
Rapidly Mixing Gibbs Sampling for a Class of Factor
Graphs Using Hierarchy Width

Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré
cdesa@stanford.edu, czhang@cs.wisc.edu,

kunle@stanford.edu, chrismre@stanford.edu
Departments of Electrical Engineering and Computer Science

Stanford University, Stanford, CA 94309

Abstract

Gibbs sampling on factor graphs is a widely used inference technique, which of-
ten produces good empirical results. Theoretical guarantees for its performance
are weak: even for tree structured graphs, the mixing time of Gibbs may be expo-
nential in the number of variables. To help understand the behavior of Gibbs sam-
pling, we introduce a new (hyper)graph property, called hierarchy width. We show
that under suitable conditions on the weights, bounded hierarchy width ensures
polynomial mixing time. Our study of hierarchy width is in part motivated by a
class of factor graph templates, hierarchical templates, which have bounded hier-
archy width—regardless of the data used to instantiate them. We demonstrate a
rich application from natural language processing in which Gibbs sampling prov-
ably mixes rapidly and achieves accuracy that exceeds human volunteers.

1 Introduction

We study inference on factor graphs using Gibbs sampling, the de facto Markov Chain Monte Carlo
(MCMC) method [8, p. 505]. Specifically, our goal is to compute the marginal distribution of some
query variables using Gibbs sampling, given evidence about some other variables and a set of factor
weights. We focus on the case where all variables are discrete. In this situation, a Gibbs sampler
randomly updates a single variable at each iteration by sampling from its conditional distribution
given the values of all the other variables in the model. Many systems—such as Factorie [14],
OpenBugs [12], PGibbs [5], DimmWitted [28], and others [15, 22, 25]—use Gibbs sampling for
inference because it is fast to run, simple to implement, and often produces high quality empirical
results. However, theoretical guarantees about Gibbs are lacking. The aim of the technical result of
this paper is to provide new cases in which one can guarantee that Gibbs gives accurate results.

For an MCMC sampler like Gibbs sampling, the standard measure of efficiency is the mixing time
of the underlying Markov chain. We say that a Gibbs sampler mixes rapidly over a class of models
if its mixing time is at most polynomial in the number of variables in the model. Gibbs sampling
is known to mix rapidly for some models. For example, Gibbs sampling on the Ising model on a
graph with bounded degree is known to mix in quasilinear time for high temperatures [10, p. 201].
Recent work has outlined conditions under which Gibbs sampling of Markov Random Fields mixes
rapidly [11]. Continuous-valued Gibbs sampling over models with exponential-family distributions
is also known to mix rapidly [2, 3]. Each of these celebrated results still leaves a gap: there are
many classes of factor graphs on which Gibbs sampling seems to work very well—including as part
of systems that have won quality competitions [24]—for which there are no theoretical guarantees
of rapid mixing.

Many graph algorithms that take exponential time in general can be shown to run in polynomial
time as long as some graph property is bounded. For inference on factor graphs, the most commonly

1

used property is hypertree width, which bounds the complexity of dynamic programming algorithms
on the graph. Many problems, including variable elimination for exact inference, can be solved in
polynomial time on graphs with bounded hypertree width [8, p. 1000]. In some sense, bounded hy-
pertree width is a necessary and sufficient condition for tractability of inference in graphical models
[1, 9]. Unfortunately, it is not hard to construct examples of factor graphs with bounded weights and
hypertree width 1 for which Gibbs sampling takes exponential time to mix. Therefore, bounding
hypertree width is insufficient to ensure rapid mixing of Gibbs sampling. To analyze the behavior
of Gibbs sampling, we define a new graph property, called the hierarchy width. This is a stronger
condition than hypertree width; the hierarchy width of a graph will always be larger than its hy-
pertree width. We show that for graphs with bounded hierarchy width and bounded weights, Gibbs
sampling mixes rapidly.

Our interest in hierarchy width is motivated by so-called factor graph templates, which are common
in practice [8, p. 213]. Several types of models, such as Markov Logic Networks (MLN) and Rela-
tional Markov Networks (RMN) can be represented as factor graph templates. Many state-of-the-art
systems use Gibbs sampling on factor graph templates and achieve better results than competitors
using other algorithms [14, 27]. We exhibit a class of factor graph templates, called hierarchical
templates, which, when instantiated, have a hierarchy width that is bounded independently of the
dataset used; Gibbs sampling on models instantiated from these factor graph templates will mix in
polynomial time. This is a kind of sampling analog to tractable Markov logic [4] or so-called “safe
plans” in probabilistic databases [23]. We exhibit a real-world templated program that outperforms
human annotators at a complex text extraction task—and provably mixes in polynomial time.

In summary, this work makes the following contributions:

• We introduce a new notion of width, hierarchy width, and show that Gibbs sampling mixes
in polynomial time for all factor graphs with bounded hierarchy width and factor weight.

• We describe a new class of factor graph templates, hierarchical factor graph templates,
such that Gibbs sampling on instantiations of these templates mixes in polynomial time.

• We validate our results experimentally and exhibit factor graph templates that achieve high
quality on tasks but for which our new theory is able to provide mixing time guarantees.

1.1 Related Work

Gibbs sampling is just one of several algorithms proposed for use in factor graph inference. The
variable elimination algorithm [8] is an exact inference method that runs in polynomial time for
graphs of bounded hypertree width. Belief propagation is another widely-used inference algorithm
that produces an exact result for trees and, although it does not converge in all cases, converges to a
good approximation under known conditions [7]. Lifted inference [18] is one way to take advantage
of the structural symmetry of factor graphs that are instantiated from a template; there are lifted
versions of many common algorithms, such as variable elimination [16], belief propagation [21], and
Gibbs sampling [26]. It is also possible to leverage a template for fast computation: Venugopal et al.
[27] achieve orders of magnitude of speedup of Gibbs sampling on MLNs. Compared with Gibbs
sampling, these inference algorithms typically have better theoretical results; despite this, Gibbs
sampling is a ubiquitous algorithm that performs practically well—far outstripping its guarantees.

Our approach of characterizing runtime in terms of a graph property is typical for the analysis of
graph algorithms. Many algorithms are known to run in polynomial time on graphs of bounded
treewidth [19], despite being otherwise NP-hard. Sometimes, using a stronger or weaker property
than treewidth will produce a better result; for example, the submodular width used for constraint
satisfaction problems [13].

2 Main Result

In this section, we describe our main contribution. We analyze some simple example graphs, and
use them to show that bounded hypertree width is not sufficient to guarantee rapid mixing of Gibbs
sampling. Drawing intuition from this, we define the hierarchy width graph property, and prove that
Gibbs sampling mixes in polynomial time for graphs with bounded hierarchy width.

2

Q

T1 T2 · · · Tn F1 F2 · · · Fn

(a) linear semantics

Q

φT φF

T1 T2 · · · Tn F1 F2 · · · Fn

(b) logical/ratio semantics

Figure 1: Factor graph diagrams for the voting model; single-variable prior factors are omitted.

First, we state some basic definitions. A factor graph G is a graphical model that consists of a set of
variables V and factors Φ, and determines a distribution over those variables. If I is a world for G
(an assignment of a value to each variable in V), then ε, the energy of the world, is defined as

ε(I) =
∑
φ∈Φ φ(I). (1)

The probability of world I is π(I) = 1
Z exp(ε(I)), where Z is the normalization constant necessary

for this to be a distribution. Typically, each φ depends only on a subset of the variables; we can draw
G as a bipartite graph where a variable v ∈ V is connected to a factor φ ∈ Φ if φ depends on v.
Definition 1 (Mixing Time). The mixing time of a Markov chain is the first time t at which the
estimated distribution µt is within statistical distance 1

4 of the true distribution [10, p. 55]. That is,

tmix = min
{
t : maxA⊂Ω |µt(A)− π(A)| ≤ 1

4

}
.

2.1 Voting Example

We start by considering a simple example model [20], called the voting model, that models the sign
of a particular “query” variable Q ∈ {−1, 1} in the presence of other “voter” variables Ti ∈ {0, 1}
and Fi ∈ {0, 1}, for i ∈ {1, . . . , n}, that suggest that Q is positive and negative (true and false),
respectively. We consider three versions of this model. The first, the voting model with linear
semantics, has energy function

ε(Q,T, F) = wQ
∑n
i=1 Ti − wQ

∑n
i=1 Fi +

∑n
i=1 wTiTi +

∑n
i=1 wFiFi,

where wTi , wFi , and w > 0 are constant weights. This model has a factor connecting each voter
variable to the query, which represents the value of that vote, and an additional factor that gives a
prior for each voter. It corresponds to the factor graph in Figure 1(a). The second version, the voting
model with logical semantics, has energy function

ε(Q,T, F) = wQmaxi Ti − wQmaxi Fi +
∑n
i=1 wTiTi +

∑n
i=1 wFiFi.

Here, in addition to the prior factors, there are only two other factors, one of which (which we call
φT) connects all the true-voters to the query, and the other of which (φF) connects all the false-voters
to the query. The third version, the voting model with ratio semantics, is an intermediate between
these two models, and has energy function
ε(Q,T, F) = wQ log (1 +

∑n
i=1 Ti)− wQ log (1 +

∑n
i=1 Fi) +

∑n
i=1 wTiTi +

∑n
i=1 wFiFi.

With either logical or ratio semantics, this model can be drawn as the factor graph in Figure 1(b).

These three cases model different distributions and therefore different ways of representing the
power of a vote; the choice of names is motivated by considering the marginal odds of Q given
the other variables. For linear semantics, the odds of Q depend linearly on the difference between
the number of nonzero positive-voters Ti and nonzero negative-voters Fi. For ratio semantics, the
odds of Q depend roughly on their ratio. For logical semantics, only the presence of nonzero voters
matters, not the number of voters.

