi
3 +O

(
n−3

)
mp

4 = 3v2EP +O
(
n−3

)
∀i mp

4 = mi
4 +O

(
n−3

)
Proof. Let’s first give an outline of the proof.

The logic for all these results is similar. Because all hybrids hi(x) are nβm-strongly log-concave
with slowly changing-log, we can apply the results of section A on all those distributions, and
obtain inequalities that relate the moments of the hi(x) to one another. Since they all share the same
mean and variance, these become severely constrained. Since p(x) is also log-concave with slowly
changing log-function, its mean and variance obey very similar relationships to µEP and vEP . From
the fact that the pair (µ, v) and the pair (µEP , vEP ) obey almost the same inequalities, we are able
to deduce that they are close to one another.

Let’s start with µ. From eq. (54), µ obeys the following simple relationship:∣∣∣∣∣φ′p(µ) +
φ
(3)
p (µ)

2
v

∣∣∣∣∣ ≤ nK3nK4

3n3β3
m

+
nK5

8n2β2
m

≤ n−1
(
K3K4

3β3
m

+
K5

8β2
m

)
(92)

Applying the same results to all hybrids hi(x), we get:

2By the the same logic, if all sites are strongly log-concave, the dynamics of EP must always maintain
βi ≥ βm. It is thus useless to initialize the EP algorithm at a lower value.
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∀i

∣∣∣∣∣φ′i(µEP ) + β−iµEP − r−i +
φ
(3)
i (µEP )

2
vEP

∣∣∣∣∣ ≤ K3K4

3n3β3
m

+
K5

8n2β2
m

≤ n−3
K3K4

3β3
m

+ n−2
K5

8β2
m

(93)

which is slightly different than eq. (92). Let’s now sum the relationship obtained for each hi(x).
The β−iµEP − r−i terms drop out (eq. (89)) and we get:∣∣∣∣∣φ′p(µEP ) +

φ
(3)
p (µEP )

2
vEP

∣∣∣∣∣ ≤ n−2K3K4

3β3
m

+ n−1
K5

8β2
m

(94)

We have that µ and µEP satisfy almost the same relationship from eq. (92) and (94). We can use
this to bound the distance between the two, as a function of the distance between v and vEP :

φ
′

p(µEP ) +
φ
(3)
p (µEP )

2
vEP = φ

′

p(µEP ) +
φ
(3)
p (µEP )

2
(v + vEP − v)

φ
′

p(µEP ) +
φ
(3)
p (µEP )

2
vEP −

(
φ
′

p(µ) +
φ
(3)
p (µ)

2
v

)
=

[
φ
′′

p (ξ1) +
φ
(4)
p (ξ2)

2
v

]
(µEP − µ)

+
φ
(3)
p (µEP )

2
(vEP − v) (95)

where ξ1, ξ2 ∈ [µ, µEP ] and we have used first-order expansions at µ of φ
′

p(µEP ) and φ(3)p (µEP ).

We can go from upper bounding
[
φ
′′

p (ξ1) +
φ(4)
p (ξ2)

2 v

]
(µEP − µ) to upper bounding |µ− µEP |:∣∣∣∣∣

[
φ
′′

p (ξ1) +
φ
(4)
p (ξ2)

2
v

]
(µEP − µ)

∣∣∣∣∣ ≥ min
ξ1,ξ2

([
φ
′′

p (ξ1) +
φ
(4)
p (ξ2)

2
v

])
|µ− µEP |

≥
[
nβm −

K4

2βm

]
|µ− µEP | (96)

We finally obtain a bound on the distance between µ and µEP by combining eqs. (92), (94), (95)
and (96):∣∣∣∣∣
[
φ
′′

p (ξ1) +
φ
(4)
p (ξ2)

2
v

]
(µEP − µ)

∣∣∣∣∣ ≤ (
n−1 + n−2

) K3K4

3β3
m

+ 2n−1
K5

8β2
m

+ n
K3

2
|v − vEP |

≤ O
(
n−1

)
+O

(
n−1

)
+O (n |v − vEP |) (97)

|µ− µEP | ≤ O
(
n−2

)
+O (|v − vEP |) (98)

Once we show that v = vEP +O
(
n−2

)
, eq. (98) will give us indeed that µ = µEP +O

(
n−2

)
.

