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Abstract

The Jaccard index is a standard statistics for comparing thepairwise similarity be-
tween data samples. This paper investigates the problem of estimating a Jaccard
index matrix when there are missing observations in data samples. Starting from
a Jaccard index matrix approximated from the incomplete data, our method cali-
brates the matrix to meet the requirement of positive semi-definiteness and other
constraints, through a simple alternating projection algorithm. Compared with
conventional approaches that estimate the similarity matrix based on the imputed
data, our method has a strong advantage in that the calibrated matrix is guaran-
teed to be closer to the unknown ground truth in the Frobeniusnorm than the
un-calibrated matrix (except in special cases they are identical). We carried out a
series of empirical experiments and the results confirmed our theoretical justifica-
tion. The evaluation also reported significantly improved results in real learning
tasks on benchmark datasets.

1 Introduction

A critical task in data analysis is to determine how similar two data samples are. The applications
arise in many science and engineering disciplines. For example, in statistical and computing sci-
ences, similarity analysis lays a foundation for cluster analysis, pattern classification, image analysis
and recommender systems [15, 8, 17].

A variety of similarity models have been established for different types of data. When data samples
can be represented as algebraic vectors, popular choices include cosine similarity model, linear
kernel model, and so on [24, 25]. When each vector element takes a value of zero or one, the
Jaccard index model is routinely applied, which measures the similarity by the ratio of the number
of unique elements common to two samples against the total number of unique elements in either of
them [14, 23].

Despite the wide applications, the Jaccard index model faces a non-trivial challenge when data
samples are not fully observed. As a treatment, imputation approaches may be applied, which
replace the missing observations with substituted values and then calculate the Jaccard index based
on the imputed data. Unfortunately, with a large portion of missing observations, imputing data
samples often becomes un-reliable or even infeasible, as evidenced in our evaluation.

Instead of trying to fill in the missing values, this paper investigates a completely different approach
based on matrix calibration. Starting from an approximate Jaccard index matrix that is estimated
from incomplete samples, the proposed method calibrates the matrix to meet the requirement of
positive semi-definiteness and other constraints. The calibration procedure is carried out with a
simple yet flexible alternating projection algorithm.
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The proposed method has a strong theoretical advantage. Thecalibrated matrix is guaranteed to be
better than, or at least identical to (in special cases), theun-calibrated matrix in terms of a shorter
Frobenius distance to the true Jaccard index matrix, which was verified empirically as well. Be-
sides, our evaluation of the method also reported improved results in learning applications, and the
improvement was especially significant with a high portion of missing values.

A note on notation. Throughout the discussion, a data sample, Ai (1 ≤ i ≤ n), is treated as a set of
features. LetF = {f1, · · · , fd} be the set of all possible features. Without causing ambiguity, Ai

also represents a binary-valued vector. If thej-th (1 ≤ j ≤ d) element of vectorAi is one, it means
fj ∈ Ai (featurefj belongs to sampleAi); if the element is zero,fj 6∈ Ai; if the element is marked
asmissing, it remains unknown whether featurefj belongs to sampleAi or not.

2 Background

2.1 The Jaccard index

The Jaccard index is a commonly used statistical indicator for measuring the pairwise similarity
[14, 23]. For two nonempty and finite setsAi andAj , it is defined to be the ratio of the number of
elements in their intersection against the number of elements in their union:

J∗

ij =
|Ai ∩Aj |

|Ai ∪Aj |

where|·| denotes the cardinality of a set.

The Jaccard index has a value of0 when the two sets have no elements in common,1 when they have
exactly the same elements, and strictly between0 and1 otherwise. The two sets are more similar
(have more common elements) when the value gets closer to1.

For n setsA1, · · · , An (n ≥ 2), the Jaccard index matrix is defined as ann × n matrix J∗ =
{

J∗

ij

}n

i,j=1
. The matrix is symmetric and all diagonal elements of the matrix are1.

2.2 Handling missing observations

When data samples are fully observed, the accurate Jaccard index can be obtained trivially by enu-
merating the intersection and the union between each pair ofsamples if both the number of samples
and the number of features are small. For samples with a largenumber of features, the index can
often be approximated by MinHash and related methods [5, 18], which avoid the explicit counting
of the intersection and the union of the two sets.

When data samples are not fully observed, however, obtainingthe accurate Jaccard index generally
becomes infeasible. One naı̈ve approximation is to ignore the features with missing values. Only
those features that have no missing values in all samples areused to calculate the Jaccard index.
Obviously, for a large dataset with missing-at-random features, it is very likely that this method will
throw away all features and therefore does not work at all.

