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S.1 Notation

Variable Description
v number of voxels
i index for subject, i ∈ {1, . . . ,m}
t index for TR, t ∈ {1, . . . , d}
q index for feature, q ∈ {1, . . . , k}

xit random variable for t-th observation from subject i, taking values in Rv

xit t-th observation from subject i, xit ∈ Rv

Xi observations from subject i, Xi ∈ Rv×d

xt random variable for observation of t-th observations from all subjects,
taking values in Rmv

xt
xTt = [x1t

T . . . xit
T ], xt ∈ Rmv

concatenated observation of t-th observations from all subjects

X
XT = [X1

T . . . Xi
T ], X ∈ Rmv×d

concatenated observations from all subjects
st random variable for shared response of t-th observations, taking value in Rk

st estimated shared response of t-th observations, st ∈ Rv

S estimated shared response , S ∈ Rk×d

µi mean observation from subject i, µi ∈ Rv

µ
µT = [µT1 . . . µ

T
M ], µ ∈ Rmv

concatenated mean observation from all subjects
Wi loading matrix for subject i, Wi ∈ Rv×k

W
WT = [WT

1 . . .WT
m], W ∈ Rmv×k

concatenated loading matrix for all subjects
Σs covariance for shared response st, Σs ∈ Rk×k

ρ2
i Iv isotropic covariance for conditional distribution of xit

Ψ
Ψ = diag(ρ2

1I, . . . , ρ
2
mI), Ψ ∈ Rmv×mv

joint covariance for condition distribution of xt
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S.2 Identity between two approaches when k = v

minWi,S

∑
i ‖Xi −WiS‖2F

s.t. WT
i Wi = Ik,

(1)
minWi,S

∑
i ‖WT

i Xi − S‖2F
s.t. WT

i Wi = Ik,
(2)

We show the identity between (1) and (2) when k = v, square orthogonal matrices Wi.

‖WT
i Xi − S‖2F

=tr
(
(WT

i Xi − S)T (WT
i Xi − S)

)
=tr
(
(WT

i Xi − S)TWT
i Wi(W

T
i Xi − S)

)
=tr
(
(Xi −WiS)T (Xi −WiS)

)
(3)

=‖Xi −WiS‖2F
When Wi is a narrow matrix with orthonormal columns, (3) is false, because WiW

T
i 6= I .

S.3 Difference between two approaches

We show this by analyzing (1) and (2). Xi can be decomposed as XW
i + XW⊥

i , where XW
i =

WiW
T
i Xi is the part of Xi in the span of Wi and XW⊥

i = W⊥i W
⊥
i
T
Xi is the part of Xi in the

orthogonal complement of span of Wi. By expanding (1) and (2), we get:

‖WT
i Xi − S‖2F = tr(XW

i

T
XW
i )− 2tr(XW

i

T
WiS) + tr(STS) (4)

‖Xi −WiS‖2F = tr(XW
i

T
XW
i ) + tr(XW⊥

i

T
XW⊥
i )− 2tr(XW

i

T
WiS) + tr(STS) (5)

For (5), since tr(XW
i
T
XW
i ) + tr(XW⊥

i
T
XW⊥
i ) = tr(XT

i Xi), it’s trying to find Wi maximizing
tr(XW

i
T
WiS), maximizing the correlation between transformed observation WT

i Xi and the shared
response S. However, for (4), there’s a conflict between the first and second terms. The first term
is minimizing the variance of projected data, while the second term is maximizing the variance of
projected data XW

i with shared response. Due to this conflict, (2) is prone to find an uninformative
basis Wi which doesn’t capture the variance in observations. This is verified in Fig.1 of the main
paper, which shows plots of the value of the training objective and the test accuracy of a stimulus
classification experiment versus iteration count (raider dataset, see Sec.4).