Let’s now show that v ≈ vEP . We start from the first order expansion of m−12 from our extension
of the Brascamp-Lieb theorem (eq. (48)). For p(x), this gives us:∣∣∣v−1 − φ′′p (µ)

∣∣∣ ≤ n2K2
3

n2β2
m

+
nK4

2nβm

≤ K2
3

β2
m

+
K4

2βm
(99)

Again the corresponding relationship for the hybrids is not exactly what we want it to be:

∀i
∣∣∣v−1EP − φ′′i (µEP )− β−i

∣∣∣ ≤ K2
3

n2β2
m

+
K4

2nβm

≤ n−2
K2

3

β2
m

+ n−1
K4

2βm
(100)
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But again, we sum all those relationships:∣∣∣nv−1EP − φ′′p (µEP )− (n− 1)β
∣∣∣ ≤ n−1K2

3

β2
m

+
K4

2βm
(101)

which further simplifies, because β = v−1EP , into:∣∣∣v−1EP − φ′′p (µEP )
∣∣∣ ≤ n−1K2

3

β2
m

+
K4

2βm
(102)

Again, we find that the pairs (µ, v) and (µEP , vEP ) obey very similar relationships: eqs. (99) and
(102). We have: ∣∣∣φ′′p (µ)− φ

′′

p (µEP )
∣∣∣ ≤ K3 |µ− µEP | (103)

and this gives us that v−1 ≈ v−1EP :∣∣v−1 − v−1EP ∣∣ ≤ K3 |µ− µEP |+
(
1 + n−1

) K2
3

β2
m

+ 2
K4

2βm∣∣v−1 − v−1EP ∣∣ ≤ O (1) +O (n |µ− µEP |) (104)

Our final equations for the size of |µ− µEP | and
∣∣v−1 − v−1EP ∣∣ seem to be caught in a loop: you need

to know how good one approximation is in order to know how good the second will be and so on.
This is not at all the case and it is very easy to cut this loop.

The easiest way is to remark that both µ and µEP are O
(
n−1

)
away from the mode of p and so

they must beO
(
n−1

)
from one another (see main text, section 2.2). This gives v−1 = v−1EP +O (1)

(from eq. (104).

Then, we remark that both v−1 and v−1EP are order n. The error for |v − vEP | is then of order n−2

and we have that µ = µEP +O
(
n−2

)
, from eq. (94). This concludes the first part of our proof.

Let’s now look at the fourth moment of the target mp
4. We will show that is matched to by the fourth

moment mi
4 of any hybrid and by the fourth moment of the Gaussian approximation of p(x): 3v2EP .

From our Brascamp-Lieb extension, the first order approximation of mp
4 is:∣∣∣φ′′(µ)mp

4 − 3v
∣∣∣ ≤ n−2(19

2

K2
3

β4
m

+
5

2

K4

β3
m

)
(105)

From which, intuitively: mp
4 ≈ 3v

(
φ
′′

p (µ)
)−1
≈ 3v2 ≈ 3v2EP

Let’s now formalize this intuition by bounding explicitely each error term:

3v2 − 3v2EP = 6 (v − vEP )
(v + vEP )

2
(106)∣∣3v2 − 3v2EP

∣∣ ≤ 6 |v − vEP |
1

2nβm
(107)

3v
(
φ
′′

p (µ)
)−1
− 3v2 = 3v

[(
φ
′′

p (µ)
)−1
− v
]

(108)∣∣∣∣3v (φ′′p (µ)
)−1
− 3v2

∣∣∣∣ ≤ ∣∣∣∣(φ′′p (µ)
)−1
− v
∣∣∣∣ 3

nβm
(109)

Which we can bound using preceding relationships (eq. (104) and eq. (49)), and which gives us the
final bound:∣∣mp

4 − 3v2EP
∣∣ ≤ n−3

(
19

2

K2
3

β5
m

+
5

2

K4

β4
m

)
+

6

nβm
|v − vEP |+

3

nβm

1

n2β2
m

[
2K2

3

β2
m

+
K4

2βm

]
≤ O

(
n−3

)
(110)
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Let’s note that this final approximation isn’t any better of any worse, in terms of orders of magnitude,

than the original approximation mp
4 ≈ 3v

(
φ
′′

p (µ)
)−1

.

Another approximation that is of similar quality, in terms of orders of magnitude, is for any hybrid
i: mp

4 ≈ mi
4. Indeed, from 51 (Brascamp-Lieb extension: m4 first order approximation), we have

that: ∣∣∣[φ′′i (µEP ) + β−i

]
mi

4 − 3vEP

∣∣∣ ≤ n−4 19

2

K2
3

β4
m

+ n−3
5

2

K4

β3
m

(111)

and see that mi
4 would obey a similar relationship to mp

4 (eq. (105)) if β−i ≈
∑
j 6=i φ

′′

j (µEP ). That
happens to be the case because we also have:∣∣∣v−1EP − [φ′′i (µEP ) + β−i

]∣∣∣ ≤ n−2 2K2
3

β2
m

+ n−1
K4

2βm
(112)

Thus, φ
′′

i (µEP ) + β−i is approximately constant (in i), and approximately equal to v−1EP , which is
an important result in its own right. If we combine eqs. (111) and (112), we thus have:

mi
4 = 3vEP

[
φ
′′

i (µEP ) + β−i

]−1
+O

(
n−4

)
= 3v2EP +O

(
n−4

)
= mp

4 +O
(
n−3

)
(113)

which concludes our proof that all fourth moments of the hybrids and q and p are approximately
equal. Note that an absolute error of order n−3 translates into a relative error of order n−1.