We instantiated this model with random weights wTi and wFi , ran Gibbs sampling on it, and com-
puted the variance of the estimated marginal probability of Q for the different models (Figure 2).
The results show that the models with logical and ratio semantics produce much lower-variance es-
timates than the model with linear semantics. This experiment motivates us to try to prove a bound
on the mixing time of Gibbs sampling on this model.
Theorem 1. Fix any constant ω > 0, and run Gibbs sampling on the voting model with bounded
factor weights {wTi , wFi , w} ⊂ [−ω, ω]. For the voting model with linear semantics, the largest

3

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80 90 100va
ri

an
ce

of
m

ar
gi

na
le

st
im

at
e

fo
rQ

iterations (thousands)

Convergence of Voting Model (n = 50)

linear
ratio

logical
0.0001

0.001

0.01

0.1

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1va
ri

an
ce

of
m

ar
gi

na
le

st
im

at
e

fo
rQ

iterations (millions)

Convergence of Voting Model (n = 500)

linear
ratio

logical

Figure 2: Convergence for the voting model with w = 0.5, and random prior weights in (−1, 0).

possible mixing time tmix of any such model is tmix = 2Θ(n). For the voting model with either
logical or ratio semantics, the largest possible mixing time is tmix = Θ(n log n).

This result validates our observation that linear semantics mix poorly compared to logical and ratio
semantics. Intuitively, the reason why linear semantics performs worse is that the Gibbs sampler will
switch the state of Q only very infrequently—in fact exponentially so. This is because the energy
roughly depends linearly on the number of voters n, and therefore the probability of switching Q
depends exponentially on n. This does not happen in either the logical or ratio models.

2.2 Hypertree Width

In this section, we describe the commonly-used graph property of hypertree width, and show using
the voting example that bounding it is insufficient to ensure rapid Gibbs sampling. Hypertree width
is typically used to bound the complexity of dynamic programming algorithms on a graph; in partic-
ular, variable elimination for exact inference runs in polynomial time on factor graphs with bounded
hypertree width [8, p. 1000]. The hypertree width of a hypergraph, which we denote tw(G), is a
generalization of the notion of acyclicity; since the definition of hypertree width is technical, we
instead state the definition of an acyclic hypergraph, which is sufficient for our analysis. In order to
apply these notions to factor graphs, we can represent a factor graph as a hypergraph that has one
vertex for each node of the factor graph, and one hyperedge for each factor, where that hyperedge
contains all variables the factor depends on.

Definition 2 (Acyclic Factor Graph [6]). A join tree, also called a junction tree, of a factor graph G
is a tree T such that the nodes of T are the factors of G and, if two factors φ and ρ both depend on
the same variable x inG, then every factor on the unique path between φ and ρ in T also depends on
x. A factor graph is acyclic if it has a join tree. All acyclic graphs have hypertree width tw(G) = 1.

Note that all trees are acyclic; in particular the voting model (with any semantics) has hypertree
width 1. Since the voting model with linear semantics and bounded weights mixes in exponential
time (Theorem 1), this means that bounding the hypertree width and the factor weights is insufficient
to ensure rapid mixing of Gibbs sampling.

2.3 Hierarchy Width

Since the hypertree width is insufficient, we define a new graph property, the hierarchy width, which,
when bounded, ensures rapid mixing of Gibbs sampling. This result is our main contribution.

Definition 3 (Hierarchy Width). The hierarchy width hw(G) of a factor graph G is defined recur-
sively such that, for any connected factor graph G = 〈V,Φ〉,

hw(G) = 1 + min
φ∗∈Φ

hw(〈V,Φ− {φ∗}〉), (2)

and for any disconnected factor graph G with connected components G1, G2, . . .,

hw(G) = max
i

hw(Gi). (3)

4

As a base case, all factor graphs G with no factors have

hw(〈V, ∅〉) = 0. (4)

To develop some intuition about how to use the definition of hierarchy width, we derive the hierarchy
width of the path graph drawn in Figure 3.

v1 φ1 v2 φ2 v3 φ3 v4 φ4 v5 φ5 v6 φ6 v7 · · · vn

Figure 3: Factor graph diagram for an n-variable path graph.

Lemma 1. The path graph model has hierarchy width hw(G) = dlog2 ne.

Proof. Let Gn denote the path graph with n variables. For n = 1, the lemma follows from (4). For
n > 1, Gn is connected, so we must compute its hierarchy width by applying (2). It turns out that
the factor that minimizes this expression is the factor in the middle, and so applying (2) followed by
(3) shows that hw(Gn) = 1 + hw(Gd n2 e). Applying this inductively proves the lemma.

Similarly, we are able to compute the hierarchy width of the voting model factor graphs.

Lemma 2. The voting model with logical or ratio semantics has hierarchy width hw(G) = 3.

Lemma 3. The voting model with linear semantics has hierarchy width hw(G) = 2n+ 1.

These results are promising, since they separate our polynomially-mixing examples from our
exponentially-mixing examples. However, the hierarchy width of a factor graph says nothing about
the factors themselves and the functions they compute. This means that it, alone, tells us nothing
about the model; for example, any distribution can be represented by a trivial factor graph with a
single factor that contains all the variables. Therefore, in order to use hierarchy width to produce a
result about the mixing time of Gibbs sampling, we constrain the maximum weight of the factors.

Definition 4 (Maximum Factor Weight). A factor graph has maximum factor weight M , where

M = max
φ∈Φ

(
max
I
φ(I)−min

I
φ(I)

)
.

For example, the maximum factor weight of the voting example with linear semantics is M = 2w;
with logical semantics, it is M = 2w; and with ratio semantics, it is M = 2w log(n + 1). We now
show that graphs with bounded hierarchy width and maximum factor weight mix rapidly.

Theorem 2 (Polynomial Mixing Time). If G is a factor graph with n variables, at most s states per
variable, e factors, maximum factor weight M , and hierarchy width h, then

tmix ≤ (log(4) + n log(s) + eM)n exp(3hM).

In particular, if e is polynomial in n, the number of values for each variable is bounded, and hM =
O(log n), then tmix(ε) = O(nO(1)).

To show why bounding the hierarchy width is necessary for this result, we outline the proof of
Theorem 2. Our technique involves bounding the absolute spectral gap γ(G) of the transition matrix
of Gibbs sampling on graph G; there are standard results that use the absolute spectral gap to bound
the mixing time of a process [10, p. 155]. Our proof proceeds via induction using the definition of
hierarchy width and the following three lemmas.

Lemma 4 (Connected Case). Let G and Ḡ be two factor graphs with maximum factor weight M ,
which differ only inasmuch as G contains a single additional factor φ∗. Then,

γ(G) ≥ γ(Ḡ) exp (−3M) .

Lemma 5 (Disconnected Case). Let G be a disconnected factor graph with n variables and m
connected components G1, G2, . . . , Gm with n1, n2, . . . nm variables, respectively. Then,

γ(G) ≥ min
i≤m

ni
n
γ(Gi).

5

Lemma 6 (Base Case). Let G be a factor graph with one variable and no factors. The absolute
spectral gap of Gibbs sampling running on G will be γ(G) = 1.

Using these Lemmas inductively, it is not hard to show that, under the conditions of Theorem 2,

γ(G) ≥ 1

n
exp (−3hM) ;

converting this to a bound on the mixing time produces the result of Theorem 2.

To gain more intuition about the hierarchy width, we compare its properties to those of the hypertree
width. First, we note that, when the hierarchy width is bounded, the hypertree width is also bounded.
Statement 1. For any factor graph G, tw(G) ≤ hw(G).

One of the useful properties of the hypertree width is that, for any fixed k, computing whether a
graph G has hypertree width tw(G) ≤ k can be done in polynomial time in the size of G. We show
the same is true for the hierarchy width.
Statement 2. For any fixed k, computing whether hw(G) ≤ k can be done in time polynomial in
the number of factors of G.

Finally, we note that we can also bound the hierarchy width using the degree of the factor graph.
Notice that a graph with unbounded node degree contains the voting program with linear semantics
as a subgraph. This statement shows that bounding the hierarchy width disallows such graphs.
Statement 3. Let d be the maximum degree of a variable in factor graph G. Then, hw(G) ≥ d.

3 Factor Graph Templates

Our study of hierarchy width is in part motivated by the desire to analyze the behavior of Gibbs
sampling on factor graph templates, which are common in practice and used by many state-of-the-
art systems. A factor graph template is an abstract model that can be instantiated on a dataset to
produce a factor graph. The dataset consists of objects, each of which represents a thing we want to
reason about, which are divided into classes. For example, the object Bart could have class Person
and the object Twilight could have class Movie. (There are many ways to define templates; here, we
follow the formulation in Koller and Friedman [8, p. 213].)

A factor graph template consists of a set of template variables and template factors. A template
variable represents a property of a tuple of zero or more objects of particular classes. For exam-
ple, we could have an IsPopular(x) template, which takes a single argument of class Movie. In
the instantiated graph, this would take the form of multiple variables like IsPopular(Twilight) or
IsPopular(Avengers). Template factors are replicated similarly to produce multiple factors in the
instantiated graph. For example, we can have a template factor

φ (TweetedAbout(x, y), IsPopular(x))

for some factor function φ. This would be instantiated to factors like

φ (TweetedAbout(Avengers,Bart), IsPopular(Avengers)) .

We call the x and y in a template factor object symbols. For an instantiated factor graph with template
factors Φ, if we let Aφ denote the set of possible assignments to the object symbols in a template
factor φ, and let φ(a, I) denote the value of its factor function in world I under the object symbol
assignment a, then the standard way to define the energy function is with

ε(I) =
∑
φ∈Φ

∑
a∈Aφ wφφ(a, I), (5)

where wφ is the weight of template factor φ. This energy function results from the creation of
a single factor φa(I) = φ(a, I) for each object symbol assignment a of φ. Unfortunately, this
standard energy definition is not suitable for all applications. To deal with this, Shin et al. [20]
introduce the notion of a semantic function g, which counts the of energy of instances of the factor
template in a non-standard way. In order to do this, they first divide the object symbols of each
template factor into two groups, the head symbols and the body symbols. When writing out factor
templates, we distinguish head symbols by writing them with a hat (like x̂). If we let Hφ denote
the set of possible assignments to the head symbols, let Bφ denote the set of possible assignments

6

bounded factor weight
bounded hypertree width

voting
(linear)

polynomial mixing time
bounded hierarchy width

hierarchical templates
voting

(logical)
voting
(ratio)

Figure 4: Subset relationships among classes of factor graphs, and locations of examples.

to the body symbols, and let φ(h, b, I) denote the value of its factor function in world I under the
assignment (h, b), then the energy of a world is defined as

ε(I) =
∑
φ∈Φ

∑
h∈Hφ wφ(h) g

(∑
b∈Bφ φ(h, b, I)

)
. (6)

This results in the creation of a single factor φh(I) = g (
∑
b φ(h, b, I)) for each assignment of the

template’s head symbols. We focus on three semantic functions in particular [20]. For the first,
linear semantics, g(x) = x. This is identical to the standard semantics in (5). For the second,
logical semantics, g(x) = sgn(x). For the third, ratio semantics, g(x) = sgn(x) log(1+ |x|). These
semantics are analogous to the different semantics used in our voting example. Shin et al. [20]
exhibit several classification problems where using logical or ratio semantics gives better F1 scores.