The mainstream work tries to replace the missing observations with substituted values, and then
calculates the Jaccard index based on the imputed data. Several simple approaches, includingzero,
median andk-nearest neighbors (kNN) methods, are popularly used. A missing element is set to
zero, often implying the corresponding feature does not exist in a sample. It can also be set to the
median value (or the mean value) of the feature over all samples, or sometimes over a number of
nearest neighboring instances.

A more systematical imputation framework is based on the classical expectation maximization (EM)
algorithm [6], which generalizes maximum likelihood estimation to the case of incomplete data.
Assuming the existence of un-observed latent variables, the algorithm alternates between the ex-
pectation step and the maximization step, and finds maximum likelihood or maximum a posterior
estimates of the un-observed variables. In practice, the imputation is often carried out through it-
erating between learning a mixture of clusters of the filled data and re-filling missing values using
cluster means, weighted by the posterior probability that acluster generates the samples [11].
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3 Solution

Our work investigates the Jaccard index matrix estimation problem for incomplete data. Instead
of throwing away the un-observed features or imputing the missing values, a completely different
solution based on matrix calibration is designed.

3.1 Initial approximation

For a sampleAi, denote byO+

i the set of features that are known to be inAi, and denote byO−

i the
set of features that are known to be not inAi. LetOi = O+

i ∪O−

i . If Oi = F , Ai is fully observed
without missing values; otherwise,Ai is not fully observedwith missing values. The complement
of Oi with respect toF , denoted byOi, givesAi’s unknown features and missing values.

For two samplesAi andAj with missing values, we approximate their Jaccard index by:

J0
ij =

∣

∣

(

O+

i ∩Oj

)

∩
(

O+

j ∩Oi

)
∣

∣

∣

∣

(

O+

i ∩Oj

)

∪
(

O+

j ∩Oi

)∣

∣

=

∣

∣O+

i ∩O+

j

∣

∣

∣

∣

(

O+

i ∩Oj

)

∪
(

O+

j ∩Oi

)∣

∣

Here we assume that each sample has at least one observed feature. It is obvious thatJ0
ij is equal to

the ground truthJ∗

ij if the samples are fully observed.

There exists an interval[ℓij , µij ] that the true valueJ∗

ij lies in, where

ℓij =







1, if i = j
|O+

i
∩O

+

j |
∣

∣

∣
O

−

i
∩O

−

j

∣

∣

∣

, otherwise

and

µij =







1, if i = j
∣

∣

∣
O

−

i
∪O

−

j

∣

∣

∣

|Oi∪Oj∪O
+

i
∪O

+

j |
, otherwise

.

The lower boundℓij is obtained from the extreme case of setting the missing values in a way that the
two sets have the fewest features in their intersection while having the most features in their union.
On the contrary, the upper boundµij is obtained from the other extreme. When the samples are fully
observed, the interval shrinks to a single pointℓij = µij = J∗

ij .

3.2 Matrix calibration

Denote byJ∗ =
{

J∗

ij

}n

ij=1
the true Jaccard index matrix for a set of data samples{A1, · · · , An},

we have [2]:

Theorem 1. For a given set of data samples, its Jaccard index matrixJ∗ is positive semi-definite.

For data samples with missing values, the matrixJ0 =
{

J0
ij

}n

ij=1
often loses positive semi-

definiteness. Nevertheless, it can be calibrated to ensure the property by seeking ann × n matrix
J = {Jij}

n

ij=1
to minimize:

L0 (J) =
∥

∥J − J0
∥

∥

2

F

subject to the constraints:

J � 0, and,ℓij ≤ Jij ≤ µij (1 ≤ i, j ≤ n)

whereJ � 0 requiresJ to be positive semi-definite and‖·‖F denotes the Frobenius norm of a
matrix and‖J‖2F =

∑

ij J
2
ij .

Let Mn be the set ofn × n symmetric matrices. The feasible region defined by the constraints,
denoted byR, is a nonempty closed and convex subset ofMn. Following standard results in op-
timization theory [20, 3, 10], the problem of minimizingL0 (J) is convex. Denote byPR the
projection ontoR. Its unique solution is given by the projection ofJ0 ontoR: J0

R = PR

(

J0
)

.

ForJ0
R, we have:
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Theorem 2.
∥

∥J∗ − J0
R

∥

∥

2

F
≤

∥

∥J∗ − J0
∥

∥

2

F
. The equality holds iffJ0 ∈ R, i.e.,J0 = J0

R.

