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Abstract

This paper provides the first formalization of self-interested planning in multia-
gent settings using expectation-maximization (EM). Our formalization in the con-
text of infinite-horizon and finitely-nested interactive POMDPs (I-POMDP) is
distinct from EM formulations for POMDPs and cooperative multiagent planning
frameworks. We exploit the graphical model structure specific to I-POMDPs, and
present a new approach based on block-coordinate descent for further speed up.
Forward filtering-backward sampling – a combination of exact filtering with sam-
pling – is explored to exploit problem structure.

1 Introduction
Generalization of bounded policy iteration (BPI) to finitely-nested interactive partially observable
Markov decision processes (I-POMDP) [1] is currently the leading method for infinite-horizon self-
interested multiagent planning and obtaining finite-state controllers as solutions. However, interac-
tive BPI is acutely prone to converge to local optima, which severely limits the quality of its solutions
despite the limited ability to escape from these local optima.

Attias [2] posed planning using MDP as a likelihood maximization problem where the “data” is
the initial state and the final goal state or the maximum total reward. Toussaint et al. [3] extended
this to infer finite-state automata for infinite-horizon POMDPs. Experiments reveal good quality
controllers of small sizes although run time is a concern. Given BPI’s limitations and the compelling
potential of this approach in bringing advances in inferencing to bear on planning, we generalize it
to infinite-horizon and finitely-nested I-POMDPs. Our generalization allows its use toward planning
for an individual agent in noncooperation where we may not assume common knowledge of initial
beliefs or common rewards, due to which others’ beliefs, capabilities and preferences are modeled.

Analogously to POMDPs, we formulate a mixture of finite-horizon DBNs. However, the DBNs
differ by including models of other agents in a special model node. Our approach, labeled as I-EM,
improves on the straightforward extension of Toussaint et al.’s EM to I-POMDPs by utilizing various
types of structure. Instead of ascribing as many level 0 finite-state controllers as candidate models
and improving each using its own EM, we use the underlying graphical structure of the model node
and its update to formulate a single EM that directly provides the marginal of others’ actions across
all models. This rests on a new insight, which considerably simplifies and speeds EM at level 1.

We present a general approach based on block-coordinate descent [4, 5] for speeding up the non-
asymptotic rate of convergence of the iterative EM. The problem is decomposed into optimization
subproblems in which the objective function is optimized with respect to a small subset (block) of
variables, while holding other variables fixed. We discuss the unique challenges and present the first
effective application of this iterative scheme to multiagent planning.

Finally, sampling offers a way to exploit the embedded problem structure such as information in dis-
tributions. The exact forward-backward E-step is replaced with forward filtering-backward sampling
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(FFBS) that generates trajectories weighted with rewards, which are used to update the parameters of
the controller. While sampling has been integrated in EM previously [6], FFBS specifically mitigates
error accumulation over long horizons due to the exact forward step.

2 Overview of Interactive POMDPs

A finitely-nested I-POMDP [7] for an agent i with strategy level, l, interacting with agent j is:
I-POMDPi,l = �ISi,l, A, Ti,Ωi, Oi, Ri, OCi�
• ISi,l denotes the set of interactive states defined as, ISi,l = S × Mj,l−1, where Mj,l−1 =
{Θj,l−1 ∪ SMj}, for l ≥ 1, and ISi,0 = S, where S is the set of physical states. Θj,l−1 is the
set of computable, intentional models ascribed to agent j: θj,l−1 = �bj,l−1, θ̂j�. Here bj,l−1 is
agent j’s level l−1 belief, bj,l−1 ∈�(ISj,l−1) where Δ(·) is the space of distributions, and θ̂j =
�A, Tj ,Ωj , Oj , Rj , OCj�, is j’s frame. At level l=0, bj,0 ∈�(S) and a intentional model reduces
to a POMDP. SMj is the set of subintentional models of j, an example is a finite state automaton.

• A = Ai ×Aj is the set of joint actions of all agents.
• Other parameters – transition function, Ti, observations, Ωi, observation function, Oi, and prefer-

ence function, Ri – have their usual semantics analogously to POMDPs but involve joint actions.
• Optimality criterion, OCi, here is the discounted infinite horizon sum.