3.1 Hierarchical Factor Graphs

In this section, we outline a class of templates, hierarchical templates, that have bounded hierarchy
width. We focus on models that have hierarchical structure in their template factors; for example,

φ(A(x̂, ŷ, z), B(x̂, ŷ), Q(x̂, ŷ)) (7)
should have hierarchical structure, while

φ(A(z), B(x̂), Q(x̂, y)) (8)
should not. Armed with this intuition, we give the following definitions.
Definition 5 (Hierarchy Depth). A template factor φ has hierarchy depth d if the first d object
symbols that appear in each of its terms are the same. We call these symbols hierarchical symbols.
For example, (7) has hierarchy depth 2, and x̂ and ŷ are hierarchical symbols; also, (8) has hierarchy
depth 0, and no hierarchical symbols.
Definition 6 (Hierarchical). We say that a template factor is hierarchical if all of its head symbols
are hierarchical symbols. For example, (7) is hierarchical, while (8) is not. We say that a factor
graph template is hierarchical if all its template factors are hierarchical.

We can explicitly bound the hierarchy width of instances of hierarchical factor graphs.
Lemma 7. If G is an instance of a hierarchical template with E template factors, then hw(G) ≤ E.

We would now like to use Theorem 2 to prove a bound on the mixing time; this requires us to
bound the maximum factor weight of the graph. Unfortunately, for linear semantics, the maximum
factor weight of a graph is potentially O(n), so applying Theorem 2 won’t get us useful results.
Fortunately, for logical or ratio semantics, hierarchical factor graphs do mix in polynomial time.
Statement 4. For any fixed hierarchical factor graph template G, if G is an instance of G with
bounded weights using either logical or ratio semantics, then the mixing time of Gibbs sampling on
G is polynomial in the number of objects n in its dataset. That is, tmix = O

(
nO(1)

)
.

So, if we want to construct models with Gibbs samplers that mix rapidly, one way to do it is with
hierarchical factor graph templates using logical or ratio semantics.

4 Experiments

Synthetic Data We constructed a synthetic dataset by using an ensemble of Ising model graphs
each with 360 nodes, 359 edges, and treewidth 1, but with different hierarchy widths. These graphs

7

0.001

0.01

0.1

1

10 100

sq
ua

re
er

ro
r

hierarchy width

Errors of Marginal Estimates for Synthetic Ising Model

w = 0.5
w = 0.7
w = 0.9

(a) Error of marginal estimates for synthetic
Ising model after 105 samples.

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100

m
ea

n
sq

ua
re

er
ro

r

iterations per variable

Max Error of Marginal Estimate for KBP Dataset

linear
ratio

logical

(b) Maximum error marginal estimates for KBP
dataset after some number of samples.

Figure 5: Experiments illustrate how convergence is affected by hierarchy width and semantics.

ranged from the star graph (like in Figure 1(a)) to the path graph; and each had different hierarchy
width. For each graph, we were able to calculate the exact true marginal of each variable because
of the small tree-width. We then ran Gibbs sampling on each graph, and calculated the error of the
marginal estimate of a single arbitrarily-chosen query variable. Figure 5(a) shows the result with
different weights and hierarchy width. It shows that, even for tree graphs with the same number of
nodes and edges, the mixing time can still vary depending on the hierarchy width of the model.

Real-World Applications We observed that the hierarchical templates that we focus on in this
work appear frequently in real applications. For example, all five knowledge base population (KBP)
systems illustrated by Shin et al. [20] contain subgraphs that are grounded by hierarchical templates.
Moreover, sometimes a factor graph is solely grounded by hierarchical templates, and thus provably
mixes rapidly by our theorem while achieving high quality. To validate this, we constructed a hier-
archical template for the Paleontology application used by Shanan et al. [17]. We found that when
using the ratio semantic, we were able to get an F1 score of 0.86 with precision of 0.96. On the
same task, this quality is actually higher than professional human volunteers [17]. For comparison,
the linear semantic achieved an F1 score of 0.76 and the logical achieved 0.73.

The factor graph we used in this Paleontology application is large enough that it is intractable, using
exact inference, to estimate the true marginal to investigate the mixing behavior. Therefore, we
chose a subgraph of a KBP system used by Shin et al. [20] that can be grounded by a hierarchical
template and chose a setting of the weight such that the true marginal was 0.5 for all variables. We
then ran Gibbs sampling on this subgraph and report the average error of the marginal estimation in
Figure 5(b). Our results illustrate the effect of changing the semantic on a more complicated model
from a real application, and show similar behavior to our simple voting example.

5 Conclusion

This paper showed that for a class of factor graph templates, hierarchical templates, Gibbs sampling
mixes in polynomial time. It also introduced the graph property hierarchy width, and showed that
for graphs of bounded factor weight and hierarchy width, Gibbs sampling converges rapidly. These
results may aid in better understanding the behavior of Gibbs sampling for both template and general
factor graphs.

Acknowledgments

Thanks to Stefano Ermon and Percy Liang for helpful conversations.

The authors acknowledge the support of: DARPA FA8750-12-2-0335; NSF IIS-1247701; NSF CCF-1111943;
DOE 108845; NSF CCF-1337375; DARPA FA8750-13-2-0039; NSF IIS-1353606; ONR N000141210041
and N000141310129; NIH U54EB020405; Oracle; NVIDIA; Huawei; SAP Labs; Sloan Research Fellowship;
Moore Foundation; American Family Insurance; Google; and Toshiba.

8

References
[1] Venkat Chandrasekaran, Nathan Srebro, and Prahladh Harsha. Complexity of inference in graphical

models. arXiv preprint arXiv:1206.3240, 2012.
[2] Persi Diaconis, Kshitij Khare, and Laurent Saloff-Coste. Gibbs sampling, exponential families and or-

thogonal polynomials. Statist. Sci., 23(2):151–178, May 2008.
[3] Persi Diaconis, Kshitij Khare, and Laurent Saloff-Coste. Gibbs sampling, conjugate priors and coupling.

Sankhya A, (1):136–169, 2010.
[4] Pedro Domingos and William Austin Webb. A tractable first-order probabilistic logic. In AAAI, 2012.
[5] Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. Parallel gibbs sampling: From

colored fields to thin junction trees. In AISTATS, pages 324–332, 2011.
[6] Georg Gottlob, Gianluigi Greco, and Francesco Scarcello. Treewidth and hypertree width. Tractability:

Practical Approaches to Hard Problems, page 1, 2014.
[7] Alexander T Ihler, John Iii, and Alan S Willsky. Loopy belief propagation: Convergence and effects of

message errors. In Journal of Machine Learning Research, pages 905–936, 2005.
[8] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press,

2009.
[9] Johan Kwisthout, Hans L Bodlaender, and Linda C van der Gaag. The necessity of bounded treewidth for

efficient inference in bayesian networks. In ECAI, pages 237–242, 2010.
[10] David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov chains and mixing times. American

Mathematical Soc., 2009.
[11] Xianghang Liu and Justin Domke. Projecting markov random field parameters for fast mixing. In

Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems 27, pages 1377–1385. Curran Associates, Inc., 2014.

[12] David Lunn, David Spiegelhalter, Andrew Thomas, and Nicky Best. The BUGS project: evolution,
critique and future directions. Statistics in medicine, (25):3049–3067, 2009.

[13] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. Journal
of the ACM (JACM), (6):42, 2013.

[14] Andrew McCallum, Karl Schultz, and Sameer Singh. Factorie: Probabilistic programming via impera-
tively defined factor graphs. In NIPS, pages 1249–1257, 2009.

[15] David Newman, Padhraic Smyth, Max Welling, and Arthur U Asuncion. Distributed inference for latent
dirichlet allocation. In NIPS, pages 1081–1088, 2007.

[16] Kee Siong Ng, John W Lloyd, and William TB Uther. Probabilistic modelling, inference and learning
using logical theories. Annals of Mathematics and Artificial Intelligence, (1-3):159–205, 2008.

[17] Shanan E Peters, Ce Zhang, Miron Livny, and Christopher Ré. A machine reading system for assembling
synthetic Paleontological databases. PloS ONE, 2014.

[18] David Poole. First-order probabilistic inference. In IJCAI, pages 985–991. Citeseer, 2003.
[19] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of

algorithms, (3):309–322, 1986.
[20] Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, Feiran Wang, and Christopher Ré.

Incremental knowledge base construction using deepdive. PVLDB, 2015.
[21] Parag Singla and Pedro Domingos. Lifted first-order belief propagation. In AAAI, pages 1094–1099,

2008.
[22] Alexander Smola and Shravan Narayanamurthy. An architecture for parallel topic models. PVLDB, 2010.
[23] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic databases. Synthesis Lectures

on Data Management, (2):1–180, 2011.
[24] Mihai Surdeanu and Heng Ji. Overview of the english slot filling track at the TAC2014 knowledge base

population evaluation.
[25] Lucas Theis, Jascha Sohl-dickstein, and Matthias Bethge. Training sparse natural image models with a

fast gibbs sampler of an extended state space. In NIPS, pages 1124–1132. 2012.
[26] Deepak Venugopal and Vibhav Gogate. On lifting the gibbs sampling algorithm. In F. Pereira, C.J.C.

Burges, L. Bottou, and K.Q. Weinberger, editors, NIPS, pages 1655–1663. Curran Associates, Inc., 2012.
[27] Deepak Venugopal, Somdeb Sarkhel, and Vibhav Gogate. Just count the satisfied groundings: Scalable

local-search and sampling based inference in mlns. In AAAI Conference on Artificial Intelligence, 2015.
[28] Ce Zhang and Christopher Ré. DimmWitted: A study of main-memory statistical analytics. PVLDB,

2014.