Proof. Define an inner product onMn that induces the Frobenius norm:

〈X,Y 〉 = trace
(

XTY
)

, for X,Y ∈ Mn.

Then
∥

∥J∗ − J0
∥

∥

2

F

=
∥

∥

(

J∗ − J0
R

)

−
(

J0 − J0
R

)
∥

∥

2

F

=
∥

∥J∗ − J0
R

∥

∥

2

F
+
∥

∥J0 − J0
R

∥

∥

2

F
− 2

〈

J∗ − J0
R, J

0 − J0
R

〉

≥
∥

∥J∗ − J0
R

∥

∥

2

F
− 2

〈

J∗ − J0
R, J

0 − J0
R

〉

≥
∥

∥J∗ − J0
R

∥

∥

2

F

The second “≥” holds due to the Kolmogrov’s criterion, which states that the projection ofJ0 onto
R, J0

R, is unique and characterized by:

J0
R ∈ R, and

〈

J − J0
R, J

0 − J0
R

〉

≤ 0 for all J ∈ R.

The equality holds iff
∥

∥J0 − J0
R

∥

∥

2

F
= 0 and

〈

J∗ − J0
R, J

0 − J0
R

〉

= 0, i.e.,J0 = J0
R .

This key observation shows that projectingJ0 onto the feasible regionR will produce an improved
estimate towardsJ∗, although this ground truth matrix remains unknown to us.

3.3 Projection onto subsets

Based on the results in Section 3.2, we are to seek a minimizerto L0 (J) to improve the estimate
J0. Define two nonempty closed and convex subsets ofMn:

S = {X|X ∈ Mn, X � 0}

and
T = {X|X ∈ Mn, ℓij ≤ Xij ≤ µij (1 ≤ i, j ≤ n)} .

ObviouslyR = S ∩ T . Now our minimization problem becomes finding the projection of J0 onto
the intersection of two setsS andT with respect to the Frobenius norm. This can be done by
studying the projection onto the two sets individually. Denote byPS the projection ontoS, andPT

the projection ontoT . For projection ontoT , a straightforward result based on the Kolmogrov’s
criterion is:

Theorem 3. For a given matrixX ∈ Mn, its projection ontoT , XT = PT (X), is given by

(XT )ij =







Xij , if ℓij ≤ Xij ≤ µij

ℓij , if Xij < ℓij
µij , if Xij > µij

.

For projection ontoS, a well known result is the following [12, 16, 13]:

Theorem 4. For X ∈ Mn and its singular value decompositionX = UΣV T whereΣ =
diag (λ1, · · · , λn), the projection ofX onto S is given by: XS = PS (X) = UΣ′V T where
Σ′ = diag (λ′

1, · · · , λ
′

n) and

λ′

i =

{

λi, if λi ≥ 0

0, otherwise
.

The matrixXS = PS (X) gives the positive semi-definite matrix that most closely approximatesX
with respect to the Frobenius norm.
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3.4 Dykstra’s algorithm

To study the orthogonal projection onto the intersection ofsubspaces, a classical result is von Neu-
mann’s alternating projection algorithm. LetH be a Hilbert space with two closed subspacesC1

andC2. The orthogonal projection onto the intersectionC1 ∩ C2 can be obtained by the product of
the two projectionsPC1

PC2
when the two projections commute (PC1

PC2
= PC2

PC1
). When they

do not commute, the work shows that for eachx0 ∈ H, the projection ofx0 onto the intersection
can be obtained by the limit point of a sequence of projections onto each subspace respectively:
limk→∞ (PC2

PC1
)
k (

x0
)

= PC1∩C2

(

x0
)

. The algorithm generalizes to any finite number of sub-
spaces and projections onto them.

Unfortunately, different from the application in [19], in our problem bothS andT are not subspaces
but subsets, and von Neumann’s convergence result does not apply. The limit point of the generated
sequence may converge to non-optimal points.

To handle the difficulty, Dykstra extended von Neumann’s work and proposed an algorithm that
works with subsets [9]. Consider the case ofC =

⋂r

i=1
Ci whereC is nonempty and eachCi is

a closed and convex subset inH. Assume that for anyx ∈ H, obtainingPC (x) is hard, while
obtaining eachPCi

(x) is easy. Starting fromx0 ∈ H, Dykstra’s algorithm produces two sequences,
the iterates

{

xk
i

}

and the increments
{

Iki
}

. The two sequences are generated by:

xk
0 = xk−1

r

xk
i = PCi

(

xk
i−1 − Ik−1

i

)

Iki = xk
i −

(

xk
i−1 − Ik−1

i

)

wherei = 1, · · · , r andk = 1, 2, · · · . The initial values are given byx0
r = x0, I0i = 0.