S.3.1 SRM is adaptively aggregating data with different estimated noise level

We note that (1) implicitly assumes subjects having identical noise level. This is reflected by the
update equation for S taking a uniform average of the transformed data. In SRM, if instead we set
the estimated value of ρ2

i to be κ2
iλ
z for 0 < λ < 1, i = 1 :m, and let z → ∞, then the shared

response becomes a weighted average of the transformed data in which subjects with less noise are
weighted more:

limz→∞ Es|x[S] = limz→∞
∑
i diag

{
κ−2
i λ−z∑

j κ
−2
j λ−z+σ−1

i

}
WT
i Xi =

∑
i

1/κ2
i∑

j(1/κ2
j )
WT
i Xi.

S.4 Connections between SRM and related methods

S.4.1 SRM and CCA solutions as different parameterization of two subjects pCCA
likelihood

Bach and Jordan [1] proposed probabilistic CCA (pCCA) using similar approach as Tipping and
Bishop used in probabilistic PCA (pPCA) [2]. They propose a probabilistic model of pPCA and
prove that maximum likelihood estimation leads to the canonical correlation directions in two sub-
jects case. Probabilistic CCA is proposed as follows:

z ∼ N (0, I), z ∈ Rk, k ≤ v
x1|z ∼ N (W1z + µ1,Ψ1)

x2|z ∼ N (W2z + µ2,Ψ2),
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where x1 and x2 take values in Rv . with maximum likelihood estimates:

Ŵ1 = Σ̃11Û1M̂1

Ŵ2 = Σ̃22Û2M̂2

Ψ̂1 = Σ̃11 − Ŵ1Ŵ
T
1

Ψ̂2 = Σ̃22 − Ŵ2Ŵ
T
2

µ̂1 = ũ1

µ̂2 = ũ2

where Ûi = Σ̃
− 1

2
ii V̂i, V̂1P̂ V̂

T
2 is a SVD of Σ̃

− 1
2

11 Σ̃12Σ̃
− 1

2
22 . P̂ can be factorized as M̂1M̂2. Ûi is the

transformation matrix for dataset i in CCA solutions. The corresponding log-likelihood value is

L
∣∣
Ŵ ,Ψ̂,µ̂

= −2vd

2
log 2πe− d

2
log |Σ̃x|

Next, following similar approach as in [1] we can show that a different mode of maximum likelihood
estimates of pCCA leads to close relation with SRM. We derive this mode by taking derivative of the
log-likelihood but using different parameterization as the pCCA. The maximum likelihood estimates
are:

W 1 = U1M1

W 2 = U2M2

Ψ1 = Σ̃11 −W 1W
T

1

Ψ2 = Σ̃22 −W 2W
T

2

µ1 = ũ1

µ2 = ũ2

where U1P U
T

2 is a SVD of Σ̃12. P can be factorized as M1M2. U i is the orthogonal transforma-
tion matrix for dataset i in SRM solutions. The corresponding log-likelihood value is

L
∣∣
W,Ψ,µ

= −2vd

2
log 2πe− d

2
log |Σ̃x|

which is equal to the log-likelihood derived in pCCA. This shows that SRM and CCA solutions in
two subjects case are different parameterization of the same pCCA likelihood.

S.4.2 Connections between SRM and ridge regression

SRM is related to ridge regression. We make this connection by showing that single subject SRM is
connected with ridge regression with an orthogonality constraint on the loading matrix. Assume st
is sampled from N (0, γ2I) with γ2 known, and that Σx′m = I . When M = 1, MAP estimation of
Wi and st, t = 1:T , estimates a mode of the log posterior distribution

∑
t log p(st|xit):

max
∑
t

(
log p(xit|st) + log p(st)

)
≡ min

∑
t

(
‖xit −Wist‖2F + γ−2‖st‖22

)
.

This is ridge regression for st given Wi, and least squares regression for Wi (with an orthogonality
constraint), given st, t = 1 : T . In the multi-subject case, MAP estimation of Wi and st, will be
similar but with a block-wise orthonormal structure in W :

max
∑
t

∑
i

(
log p(xit|st) + log p(st)

)
≡ min

∑
t

(
‖xt −Wst‖2F + γ−2‖st‖22

)
.