9

A Proof of Voting Program Rates

Here, we prove the convergence rates stated in Theorem 1. The strategy for the upper bound proofs
involves constructing a coupling between the Gibbs sampler and another process that attains the
equilibrium distribution at each step. First, we restate the definition of mixing time in terms of the
total variation distance, a quantity which we will use in the proofs in this section.

Definition 7 (Total Variation Distance). The total variation distance [10, p. 48] is a distance metric
between two probability measures µ and ν over probability space Ω defined as

‖µ− ν‖TV = max
A⊂Ω
|µ(A)− ν(A)| ,

that is, the maximum difference between the probabilities that µ and ν assign to a single event.

Definition 8 (Mixing Time). The mixing time of a Markov chain is the first time t at which the
estimated distribution µt is within total variation distance 1

4 of the true distribution [10, p. 55]. That
is,

tmix = min

{
t : ‖µt − π‖TV ≤

1

4

}
.

Next, we define a coupling [30].

Definition 9 (Coupling). A coupling of two random variables X and X ′ defined on some separate
probability spaces P and P′ is any new probability space P̂ over which there are two random vari-
ables X̂ and X̂ ′ such that X has the same distribution as X̂ and X ′ has the same distribution as
X̂ ′.

Given a coupling of two Markov processesXk andX ′k with the same transition matrix, the coupling
time is defined as the first time T when X̂k = X̂ ′k. The following theorem lets us bound the total
variance distance in terms of the coupling time.

Theorem 3 (Theorem 5.2 in Levin et al. [10]). For any coupling (X̂k, X̂
′
k) with coupling time T , if

we let νk and ν′k denote the distributions of Xk and X ′k respectively, then

‖νk − ν′k‖tv ≤ P (T > k) .

All of the coupling examples in this section use a correlated flip coupler, which consists of two
Gibbs samplers X̂ and X̂ ′, each of which is running with the same random inputs. Specifically,
both samplers choose to sample the same variable at each timestep. Then, if we define p as the
probability of sampling 1 for X̂ , and p′ similarly, it assigns both variables to 1 with probability
min(p, p′), assigns both variables to 0 with probability min(1 − p, 1 − p′), and assigns different
values with probability |p− p′|. If we initialize X̂ with an arbitrary distribution ν and X̂ ′ with
the stationary distribution π, it is trivial to check that X̂k has distribution P kν, and X̂ ′k always has
distribution π. Applying Theorem 3 results in∥∥P kν − π∥∥

tv
≤ P (T > k) .

Now, we prove the bounds stated in Theorem 1 as a collection of four statements about the upper
and lower bounds of the mixing time.

Statement 5 (UB for Voting: Logical and Ratio). For the voting example, assume that all the
weights on the variables are bounded by |w| ≤ M , |wTx | ≤ M and |wFx | ≤ M . Then for either
the logical or ratio semantics, for sufficiently small constant ε,

tmix(ε) = O (n log(n)) .

Proof. Recall that, for the voting program, the weight of a world is

W (q, t, f) = wqg(‖t‖1)− wqg(‖f‖1) +

n∑
x=1

wT (x)tx +

n∑
x=1

wF (x)fx,

where q ∈ {−1, 1} and {tx, fx} ⊆ {0, 1}.

10

Consider a correlated-flip coupler running on this Markov process, producing two chains X and
X̄ . For either chain, if we sample a variable T (x) at time k, and let u denote the number of T (y)
variables for y 6= x that are true, then

P
(
T (x)(k+1) = 1

)
=
(
1 + exp

(
wq (g(u)− g(u+ 1))− wT (x)

))−1
.

Since g(x+ 1)− g(x) ≤ 1 for any x, it follows that

P
(
T (x)(k+1) = 1

)
≥ (1 + exp(2M))

−1
.

We now define the constant
pM = (1 + exp(2M))

−1
.

Also, if u non-T (x) variables are true in the X process, and ū variables are true in the X̄ process,
then the probability of the processes X and X̄ not producing the same value for Yi is

pD =
∣∣∣P (T (x)(k+1) = 1

)
− P

(
T̄ (x)(k+1) = 1

)∣∣∣
=
∣∣∣(1+exp

(
wq (g(u)−g(u+1))−wT (x)

))−1−
(
1+exp

(
wq̄ (g(ū)−g(ū+1))−wT (x)

))−1
∣∣∣ ,

where the last statement follows from continuous differentiability of the function h(x) =

(1 + exp(−x))
−1. Notice that, if u = Ω(n), then

pD = O(n−1)

for both logical and ratio semantics.

The same logic will show that, if we sample any F (x), then

P
(
F (x)(k+1) = 1

)
≥ pM ,

and
pD = O(g(v + 1)− g(v) + g(v̄ + 1)− g(v̄)),

where v and v̄ are the number of non-F (x) variables that are true in the X and X̄ processes respec-
tively. Again as above, if v = Ω(n), then

pD = O(n−1).

Next, consider the situation if we sample Q. In this case,

P
(
Q(k+1) = 1

)
= (1 + exp (2w (g(‖t‖1)− g(‖f‖1))))

−1
.

Therefore, of we let u denote the number of true T (x) variables and v denote the number of true
F (x) variables, and similarly for ū and v̄, then the probability of the processes X and X̄ not pro-
ducing the same value for Q is

pD =
∣∣∣P (Q(k+1) = 1

)
− P

(
Q̄(k+1) = 1

)∣∣∣
=
∣∣∣(1 + exp (2w (f(v)− f(u))))

−1
.− (1 + exp (2w (f(v̄)− f(ū))))

−1
.
∣∣∣

= O (|f(v)− f(u)− f(v̄) + f(ū), |)

where as before, the last statement follows from continuous differentiability of the function g(x) =

(1 + exp(−x))
−1. Furthermore, if all of u, v, ū, and v̄ are Ω(n), then

pD = O(1).

Now, assume that our correlated-flip coupler runs for 8n log n steps on the Gibbs sampler. Let E1

be the event that, after the first 4n log n steps, each of the variables has been sampled at least once.
This will have probability at least 1

2 by the coupon collector’s problem.

Next, let E2 be the event that, after the first 4n log n steps, min(u, v, ū, v̄) ≥ pMn
2 for the next

4n log n steps for both samplers. After all the entries have been sampled, u, v, ū, and v̄ will each

11

be bounded from below by a binomial random variable with parameter pM at each timestep, so
from Hoeffding’s inequality, the probability that this constraint will be violated by a sampler at any
particular step is less than exp

(
− 1

2pMn
)
. Therefore,

P (E2|E1) ≥
(

1− exp

(
−1

2
pMn

))4n logn

= Ω(1).

Let E3 be the event that all the variables are resampled at least once between time 2n log n and
4n log n. Again this event has probability at least 1

2 .

Finally, let C be the event that coupling occurs at time 4n log n. Given E1, E2, and E3, this proba-
bility is equal to the probability that each variable coupled individually the last time it was sampled.
For all the Yi, our analysis above showed that this probability is

1− pD = 1−O(n−1),

and for Q, this probability is
1− pD = Ω(1).

Therefore,
P (C|E1, E2, E3) ≥ Ω(1)

(
1−O(n−1)

)2n
= Ω(1),

and since
P (C) = P (C|E1, E2, E3)P (E3)P (E2|E1)P (E1) ,

and all these quantities are Ω(1), we can conclude that P̂(C) = Ω(1).

Therefore, this process couples with at least some constant probability P independent of n after
8n log n steps. Since we can run this coupling argument independently an arbitrary number of
times, it follows that, after 8Ln log n steps, the probability of coupling will be at least 1− (1−P)L.
Therefore, by Theorem 3, for any initial distribution ν,

‖P 8Ln lognν − π‖tv≤ P̂(T > 8Ln log n) ≤ (1− P)L.

For any ε, this will be less than ε when

L ≥ log(ε)

log(1− pC)
,

which occurs when t ≥ 8n log n log(ε)
log(1−pC) . Letting ε = 1

4 ,

tmix = 8n log n
log(4)

− log(1− pC)

produces the desired result.

Statement 6 (LB for Voting: Logical and Ratio). For the voting example using either the logical
or ratio semantics, a lower bound for the mixing time for sufficiently small constant values of ε is
Ω(n log n).

Proof. At a minimum, in order to converge, we must sample all the variables. From the coupon
collector’s problem, this requires Ω(n log n) time.

Statement 7 (UB for Voting: Linear). For the voting example, assume that all the weights on the
variables are bounded by |w| ≤M ,

∣∣wT (x)

∣∣ ≤M and
∣∣wF (x)

∣∣ ≤M . Then for linear semantics,

tmix = 2O(n).

Proof. From our algebra above in the proof of Statement 5, we know that at any timestep, the
probability of not coupling the sampled variable is bounded; that is

pD = O(1).

Therefore, if we run a correlated-flip coupler for 2n log n timesteps, the probability that coupling
will have occurred is greater than the probability that all variables have been sampled (which is

12

Ω(1)) times the probability that all variables coupled the last time they were sampled. Thus if C is
the event that coupling occurs,

P (C) ≥ Ω(1) (1−O(1))
2n+1

= exp(−O(n)).

Therefore, if we run for some t = 2O(n) timesteps, coupling will have occurred at least once with
high probability. It follows that the mixing time is

tmix = 2O(n),

as desired.

Statement 8 (LB for Voting: Linear). For the voting example using linear semantics and bounded
weights, a lower bound for the mixing time of a worst-case model is 2Ω(n).

Proof. Consider a sampler with unary weights wT (x) = wF (x) = 0. Assume that it starts in a state
where Q = 1, all the T (x) = 1, and all the F (x) = 0. We will show that it takes an exponential
amount of time until Q = −1. From above, the probability of flipping Q will be

P
(
Q(k+1) = −1

)
= (1 + exp (2w (‖t‖1)− ‖f‖1))))

−1
.

Meanwhile, the probability to flip any T (x) while Q = 1 is

P
(
T (x)(k+1) = 0

)
= (1 + exp(w))

−1
= p,

for constant p, and the probability of flipping any F (x) is similarly

P
(
F (x)(k+1) = 1

)
= p.