Let’s now show how to approximate the third moment of the target mp
3 from the third moments of

the hybrids mi
3. We start for the first-order approximation of mp

3 (Brascamp-Lieb extension, eq.
(50)): ∣∣∣∣φ′′p (µ)mp

3 +

(
φ
′
(µ)v +

φ(3)(µ)

2
mp

4

)∣∣∣∣ ≤ n−2
(

17

6

K3K4

β4
m

+
5

8

K5

β3
m

)
(114)

mp
3 ≈ −

(
φ
′′

p (µ)
)−1(

φ
′
(µ)v +

φ(3)(µ)

2
mp

4

)
(115)

For the hybrids, we have:

∀i

∣∣∣∣∣(φ′′i (µEP ) + β−i

)
mi

3 +

((
φ
′

i(µEP ) + β−iµEP − r−i
)
vEP +

φ
(3)
i (µEP )

2
mi

4

)∣∣∣∣∣ ≤ n−4 17

6

K3K4

β4
m

+n−3
5

8

K5

β3
m

(116)

We will perform the following steps:

mi
3 ≈

(
φ
′′

i (µEP ) + β−i

)−1((
φ
′

i(µEP ) + β−iµEP − r−i
)
vEP +

φ
(3)
i (µEP )

2
mi

4

)
(117)

≈ vEP

((
φ
′

i(µEP ) + β−iµEP − r−i
)
vEP +

φ
(3)
i (µEP )

2
mp

4

)
(118)

From which:∑
i

mi
3 ≈ vEP

∑((
φ
′

i(µEP ) + β−iµEP − r−i
)
vEP +

φ
(3)
i (µEP )

2
mp

4

)
(119)

≈ vEP

((
φ
′

p(µEP ) + 0
)
vEP +

φ
(3)
p (µEP )

2
mp

4

)
(120)
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from which we see that mp
3 and

∑
im

i
3 obey very similar relationships (eq. (114) and eq. (120)),

and can conclude that they are close.

More formally, starting from eq. (116), let’s replace φ
′′

i (µEP ) + β−i with φ
′′

p (µEP ):

mi
3 =

(
φ
′′

i (µEP ) + β−i

)−1((
φ
′

i(µEP ) + β−iµEP − r−i
)
vEP +

φ
(3)
i (µEP )

2
mi

4

)
+O

(
n−4

)
= vEP

((
φ
′

i(µEP ) + β−iµEP − r−i
)
vEP +

φ
(3)
i (µEP )

2
mi

4

)
+O

(
n−2n−2

)
+O

(
n−4

)
(121)

Now, we replace mi
4 with mp

4. Since, mi
4 = mp

4 +O
(
n−3

)
, we have:

mi
3 = vEP

((
φ
′

i(µEP ) + β−iµEP − r−i
)
vEP +

φ
(3)
i (µEP )

2
mp

4

)
+O

(
n−4

)
(122)

which we finally sum for i: the β−iµEP − r−i sum to 0, leaving:

∑
i

mi
3 = vEP

(
φ
′

p(µEP )vEP +
φ
(3)
p (µEP )

2
mp

4

)
+O

(
n−3

)
(123)

Because, µ = µEP + O
(
n−2

)
and v =

(
φ
′′

p (µ)
)−1

+ O
(
n−2

)
= vEP + O

(
n−2

)
,
∑
im

i
3 and

mp
3 have identical first order expansions (which is of order n−2). More precisely:

φ
′

p(µEP )vEP +
φ
(3)
p (µEP )

2
mp

4 = φ
′

p(µEP )v +
φ
(3)
p (µEP )

2
mp

4 +O
(
n−2

)
(124)

= φ
′
(µ)v +

φ(3)(µ)

2
mp

4 +O
(
n−2

)
+O (|µ− µEP |)(125)

because:
∣∣∣φ′(µ)− φ′(µEP )

∣∣∣ ≤ nβm |µ− µEP | and, similarly, φ(3)(µ) − φ(3)(µEP ) =

O (n |µ− µEP |). And:

(v − vEP )

(
φ
′

p(µEP )vEP +
φ
(3)
p (µEP )

2
mp

4

)
= O (|v − vEP |)

(
O (1)O

(
n−1

)
+O (n)O

(
n−2

))
= O

(
n−3

)
(126)

Which gives us the final expression:

m3 =
∑
i

mi
3 +O

(
n−3

)
(127)

which concludes our proofs on the quality of the EP approximation.

In the main text, we have also used the following relationship, detailing the second order expansion
of v−1EP :

v−1EP = φ
′′

p (µEP ) +
∑
i

[
φ
(3)
i (µEP )

mi
3

2vEP

]
+ φ(4)p (µEP )

3v2EP
3!vEP

+O
(
n−1

)
(128)

For the inquisitive reader, this is obtained by starting from our Brascamp-Lieb extension, eq. (55),
applied to all hybrids. Then proceeding to approximate mi

4 ≈ 3v2EP and summing.
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