The sequence of
{

xk
i

}

converges to the optimal solution with a theoretical guarantee [9, 10].

Theorem 5. Let C1, · · · , Cr be closed and convex subsets of a Hilbert spaceH such thatC =
r
⋂

k=1

Ck 6= Φ. For any i = 1, · · · , r and anyx0 ∈ H, the sequence
{

xk
i

}

converges strongly to

x0
C = PC

(

x0
)

(i.e.
∥

∥xk
i − x0

C

∥

∥ → 0 ask → ∞).

The convergent rate of Dykstra’s algorithm for polyhedral sets is linear [7], which coincides with
the convergence rate of von Neumann’s alternating projection method.

3.5 An iterative method

Based on the discussion in Section 3.4, we have a simple approach, shown in Algorithm 1, that finds
the projection of an initial matrixJ0 onto the nonempty setR = S ∩ T . Here the projections onto
S andT are given by the two theorems in Section 3.3. The algorithm stops whenJk falls into the
feasible region or when a maximal number of iterations is achieved. For practical implementation,
a more robust stopping criterion can be adopted [1].

3.6 Related work

It is a known study in mathematical optimization field to find apositive semi-definite matrix that
is closest to a given matrix. A number of methods have been proposed recently. The idea of alter-
nating projection method was firstly applied in a financial application [13]. The problem can also
be phrased as a semi-definite programming (SDP) model [13] and be solved via the interior-point
method. In the work of [21] and [4], the quasi-Newton method and the projected gradient method
to the Lagrangian dual of the original problem were applied,which reported faster results than the
SDP formulation. An even faster Newton’s method was developed in [22] by investigating the dual
problem, which is unconstrained with a twice continuously differentiable objective function and has
a quadratically convergent solution.
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Algorithm 1 Projection ontoR = S ∩ T

Require: Initial matrix J0

k = 0
J0
T = J0

I0S = 0
I0T = 0
while NOT CONVERGENTdo
Jk+1

S = PS

(

Jk
T − IkS

)

Ik+1

S = Jk+1

S −
(

Jk
T − IkS

)

Jk+1

T = PT

(

Jk+1

S − IkT
)

Ik+1

T = Jk+1

T −
(

Jk+1

S − IkT
)

k = k + 1
end while
return Jk = Jk

T

4 Evaluation

To evaluate the performance of the proposed method, four benchmark datasets were used in our
experiments.

• MNIST: a grayscale image database of handwritten digits (“0” to “9”). After binarization,
each image is represented as a784-dimensional 0-1 vector.

• USPS: another grayscale image database of handwritten digits. After binarization, each
image is represented as a256-dimensional 0-1 vector.

• PROTEIN: a bioinformatics database with three classes of instances. Each instance is rep-
resented as a sparse357-dimensional 0-1 vector.

• WEBSPAM: a dataset with both spam and non-spam web pages. Each page isrepresented
as a 0-1 vector. The data are highly sparse. On average one vector has about4, 000 non-zero
values out of more than16 million features.

Our experiments have two objectives. One is to verify the effectiveness of the proposed method in
estimating the Jaccard index matrix by measuring the derivation of the calibrated matrix from the
ground truth in Frobenius norm. The other is to evaluate the performance of the calibrated matrix in
general learning applications. The comparison is made against the popular imputation approaches
listed in Section 2.2, including thezero, kNN andEM 1 approaches. (As themedian approach gave
very similar performance as thezero approach, its results were not reported separately.)

4.1 Jaccard index matrix estimation

The experiment was carried out under various settings. For each dataset, we experimented with
1, 000 and10, 000 samples respectively. For each sample, different portions(from 10% to 90%)
of feature values were marked as missing, which was assumed to be “missing at random” and all
features had the same probability of being marked.

As mentioned in Section 3, for the proposed calibration approach, an initial Jaccard index matrix
was firstly built based on the incomplete data. Then the matrix was calibrated to meet the positive
semi-definite requirement and the lower and upper bounds requirement. While for the imputation
approaches, the Jaccard index matrix was calculated directly from the imputed data.