Now, consider the following events which could happen at any timestep. While Q = 1, let ET be
the event that ‖t‖1 ≤ (1− 2p)n, and let EF be the event that ‖f‖1 ≥ 2pn. Since ‖t‖1 and ‖f‖1 are
both bounded by binomial random variables with parameters 1 − p and p respectively, Hoeffding’s
inequality states that, at any timestep,

P (ET) = P (‖t‖1 ≤ (1− 2p)n) ≤ exp(−2p2n),

and similarly
P (EF) = P (‖f‖1 ≥ 2pn) ≤ exp(−2p2n).

Now, while these bounds are satisfied, let EQ be the event that Q = −1. This will be bounded by

P (EQ) = (1 + exp (2w(1− 4p)n))
−1 ≤ exp(−2w(1− 4p)n).

It follows that at any timestep,

P (ET ∨ EF ∨ EQ) = exp(−O(n)),

so, at any timestep k,
P
(
Q(k) = −1

)
= k exp(−O(n)).

However, by symmetry, under the stationary distribution π, this probability must be 1
2 . Therefore,

the total variation distance is bounded by

‖Ptν − π‖tv≥
1

2
− t exp(−O(n)).

So, for convergence to less than ε = 1
4 , for example, we must require at least 2O(a) steps. This

proves the statement.

B Proof of Theorem 2

In this section, we prove the main result of the paper, Theorem 2. First, we state some basic lemmas
we will need for the proof in Section B.1. Then, we prove the main result inductively in Section B.2.
Finally, we prove the lemmas in Section B.3.

13

B.1 Statement of Lemmas

Note that some of these lemmas are restated from the body of the paper.
Definition 10 (Absolute Spectral Gap). Let P be the transition matrix of a Markov process. Since
it is a Markov process, one of its eigenvalues, the dominant eigenvalue, must be 1. The absolute
spectral gap of the Markov process is the value

γ = 1−max
λ
|λ| ,

where the maximum is taken over all non-dominant eigenvalues of P .
Lemma 5 (Disconnected Case). Let G be a disconnected factor graph with n variables and m
connected components G1, G2, . . . , Gm with n1, n2, . . . nm variables, respectively. Then,

γ(G) ≥ min
i≤m

ni
n
γ(Gi).

Lemma 4 (Connected Case). Let G and Ḡ be two factor graphs with maximum factor weight M ,
which differ only inasmuch as G contains a single additional factor φ∗. Then,

γ(G) ≥ γ(Ḡ) exp (−3M) .

Lemma 6 (Base Case). Let G be a factor graph with one variable and no factors. The absolute
spectral gap of Gibbs sampling running on G will be γ(G) = 1.

Lemma 8. Let P be the transition matrix of a reversible, irreducible Markov chain with state space
Ω and absolute spectral gap γ, and let πmin = minx∈π π(x). Then

tmix(ε) ≤ − log (επmin)
1

γ
.

Proof. This is Theorem 12.3 from Markov Chains and Mixing Times [10, p. 155], and a complete
proof can be found in that book.

B.2 Main Proof

We achieve the proof of Theorem 2 in two steps. First, we inductively bound the absolute spectral
gap of Gibbs sampling on factor graphs in terms of the hierarchy width. Then, we use the bound on
the spectral gap to bound the mixing time.
Lemma 9. If G is a factor graph with n variables, maximum factor weight M and hierarchy width
h, then Gibbs sampling running on G will have absolute spectral gap γ, where

γ ≥ 1

n
exp (−3hM) .

Proof. We will prove this result by multiple induction on the number of variables and number of
factors of G. In what follows, we assume that the statement holds for all graphs with either fewer
variables and no more factors than G, or fewer factors and no more variables than G.

Consider the connectedness of G. There are three possibilities:

1. G has one variable and no factors.
2. G is connected and has at least one factor.
3. G is disconnected.

We consider these cases separately.

Case 1 If G has no factors and one variable, then by Lemma 6, its spectral gap will be
γ = 1.

Also, if G has no factors, by (4), its hierarchy width is h = 0. Therefore,

γ =
1

1
exp(0)

=
1

n
exp(−3hM),

which is the desired result.

14

Case 2 Next, we consider the case where G is connected and has at least one factor. In this case,
by (2), its hierarchy width is

hw(G) = 1 + min
e∈E

hw(〈N,E − {e}〉).

Let e be an edge that minimizes this quantity, and let Ḡ denote the factor graph that results from
removing the corresponding factor from G. Clearly,

hw(G) = 1 + hw(Ḡ).

Since G and Ḡ differ by only one factor, by Lemma 4,

γ ≥ γ̄ exp (−3M) .

Furthermore, since Ḡ has fewer factors than G, by the inductive hypothesis,

γ̄ ≥ 1

n
exp

(
−3Mhw(Ḡ)

)
.

Therefore,

γ ≥ γ̄ exp (−M)

≥ 1

n
exp

(
−3Mhw(Ḡ)

)
exp (−3M)

=
1

n
exp

(
−3M

(
1 + hw(Ḡ)

))
=

1

n
exp (−3Mhw(G)) ,

which is the desired result.

Case 3 Finally, consider the case where G is disconnected. Let G1, G2, . . . , Gm be the connected
components of G for some m ≥ 2. In this case, by (3), its hierarchy width is

hw(G) = max
i

hw(Gi).

By Lemma 5,

γ = min
i≤m

ni
n
γi,

where ni are the sizes of the Gi and γi are their absolute spectral gaps. We further know that each
of the Gi has fewer nodes than G, so by the inductive hypothesis,

γi ≥
1

ni
exp (−3Mhw(Gi)) .

Therefore,

γ = min
i≤m

ni
n
γi

≥ min
i≤m

ni
n

1

ni
exp (−3Mhw(Gi))

= min
i≤m

1

n
exp (−3Mhw(Gi))

=
1

n
exp

(
−3M max

i≤m
hw(Gi)

)
=

1

n
exp (−3Mhw(G)) ,

which is the desired result.

Since the statement holds in all three cases, by induction it will hold for all factor graphs. This
completes the proof.

Now, we restate and prove the main theorem.

15

Theorem 2 (Polynomial Mixing Time). If G is a factor graph with n variables, at most s states per
variable, e factors, maximum factor weight M , and hierarchy width h, then

tmix ≤ (log(4) + n log(s) + eM)n exp(3hM).

In particular, if e is polynomial in n, the number of values for each variable is bounded, and hM =
O(log n), then tmix(ε) = O(nO(1)).

Proof. From Lemma 8, we have that

tmix(ε) ≤ − log (επmin)
1

γ
.

For our factor graph G,

πmin = min
I
π(I)

=
minI exp(W (I))∑

J exp(W (J))
.

Since there are only at most sn worlds, it follows that

πmin ≥
minI exp(W (I))

sn maxJ exp(W (J))

= s−n exp
(

min
I
W (I)−max

J
W (J)

)
.

Expanding the world weight in terms of the factors,

πmin ≥ s−n exp

min
I

∑
φ∈Φ

φ(I)−max
J

∑
φ∈Φ

φ(J)

≥ s−n exp

∑
φ∈Φ

(
min
I
φ(I)−max

J
φ(J)

) .

Applying our maximum factor weight bound,

πmin ≥ s−n exp

−∑
φ∈Φ

M

= s−n exp (−eM) .

Substituting this into the expression from Lemma 8 produces

tmix(ε) ≤ − log
(ε

sn
exp (−eM)

) 1

γ

= (n log(s) + eM − log(ε))
1

γ
,

and substituting the result from Lemma 9 gives

tmix(ε) ≤ (n log(s) + eM − log(ε))n exp(3hM).

Substituting ε = 1
4 gives the desired result.

B.3 Proofs of Lemmas

In this statement, we will restate and prove the lemmas stated above in Section B.1.

16

Lemma 5 (Disconnected Case). Let G be a disconnected factor graph with n variables and m
connected components G1, G2, . . . , Gm with n1, n2, . . . nm variables, respectively. Then,

γ(G) ≥ min
i≤m

ni
n
γ(Gi).

Proof. Lemma 5 follows directly from Corollary 12.12 in Markov Chains and Mixing Times [10, p.
161]. For completeness, we restate the proof here.

Since G is disconnected, Gibbs sampling on G is equivalent to running m independent Gibbs sam-
plers on the Gi, where at each timestep, the Gibbs sampler of Gi is updated if a variable in Gi is
chosen; this occurs with probability ni

n . Therefore, if we let Pi denote the Markov transition matrix
of Gibbs sampling on Gi, we can write the transition matrix P of Gibbs sampling on G as

P (x, y) =

m∑
i=1

ni
n
Pi(xi, yi)

∏
j 6=i

I(xj , yj),

where x and y are worlds on G, where xi and yi are subsets of the variables of x and y respectively
that correspond to the graph Gi, and I is the identity matrix (I(x, y) = 1 if x = y, and I(x, y) = 0
otherwise).

Now, we, for each i, we let fi be some eigenvector of Pi with eigenvalue λi, and define

f(x) =

m∏
i=1

fi(xi).

It follows that

(Pf)(y) =
∑
x

f(x)P (x, y)

=
∑
x

f(x)

m∑
i=1

ni
n
Pi(xi, yi)

∏
j 6=i

I(xj , yj)

=
∑
x

m∑
i=1

ni
n
fi(xi)Pi(xi, yi)

∏
j 6=i

fj(xj)I(xj , yj)

=

m∑
i=1

ni
n

∑
xi

fi(xi)Pi(xi, yi)
∏
j 6=i

∑
xj

fj(xj)I(xj , yj)

=

m∑
i=1

ni
n
λifi(yi)

∏
j 6=i

fj(yj)

= f(y)

m∑
i=1

ni
n
λi;

if follows that f is an eigenvector of P with eigenvalue

λ =

m∑
i=1

ni
n
λi. (9)

Furthermore, it is clear that such eigenvectors will form a basis for the space of possible distributions
on the worlds of G. Therefore, all eigenvalues of P will be of the form (9), and so

|λ| ≤
m∑
i=1

ni
n
|λi| .