S.4.3 Connections between SRM and Hyperalignment

We show that Hyperalignment[3] is equivalent to (2) when k = v. Following is the formulation of
Hyperalignment, note that Xi ∈ Rv×d here is the transpose of the notation used in [3].

minRi

∑
i<j ‖XT

i Ri −XT
j Rj‖2F

s.t. RTi Ri = RiR
T
i = Iv,

(6)

From the equality
∑
i<j ‖XT

i Ri−XT
j Rj‖2F =

∑
i ‖XT

i Ri−G‖2F [4], where G = 1/m
∑
iX

T
i Ri,

by letting Wi = Ri and S = GT , we get identical formulation as (2) when k = v.
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S.4.4 Connections between SRM and regularized Hyperalignment

Lastly, we show the difference between SRM and regularized HA (rHA) in [5]. rHA makes a
connection between HA and CCA [6] using a ridge CCA formulation [7]. We show rHA on the left
and a matching formulation in SRM notation on the right:

min
∑
i<j ‖XT

i Ri −XT
j Rj‖2F

s.t. RTi ((1− α)XiX
T
i + αI)Ri = I

≡
min

∑
i ‖WT

i Xi − S‖2F
s.t. WT

i ((1− α)XiX
T
i + αI)Wi = I.

rHA introduces a parameter α bridging the HA constraint RTi Ri = I and the CCA constraint
RTi X

T
i XiRi = I . rHA becomes standard HA when α → 1 and CCA when α → 0. In contrast to

the regularization on the loading matrices Wi imposed by rHA, SRM introduces regularization on
the shared randomness st.

S.4.5 Connections between SRM and standard ICA

standard ICA [8] is a factor model that tries to find linear representation of data so that the com-
ponents are statistically independent, or as independent as possible. Using our notation, given data
X ,

x = Ws,

where s is the independent components. There are two main differences between ICA and SRM.
First, ICA isn’t designed for multiple datasets. Although there are multiple datasets extension of
ICA, such as GICA, IVA, the difference is discussed in the main paper. Second, ICA doesn’t have the
notion of ”shared response”. It’s maximizing statistical independence, but this doesn’t necessarily
lead to shared components. This is examined in experiment 3 of the main paper.
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S.5 Experiment 3
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Fig. 1.1 Experiment procedure.
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Fig. 1.2 On original data.
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Fig. 1.3 On removed shared across all response.
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Fig. 1.4 On residual after removed shared across all response.
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Fig. 1.5 After removed shared across all response and train on shared within group response.

Figure 1: Experiment 3. Fig. 1.1: Experiment procedure. Fig. 1.2: On original data. Fig. 1.3: On removed
shared across all response. Fig. 1.4: On residual after removed shared across all response. Fig. 1.5: After
removed shared across all response and train on shared within group response.
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In Fig. 1.2, we show the classification accuracy directly on original data. The above chance results
indicates that the groups are distinguishable in DMN ROI.

Fig. 1.3 shows that the Fig. 1.1 (b) is uninformative for SRM with low k1 but informative for SRM
with large k1, PCA and ICA. The shared by all subjects response is expected to be uninformative for
distinguishing between groups. However, when we use large k1, SRM starts to incorporate shared
within group only response as shared by all subjects response, because we force it to identify a large
subspace. This is demonstrated by the above chance performance with k1 = 100. As for PCA
and ICA, they identify components that lead to maximum variance and statistical independence
respectively. It’s doesn’t guarantee that the shared response will be identified by these two methods.
So PCA and ICA cant be relied upon to identify a shared response. The above chance accuracy
suggests that it’s indeed not identifying shared by all subjects response.

Fig. 1.4 shows that Fig. 1.1 (c) is uninformative for PCA and ICA, because the informative part of
original data has been removed with Fig. 1.1 (b). For SRM, we observe consistent above chance
performance in distinguishing groups. The performance is similar to on original data.

In Fig. 1.5, without removing shared response (k1 = 0), we observe that all three methods are
effective in distinguishing between two groups. However, this doesn’t lead to better performance
than on original data. This suggests removing individual response is insufficient for improvement.
However, with proper selection of k1 and k2, we observe statistically significant improvement with
k1 = 10 and k2 = 100. This shows that by removing both shared by all subjects response and
individual response, the denoised data demonstrates better distinguishability for the groups.
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