Note that for thekNN approach, we iterated differentk from 1 to 5 and the best result was collected,
which actually overestimated its performance. Under some settings, the results of theEM approach
were not available due to its prohibitive computational requirement to our platform.

The results are presented through the comparison of mean square deviations from the ground truth
of the Jaccard index matrixJ∗. For ann × n estimated matrixJ ′, its mean square deviation from

1ftp://ftp.cs.toronto.edu/pub/zoubin/old/EMcode.tar.Z
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Figure 1: Mean square deviations from the ground truth on benchmark datasets by different methods.
Horizontal: percentages of observed values (from 10% to 90%); Vertical: mean square deviations
in log-scale. (a)-(d):1, 000 samples; (e)-(f):10, 000 samples. (For better visualization effect of the
results shown in color, the reader is referred to the soft copy of this paper.)

J∗ is defined as the square Frobenius distance between the two matrices, divided by the number of

elements, i.e.,
∑

n
ij=1(J

′

ij−J∗

ij)
2

n2 . In addition to the comparison with the popular approaches,the mean
square deviation between the un-calibrated matrixJ0 andJ∗, shown asNO CALIBRATION, is
also reported as a baseline.

Figure 1 shows the results. It can be seen that the calibratedmatrices reported the smallest derivation
from the ground truth in nearly all experiments. The improvement is especially significant when the
ratio of observed features is low (the missing ratio is high). It is guaranteed to be no worse than the
un-calibrated matrix. As evidenced in the results, for all the imputation approaches, there is no such
a guarantee.

4.2 Supervised learning

Knowing the improved results in reducing the deviation fromthe ground truth matrix, we would like
to further investigate whether this improvement indeed benefits practical applications, specifically
in supervised learning.

We applied the calibrated results in nearest neighbor classification tasks. Given a training set of
labeled samples, we tried to predict the labels of the samples in the testing set. For each testing
sample, its label was determined by the label of the sample inthe training set that had the largest
Jaccard index value with it.

Similarly the experiment was carried out with1, 000/10, 000 samples and different portions of miss-
ing values from10% to 90% respectively. In each run,90% of the samples were randomly chosen as
the training set and the remaining10% were used as the testing set. The mean and standard deviation
of the classification errors in1, 000 runs were reported. As a reference, the results from the ground
truth matrixJ∗, shown asFULLY OBSERVED, were also included.

Figure 2 shows the results. Again the matrix calibration method reported evidently improved results
over the imputation approaches in most experiments. The improvement verified the benefits brought
by the reduced deviation from the true Jaccard index matrix,and therefore justified the usefulness
of the proposed method in learning applications.
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(e) MNIST
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Figure 2: Classification errors on benchmark datasets by different methods. Horizontal: percentage
of observed values (from 10% to 90%); Vertical: classification errors. (a)-(d):1, 000 samples; (e)-
(f): 10, 000 samples. (For better visualization effect of the results shown in color, the reader is
referred to the soft copy of this paper.)

5 Discussion and conclusion

The Jaccard index measures the pairwise similarity betweendata samples, which is routinely used
in real applications. Unfortunately in practice, it is non-trivial to estimate the Jaccard index matrix
for incomplete data samples. This paper investigates the problem, and proposes a matrix calibration
approach in a way that is completely different from the existing methods. Instead of throwing
away the unknown features or imputing the missing values, the proposed approach calibrates any
approximate Jaccard index matrix by ensuring the positive semi-definite requirement on the matrix.
It is theoretically shown and empirically verified that the approach indeed brings about improvement
in practical problems.

One point that is not particularly addressed in this paper isthe computational complexity issue. We
adopted a simple alternating projection procedure based onDykstra’s algorithm. The computational
complexity of the algorithm heavily depends on the successive matrix decompositions. It is ex-
pensive when the size of the matrix becomes large. Calibrating a Jaccard index matrix for1, 000
samples can be finished in seconds of time on our platform, while calibrating a matrix for10, 000
samples quickly increases to more than an hour. Further investigations for faster solutions are thus
necessary for scalability.

Actually, there is a simple divide-and-conquer heuristic to calibrate a large matrix. Firstly divide
the matrix into small sub-matrices. Then calibrate each sub-matrix to meet the constraints. Finally
merge the results. Although the heuristic may not give the optimal result, it also guarantees to
produce a matrix better than or identical to the un-calibrated matrix. The heuristic runs with high
parallel efficiency and easily scales to very large matrices. The detailed discussion is omitted here
due to the space limit.
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