17

Therefore,

γ = min
λ 6=1

(1− |λ|)

≥ min
λ 6=1

m∑
i=1

ni
n

(1− |λi|)

≥ min
i

min
λi 6=1

ni
n

(1− |λi|)

= min
i

ni
n
γi,

which is the desired result.

To prove Lemma 4, we will need to first prove two other lemmas.

Lemma 10. Let G and Ḡ be two factor graphs, which differ only inasmuch as G contains a single
additional factor φ∗ with maximum factor weight M . Then, if π and π̄ denote the distributions on
worlds for these graphs,

exp(−M)π̄(x) ≤ π(x) ≤ exp(M)π̄(x).

Proof. From the definition of the distribution function,

π(x) =
exp(W (x))∑
z∈Ω exp(W (z))

=
exp(W̄ (x) + φ∗(x))∑
z∈Ω exp(W̄ (z) + φ∗(z))

≥ exp(W̄ (x) + minI φ
∗(I))∑

z∈Ω exp(W̄ (z) + maxI φ∗(I))

=
exp(W̄ (x))∑
z∈Ω exp(W̄ (z))

exp
(

min
I
φ∗(I)−max

I
φ∗(I)

)
= exp(−M)π̄(x).

In the other direction,

π(x) =
exp(W̄ (x) + φ∗(x))∑
z∈Ω exp(W̄ (z) + φ∗(z))

≤ exp(W̄ (x) + maxI φ
∗(I))∑

z∈Ω exp(W̄ (z) + minI φ∗(I))

=
exp(W̄ (x))∑
z∈Ω exp(W̄ (z))

exp
(

max
I
φ∗(I)−min

I
φ∗(I)

)
= exp(M)π̄(x).

This proves the lemma.

Lemma 11. Let G and Ḡ be two factor graphs, which differ only inasmuch as G contains a sin-
gle additional factor φ∗ with maximum factor weight M . Then, if P and P̄ denote the transition
matrices for Gibbs sampling on these graphs, for all x 6= y,

exp(−M)P̄ (x, y) ≤ P (x, y) ≤ exp(M)P̄ (x, y).

Proof. For Gibbs sampling on G, we know that, if worlds x and y differ in the value of only one
variable, and L is the set of worlds that only differ from x and y in the same variable, then

P (x, y) =
1

n

exp(W (y))∑
l∈L exp(W (l))

18

If P̄ is the transition matrix for Gibbs sampling on Ḡ, then the same argument will show that

P̄ (x, y) =
1

n

exp(W̄ (y))∑
l∈L exp(W̄ (l))

.

Therefore,

P (x, y) =
1

n

exp(W̄ (y) + φ∗(y))∑
l∈L exp(W̄ (l) + φ∗(y))

≥ 1

n

exp(W̄ (y) + minI φ
∗(I))∑

l∈L exp(W̄ (l) + maxI φ∗(I))

=
1

n

exp(W̄ (y))∑
l∈L exp(W̄ (l))

exp
(

min
I
φ∗(I)−max

I
φ∗(I)

)
= exp(−M)P̄ (x, y).

Similarly,

P (x, y) =
1

n

exp(W̄ (y) + φ∗(y))∑
l∈L exp(W̄ (l) + φ∗(y))

≤ 1

n

exp(W̄ (y) + maxI φ
∗(I))∑

l∈L exp(W̄ (l) + minI φ∗(I))

=
1

n

exp(W̄ (y))∑
l∈L exp(W̄ (l))

exp
(

max
I
φ∗(I)−min

I
φ∗(I)

)
= exp(M)P̄ (x, y).

On the other hand, if x and y differ in more than one variable, then

P (x, y) = P̄ (x, y) = 0.

Therefore, the lemma holds for any x 6= y.

Now, we restate and prove Lemma 4.

Lemma 4 (Connected Case). Let G and Ḡ be two factor graphs with maximum factor weight M ,
which differ only inasmuch as G contains a single additional factor φ∗. Then,

γ(G) ≥ γ(Ḡ) exp (−3M) .

Proof. The proof is similar to proofs using the Dirichlet form to bound the spectral gap [10, p. 181].

Recall that Gibbs sampling is a reversible Markov chain. That is, if P is the transition matrix
associated with Gibbs sampling on G, and π is its stationary distribution,

π(x)P (x, y) = π(y)P (y, x).

If we let Π be the diagonal matrix such that Π(x, x) = π(x), then we can write this as

PΠ = ΠPT ;

that is, A = PΠ is a symmetric matrix. Now, consider the form

α(f) =
1

2

∑
x,y

(f(x)− f(y))
2
π(x)P (x, y).

Expanding this produces

α(f) =
1

2

∑
x,y

f(x)2π(x)P (x, y)−
∑
x,y

f(x)f(y)π(x)P (x, y) +
1

2

∑
x,y

f(y)2π(x)P (x, y).

19

By reversibility of the chain,

α(f) =
1

2

∑
x,y

f(x)2π(x)P (x, y)−
∑
x,y

f(x)f(y)π(x)P (x, y) +
1

2

∑
x,y

f(y)2π(y)P (y, x)

=
∑
x,y

f(x)2π(x)P (x, y)−
∑
x,y

f(x)f(y)π(x)P (x, y)

=
∑
x

f(x)2π(x)
∑
y

P (x, y)−
∑
x,y

f(x)f(y)π(x)P (x, y)

=
∑
x

π(x)f(x)2 −
∑
x,y

f(x)f(y)A(x, y)

= fTΠf − fTAf
= fT (I − P)Πf.

Similarly, if we define

β(f) =
1

2

∑
x,y

(f(x) + f(y))
2
π(x)P (x, y),

then the same logic will show that

β(f) = fT (I + P)Πf.

We define Ā, ᾱ and β̄ similarly for Gibbs sampling on Ḡ.

Now, by Lemmas 10 and 11,

α(f) =
1

2

∑
x,y

(f(x)− f(y))
2
π(x)P (x, y)

≥ 1

2

∑
x,y

(f(x)− f(y))
2

exp(−2M)π̄(x)P̄ (x, y)

= exp(−2M)ᾱ(f).

It follows that
fT (I − P)Πf ≥ exp(−2M)fT (I − P̄)Π̄f.

We also notice that, by Lemma 10,

fT
(
Π− ππT

)
f = fTΠf − (πT f)2

=
∑
x

f(x)2π(x)−

(∑
y

f(y)π(y)

)2

=
∑
x

(
f(x)−

∑
y

f(y)π(y)

)2

π(x)

≤
∑
x

(
f(x)−

∑
y

f(y)π̄(y)

)2

π(x)

≤ exp(M)
∑
x

(
f(x)−

∑
y

f(y)π̄(y)

)2

π̄(x)

= exp(M)

∑
x

f(x)2π̄(x)−

(∑
y

f(y)π̄(y)

)2

= exp(M)fT
(
Π̄− π̄π̄T

)
f

Therefore,
fT (I − P)Πf

fT (Π− ππT) f
≥ exp(−3M)

fT (I − P̄)Π̄f

fT
(
Π̄− π̄π̄T

)
f
. (10)

20

Now, let’s explore the quantity

min
f

fT (I − P)Πf

fT (Π− ππT) f
. (11)

First, we notice that
(I − P)Π1 = (I − P)π = π − π = 0,

so 1 is an eigenvector of (I − P)Π with eigenvalue 0. Furthermore,(
Π− ππT

)
1 =

(
π − ππT1

)
= π − π = 0,

so 1 is also an eigenvector of (I−P)Π with eigenvalue 0. It follows that (11) is invariant to additions
of the vector 1 to f , and in particular we can therefore choose to minimize over only those vectors
for which πT f = 0. Therefore,

min
f

fT (I − P)Πf

fT (Π− ππT) f
= min
πT g=0

gT (I − P)Πg

gTΠg

= min
πT g=0

gTΠ
1
2 Π−

1
2 (I − P)Π

1
2 Π

1
2 g

gTΠg
.

If we let h = Π
1
2 g, then

min
f

fT (I − P)Πf

fT (Π− ππT) f
= min

1TΠ
1
2 h=0

hTΠ−
1
2 (I − P)Π

1
2h

hTh
.

Notice that Π−
1
2 (I−P)Π

1
2 is similar to I−P , and so it must have the same eigenvalues. Since it is

symmetric, it has an orthogonal complement of eigenvectors, and the eigenvector that corresponds
to λ = 0 is (

Π−
1
2 (I − P)Π

1
2

)(
Π

1
21
)

= Π−
1
2 (I − P)π = Π−

1
2 (π − π) = 0.

The expression above is minimizing over all vectors orthogonal to this eigenvector; it follows that
the minimum will be the second smallest eigenvalue of I−P . This eigenvalue will be 1−λ2, where
λ2 is the second-largest eigenvalue of P . So,

min
f

fT (I − P)Πf

fT (Π− ππT) f
= 1− λ2.

The same argument will show that

min
f

fT (I − P̄)Π̄f

fT
(
Π̄− π̄π̄T

)
f

= 1− λ̄2.

Therefore, minimizing both sides in (10) produces
1− λ2 ≥ exp(−3M)

(
1− λ̄2

)
.

And applying the definition of absolute spectral gap,
1− λ2 ≥ exp(−3M)γ̄

Now, a similar argument to the above will show that
fT (I + P)Πf

fTΠf
≥ exp(−3M)

fT (I + P̄)Π̄f

fT Π̄f
.

And we will be able to conclude that

min
f

fT (I + P)Πf

fTΠf
= 1− λn,

where λn is the (algebraically) smallest eigenvalue of P , and similarly for λ̄n. Therefore, we can
conclude that

1 + λn ≥ exp(−3M)
(
1 + λ̄n

)
,

and from the definition of absolute spectral gap,
1 + λn ≥ exp(−3M)γ̄.

Therefore,
γ ≥ min(1− λ2, 1 + λn) ≥ exp(−3M)γ̄.

This proves the lemma.

21

Next, we restate and prove Lemma 6
Lemma 6 (Base Case). Let G be a factor graph with one variable and no factors. The absolute
spectral gap of Gibbs sampling running on G will be γ(G) = 1.

Proof. Gibbs sampling on a factor graph with one variable and no factors will have transition matrix

P = π1T ,

where π is the stationary distribution, and 1 is the vector of all 1s. That is, the process achieves
the stationary distribution in a single step. The only eigenvalues of this matrix are 0 and 1, so the
absolute spectral gap will be 1, as desired.

C Proofs of Other Results

In this section, we will prove the other results about hierarchy decomposition stated in Section 2.3.
First, we express it in terms of a hypergraph decomposition; this is how hypertree width is defined
so it is useful for comparison.
Definition 11 (Hierarchy Decomposition). A hierarchy decomposition of a hypergraphG = 〈N,E〉
is a rooted tree T where each node v of T is labeled with a set χ(v) of edges of G, that satisfies the
following conditions: (1) for each edge e ∈ E, there is some node v of T such that e ∈ χ(v); (2)
if for two nodes u and v of T and for some edge e ∈ E, both e ∈ χ(u) and e ∈ χ(v), then for all
nodes w on the (unique) path between u and v in T , e ∈ χ(w); (3) for every pair of edges e ∈ E
and f ∈ E, if e ∩ f 6= ∅, then there exists a node v of T such that {e, f} ⊆ χ(v); and (4) if node u
is the parent of node v in T , then u ⊆ v.

The width of a hierarchy decomposition is the size of the largest node in T , that is, maxv |χ(v)|.

Statement 9. The hierarchy width of a hypergraph G is equal to the minimum width of a hierarchy
decomposition of G.

In this section, we denote the width of a hierarchy decomposition T as w(T).
Lemma 12. Let T be a hierarchy decomposition of a hypergraph G. Let u be a node of T that
has exactly one child v, and let e be the edge connecting u and v. Let T̄ be the graph minor of T
that is formed by removing u from T and, if applicable, connecting v with the parent of u; assume
that the nodes T̄ have the same labeling as the corresponding nodes in T . Then T̄ is a hierarchy
decomposition of G, and

w(T) = w(T̄).

Proof. We validate the conditions of the definition of hierarchy decomposition individually.

1. Since T is a hierarchy decomposition of G, by condition (1), for any hyperedge e of G,
there exists a node x of T such that e ∈ χT (x). If x 6= u, then e ∈ χT̄ (x). Otherwise, by
condition (4) of T , it will hold that χT (u) ⊆ χT (v) = χT̄ (v), so e ∈ χT̄ (v). Since this is
true for any hyperedge e, the condition holds.

2. Since we constructed T̄ by removing a node from T and connecting its neighbors, it follows
that if the path from node x to node y in T̄ passes through a node z, then the path from x to
y in T also passes through z. The condition then follows directly from condition (2) of T .

3. The argument here is the same as the argument for condition (1).
4. This condition follows directly from transitivity of the subset relation.

Therefore, T̄ is a hierarchy decomposition of G. To show that w(T) = w(T̄), it suffices to notice
that removing node u from T can’t change its width, since node v has at least as many hyperedges
in its labeling as u. This proves the lemma.

Lemma 13. Let T be a hierarchy decomposition of a hypergraph G. Let u be a node of T , and let v
be a child of T such that χT (u) = χT (v). Let T̄ be the graph minor of T that is formed by identifying
u and v by contracting along their connecting edge. Assume that the nodes T̄ have the same labeling
as the corresponding nodes in T , and that the new node, w, has χT̄ (w) = χT (u) = χT (v). Then T̄
is a hierarchy decomposition of G, and

w(T) = w(T̄).

22

Proof. We validate the conditions of the definition of hierarchy decomposition individually.

1. The set of labelings of T̄ is exactly the same as the set of labelings of T . Since T is a
hierarchy decomposition of G, the condition follows directly from condition (1) of T .

2. Similarly, the set of labelings of any path in T̄ is the same as the set of labeling of the
corresponding path in T . The condition then follows directly from condition (2) of T .

3. The argument here is the same as the argument for condition (1).
4. The labeling of every node’s parent in T̄ will be the same as the labeling of that node’s

parent in T . Therefore, the condition follows from condition (3) of T .

Therefore, T̄ is a hierarchy decomposition of G. To show that w(T) = w(T̄), it suffices to notice
the set of labelings of nodes of T̄ is the same as the set of labelings of nodes of T ; therefore they
must have the same width.

Lemma 14. For any factor graph G and for any hierarchy decomposition T of G,

w(T) ≥ hw(G).

Proof. As in the proof of Lemma 9, we will prove this result by multiple induction. In what follows,
we assume that the statement holds for all graphs with either fewer vertexes and no more hyperedges
than G, or fewer hyperedges and no more vertexes than G. We also assume that for a particular G,
the statement holds for all hierarchy decompositions of G that have fewer nodes than T .

There are five possibilities:

1. The root r of T is labeled with χ(r) = ∅, and r has no children.
2. The root r of T is labeled with χ(r) = ∅, and r has one child.
3. The root r of T is labeled with χ(r) = ∅, and r has two or more children, at least one of

which, x, is also labeled with χ(x) = ∅.
4. The root r of T is labeled with χ(r) = ∅, and r has two or more children, none of which

are labeled with the empty set.
5. The root r of T is labeled with χ(r) 6= ∅.

We consider these cases separately.

Case 1 If r is labeled with the empty set and has no children, then it follows from condition (1)
that there are no hyperedges in G. Therefore, hw(G) = 0. Also, since r is labeled with the empty
set, w(T) = 0. So, the statement holds in this case.

Case 2 If r has exactly one child, then by Lemma 12, there is a hierarchy decomposition T̄ of G
such that T̄ has fewer nodes than T and w(T) = w(T̄). By the inductive hypothesis,

w(T̄) ≥ hw(G).

So, the statement holds in this case.

Case 3 If r is labeled with the empty set and has two or more children, at least one of which is
also labeled with the empty set, then by Lemma 13, there is a hierarchy decomposition T̄ of G such
that T̄ has fewer nodes than T and w(T) = w(T̄). By the inductive hypothesis,

w(T̄) ≥ hw(G).

So, the statement holds in this case.

Case 4 Consider the case where r is labeled with the empty set and has two or more children,
none of which are labeled with the empty set. Let T1, T2, . . . , Tl be the labeled subtrees rooted at
the children of r. Notice that if a hyperedge e appears in the labeling of some node of Ti, then it can’t
appear in the labeling of any node of Tj for i 6= j, since otherwise by condition (2) it must appear
in the labeling of the root node r, and r has an empty labeling. Therefore, the hyperedges of G are
partitioned among the subtrees Ti. Furthermore, condition (3) implies that hyperedges associated
with different subtrees are disconnected, and therefore that graph G is disconnected. Therefore, if
we let Gi denote the m connected components of G.

hw(G) = max
i≤m

hw(Gi).

23

Now, let Ḡi, for i ≤ l, denote the subgraph of G that consists of the nodes that are connected to a
hyperedge in a labeling of a node of Ti. Clearly, the Ḡi will be disconnected, so

hw(G) = max
i≤l

hw(Ḡi).

Each Ḡi will also have fewer vertexes and hyperedges than G, so by the inductive hypothesis,
w(Ti) ≥ hw(Ḡi).

Therefore,
w(T) = max

i≤l
w(Ti) ≥ max

i≤l
hw(Ḡi) = hw(G);

so the statement holds in this case.

Case 5 Finally, consider the case where the root node r is labeled with some hyperedge e. Let Ḡ
be the graph that results from removing e from G, and let T̄ be the hierarchy decomposition that
results from removing e from all the labellings of T . Clearly, T̄ will be a hierarchy decomposition of
Ḡ. Furthermore, Ḡ has fewer hyperedges and the same number of vertexes as G, so by the inductive
hypothesis,

w(T̄) ≥ hw(Ḡ).

Furthermore, since removing e decreases the size of each of the labelings of T̄ by 1,
w(T̄) = w(T)− 1.

Therefore,
w(T̄) ≥ hw(Ḡ) + 1 ≥ hw(G),

so the statement holds in this case.

Therefore, the statement holds in all cases, so the lemma follows from induction on all hypergraphs
and all hierarchy decompositions.

Lemma 15. For any factor graph G, there exists a hierarchy decomposition T of G such that
w(T) = hw(G).

Proof. As in the proof of Lemma 9, we will prove this result by multiple induction. In what follows,
we assume that the statement holds for all graphs with either fewer vertexes and no more hyperedges
than G, or fewer hyperedges and no more vertexes than G.

There are three possibilities:

1. G has no hyperedges.
2. G is disconnected.
3. G is connected.

We consider these cases separately.

Case 1 If G has no hyperedges, then the tree T with a single node labeled with the empty set is a
hierarchy decomposition for G. It will satisfy

w(T) = 0.

Also, by (4), for the case with no hyperedges,
hw(G) = 0,

so the statement holds in this case.

Case 2 Assume that G is disconnected, and its connected components are Gi. Then by (3),
hw(G) = max

i
hw(Gi).

Since each Gi has fewer nodes and hyperedges than G, by the inductive hypothesis there exists a
hierarchy decomposition Ti for each Gi such that

w(Ti) = hw(Gi).

Let T be the tree that has a root node labeled with the empty set, and where the subtrees rooted at
its children are exactly the Ti above. We now show that T is a hierarchy decomposition for G by
validating the conditions.

24

1. Any hyperedge e of G must be a hyperedge of exactly one Gi. Since Ti is a hierarchy
decomposition of Gi, by condition (1) it follows that e appears in the labeling of some
node of Gi. Therefore, e will appear in the labeling of the corresponding node of G, and
the condition holds.

2. Again, any hyperedge e of G must be a hyperedge of exactly one Gi. Therefore, if e
appears in two nodes of T , those two nodes must both be part of the same subtree Ti. The
condition follows from the corresponding condition of Ti.

3. Since G is disconnected, any pair of hyperedges in G that share a vertex must both be part
of exactly one Gi. The condition then follows from the corresponding condition of Ti.

4. This condition follows directly from the fact that for any X , ∅ ⊆ X , and from the corre-
sponding condition for the subgraphs Ti.

Therefore T is a hierarchy decomposition for G. Furthermore, since the labelings of nodes of T are
the union of the labelings of nodes of Ti,

w(T) = max
i

w(Ti).

Therefore,
hw(G) = max

i
hw(Gi) = max

i
w(Ti) = w(T),

so the statement holds in this case.

Case 3 Assume that G is connected. Then by (2),

hw(G) = 1 + min
e∈E

hw(〈N,E − {e}〉).

Let b be a hyperedge that minimizes this quantity, and let Ḡ be the graph that results from removing
this hyperedge from G. Then,

hw(G) = 1 + hw(Ḡ〉).
Now, Ḡ has fewer hyperedges than G, so by the inductive hypothesis, there exists a hierarchy de-
composition T̄ of Ḡ such that

hw(Ḡ) = w(T̄).

Let T be the tree that results from adding edge b to every labeling of a node of T̄ . Clearly,

w(T) = w(T̄) + 1.

We now show that T is a hierarchy decomposition for G by validating the conditions.

1. Any hyperedge e of G is either hyperedge b or some hyperedge in Ḡ. If it is b, then it must
appear in a labeling of a node of T since it appears in all such labelings. Otherwise, the
condition follows from the corresponding condition of T̄ .

2. Again, any hyperedge e of G is either hyperedge b or some hyperedge in Ḡ. If it is b, then
the condition follows from the fact that all node labelings of T contain b. Otherwise, the
condition follows from the corresponding condition of T̄ .

3. For any pair of edges (e, f) of G, either b /∈ {e, f}, or b ∈ {e, f}. If b ∈ {e, f}, then the
condition follows from condition (1) of T̄ and the fact that all node labelings of T contain
b; otherwise, the condition follows from the corresponding condition of T̄ .

4. This condition follows directly from the fact that for any X and Y , if X ⊆ Y , then X ∪
{b} ⊆ Y ∪ {b}.

Therefore T is a hierarchy decomposition for G, and

w(T) = w(T̄) + 1 = hw(Ḡ) + 1 = hw(G),

so the statement holds in this case.

Therefore the statement holds in all cases, so the lemma follows from induction over all factor
graphs.

Next, we restate and prove Statement 9.
Statement 9. The hierarchy width of a hypergraph G is equal to the minimum width of a hierarchy
decomposition of G.

Proof. This statement follows directly from Lemmas 14 and 15.

25

Now, we provide a definition for hypertree width, and prove the comparison statements from the
body of the paper.
Definition 12 (Hypertree Decomposition [6]). A hypertree decomposition of a hypergraph G is a
structure 〈T, ρ, χ〉, where 〈T, ρ〉 is a tree decomposition for the primal graph of G, χ is a labeling of
the nodes of T with hyperedges of χ, and the following conditions are satisfied: (1) for any node u
of T , and for all vertices x ∈ ρ(u), there exists an edge e ∈ χ(u) such that x ∈ e; and (2) for any
node u of T , for any edge e ∈ χ(u), and for any descendant v of u in T , e ∩ ρ(v) ⊆ ρ(u).

The width of a hypertree decomposition, denoted w(T), is defined (as in the hierarchy decomposition
case) to be the cardinality of the largest hyperedge-labeling of a node of T . That is,

w(T) = max
u
|χ(u)| .

The hypertree width tw(G) of a graph G is the minimum width among all hypertree decompositions
of G.

We restate and prove Statement 1.
Statement 1. For any factor graph G, tw(G) ≤ hw(G).

Proof. Consider the hierarchy decomposition T of G that satisfies w(T) = hw(G). Assume that we
augment T with an additional node labeling ρ(v) that consists of the vertexes of G that are part of at
least one edge of χ(v) (that is, ρ(v) = ∪χ(v)). We show that T is a hypertree decomposition of G.

First, we must show that 〈T, ρ〉 is a tree decomposition for the primal graph of G; we do so by
verifying the conditions independently.

1. Each vertex of G must appear in the labeling of some node of T , since (by assumption) it
must appear in some hyperedge of G, and each hyperedge appears in the labeling of some
node of T because T is a hierarchy decomposition of G.

2. Similarly, any two vertexes (x, y) that are connected by an edge in the primal graph of G
must appear together in some hyperedge of G. Since each hyperedge of G appears in the
edge-labeling of some node of T , it follows that x and y must both appear in the vertex-
labeling of that node.

3. Finally, assume that vertex x appears in the labeling of two different nodes u and v of T .
Since x ∈ ρ(u), there must exist an edge e ∈ χ(u) such that x ∈ e; similarly, there must
be an edge f ∈ χ(v) such that x ∈ f . By condition (3) of the definition of hierarchy
decomposition, there must exist a node w of T such that {e, f} ⊆ χ(w). By condition (2)
of the definition of hierarchy decomposition, for all nodes z on the path between u and w,
e ∈ χ(z); similarly, for all nodes z on the path between v and w, f ∈ χ(z). Now, any
node z on the path between u and v must be either part of the path between u and w and
the path between v and w, therefore either e ∈ χ(z) or f ∈ χ(z). It follows that x ∈ ρ(z),
as desired.

Therefore T is a tree decomposition for the primal graph of G.

Next, we show that the T is also a hypertree decomposition for G by verifying the conditions inde-
pendently.

1. For any node u of T , and for all vertices x ∈ ρ(u), there must exist an edge e ∈ χ(u) such
that x ∈ e, because ρ(u) = ∪χ(v). Therefore the condition holds.

2. For any node u of T and for any descendant v of u in T , we know from condition (4) of the
definition of hierarchy decomposition that χ(u) ⊆ χ(v). So, for any edge e ∈ χ(u), it also
holds that e ∈ χ(v). Therefore, e ∩ ρ(v) = e ⊆ ρ(u), and so the condition holds.

We conclude that T is a hypertree decomposition forG. But, its width is hw(G). Since the hypertree
width of G is the minimum width among all hypertree decompositions of G, it follows that

tw(G) ≤ hw(G),

which is the desired expression.

Next, we restate and prove Statement 2.
Statement 2. For any fixed k, computing whether hw(G) ≤ k can be done in time polynomial in
the number of factors of G.

26

Proof. Consider Algorithm 1, which computes this quantity for a fixed k.

Algorithm 1 HW(G, k): Compute if hw(G) ≤ k
if G has no edges then

return true
end if
if k = 0 then

return false
end if
for e ∈ edges(G) do

Let Ḡ be the graph that results from removing e from the connected component of G that
contains e
if HW(Ḡ, k − 1) then

return true
end if

end for
return false

Each execution of HW requires at most linear time in the number of hyperedges of G to compute its
connected components. If we let e be the number of hyperedges of G, it also requires at most e
executions of G with parameter k − 1. Therefore, HW will run in time O(ek), which is polynomial
in the number of hyperedges, as desired.

As an aside here, we note that the hierarchy width can be expressed in terms of an existing graph
parameter, the tree-depth [29, p. 115], which we denote td(G). To do this, we let L(G), the line
graph of G, denote the graph such that every factor of G is a node of L(G), and two nodes of L(G)
are connected by an edge if and only if their corresponding factors share a dependent variable. Using
this, it is trivial to show (by definition) that

hw(G) = td(L(G)).

Since it is a known result that it is possible to compute whether a graph has tree-depth at most k in
time polynomial (in fact, linear) in the number of nodes of the graph, we could have also used this
to prove Statement 2; we avoided doing this to make the result more accessible.
Statement 10. The hierarchy width of a factor graph G is greater than or equal to the maximum
degree of a variable in G.

Finally, we restate and prove Statement 10.
Statement 10. The hierarchy width of a factor graph G is greater than or equal to the maximum
degree of a variable in G.

Proof. The statement follows by induction. Considering the parts of the definition of hierarchy
width individually, removing a single hyperedge from a hypergraph only decreases the maximum
degree of the hypergraph by at most 1, and splitting the hypergraph into connected components
doesn’t change the maximum degree.

D Proofs of Factor Graph Template Results

In this section, we prove the results in Section 3.1. First, we prove Lemma 16.
Lemma 16. If G is an instance of a hierarchical factor graph template G with E template factors,
then hw(G) ≤ E.
Lemma 16. If G is an instance of a hierarchical factor graph template G with E template factors,
then hw(G) ≤ E.

Proof. We prove this result using the notion of hierarchy decomposition from the previous section.
For the instantiated factor graph G, let T be a tree where each node v of T is associated with a
particular assignment of the first n head symbols of the rules. That is, there is a node of T for

27

each tuple of object symbols (x1, . . . , xm)—even for m = 0. (Since the rules are hierarchical, and
therefore must contain the same symbols in the same order, these assignments are well-defined.)

Label each node v of T with the set containing all the instantiated factors of G that agree with this
assignment of head variables. That is, if the head variable assignment for a factor φ is (y1, . . . , yp),
then it will be in the labeling of the node v = (x1, . . . , xm) if and only if m ≥ p and for all i ≤ p,
yi = xi. It is not hard to show that this is a valid hierarchy decomposition for this factor graph.

The width of this hierarchy decomposition is at most the number of template factors E because
each node v can only possibly contain a single instantiated factor for each template factor. (This
is because for each node, only one possible assignment of head variables is compatible with that
node.) The Lemma now follows from an application of Statement 9.

Next, we restate and prove Statement 4.
Statement 4. For any fixed hierarchical factor graph template G, if G is an instance of G with
bounded weights using either logical or ratio semantics, then the mixing time of Gibbs sampling on
G is polynomial in the number of objects n in its dataset. That is, tmix = O

(
nO(1)

)
.

Proof. If we use either logical or ratio semantics, the maximum factor weight will be bounded with
M = O(log n). We furthermore know from Lemma 16 that for a particular hierarchical template,
the hierarchy width is bounded independent of the dataset. So, hM = O(log n), and the Statement
now follows directly from an application of Theorem 2

Secondary Literature
[29] Patrice Ossona de Mendez et al. Sparsity: graphs, structures, and algorithms. Springer Science

& Business Media, 2012.
[30] Frank den Hollander. Probability Theory: The Coupling Method. 2012.

28

	Introduction
	Related Work

	Main Result
	Voting Example
	Hypertree Width
	Hierarchy Width

	Factor Graph Templates
	Hierarchical Factor Graphs

	Experiments
	Conclusion
	Proof of Voting Program Rates
	Proof of Theorem 2
	Statement of Lemmas
	Main Proof
	Proofs of Lemmas

	Proofs of Other Results
	Proofs of Factor Graph Template Results