An agent’s belief over its interactive states is a sufficient statistic fully summarizing the agent’s
observation history. Given the associated belief update, solution to an I-POMDP is a policy. Using
the Bellman equation, each belief state in an I-POMDP has a value which is the maximum payoff
the agent can expect starting from that belief and over the future.

3 Planning in I-POMDP as Inference
We may represent the policy of agent i for the infinite horizon case as a stochastic finite state
controller (FSC), defined as: πi = �Ni, Ti,Li,Vi� where Ni is the set of nodes in the controller.
Ti : Ni ×Ai ×Ωi ×Ni → [0, 1] represents the node transition function; Li : Ni ×Ai → [0, 1] de-
notes agent i’s action distribution at each node; and an initial distribution over the nodes is denoted
by, Vi : Ni → [0, 1]. For convenience, we group Vi, Ti and Li in f̂i. Define a controller at level l for
agent i as, πi,l = �Ni,l, f̂i,l �, where Ni,l is the set of nodes in the controller and f̂i,l groups remain-
ing parameters of the controller as mentioned before. Analogously to POMDPs [3], we formulate
planning in multiagent settings formalized by I-POMDPs as a likelihood maximization problem:

π∗
i,l = argmax

Πi,l

(1− γ)
�∞

T=0
γT Pr(rTi = 1|T ;πi,l) (1)

where Πi,l are all level-l FSCs of agent i, rTi is a binary random variable whose value is 0 or 1
emitted after T time steps with probability proportional to the reward, Ri(s, ai, aj).
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Figure 1: (a) Mixture of DBNs with 1 to T time slices for I-POMDPi,1 with i’s level-1 policy represented as
a standard FSC whose “node state” is denoted by ni,l. The DBNs differ from those for POMDPs by containing
special model nodes (hexagons) whose values are candidate models of other agents. (b) Hexagonal model nodes
and edges in bold for one other agent j in (a) decompose into this level-0 DBN. Values of the node mt

j,0 are the
candidate models. CPT of chance node at

j denoted by φj,0(m
t
j,0, a

t
j) is inferred using likelihood maximization.
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The planning problem is modeled as a mixture of DBNs of increasing time from T=0 onwards
(Fig. 1). The transition and observation functions of I-POMDPi,l parameterize the chance nodes s

and oi, respectively, along with Pr(rTi |aTi , aTj , sT ) ∝
Ri(s

T ,aT
i ,aT

j )−Rmin

Rmax−Rmin
. Here, Rmax and Rmin

are the maximum and minimum reward values in Ri.

The networks include nodes, ni,l, of agent i’s level-l FSC. Therefore, functions in f̂i,l parameterize
the network as well, which are to be inferred. Additionally, the network includes the hexagonal
model nodes – one for each other agent – that contain the candidate level 0 models of the agent.
Each model node provides the expected distribution over another agent’s actions. Without loss of
generality, no edges exist between model nodes in the same time step. Correlations between agents
could be included as state variables in the models.

Agent j’s model nodes and the edges (in bold) between them, and between the model and chance
action nodes represent a DBN of length T as shown in Fig. 1(b). Values of the chance node, m0

j,0, are
the candidate models of agent j. Agent i’s initial belief over the state and models of j becomes the
parameters of s0 and m0

j,0. The likelihood maximization at level 0 seeks to obtain the distribution,
Pr(aj |m0

j,0), for each candidate model in node, m0
j,0, using EM on the DBN.

Proposition 1 (Correctness). The likelihood maximization problem as defined in Eq. 1 with the
mixture models as given in Fig. 1 is equivalent to the problem of solving the original I-POMDPi,l

with discounted infinite horizon whose solution assumes the form of a finite state controller.

All proofs are given in the supplement. Given the unique mixture models above, the challenge is to
generalize the EM-based iterative maximization for POMDPs to the framework of I-POMDPs.

3.1 Single EM for Level 0 Models

The straightforward approach is to infer a likely FSC for each level 0 model. However, this approach
does not scale to many models. Proposition 2 below shows that the dynamic Pr(atj |st) is sufficient
predictive information about other agent from its candidate models at time t, to obtain the most
likely policy of agent i. This is markedly different from using behavioral equivalence [8] that clusters
models with identical solutions. The latter continues to require the full solution of each model.
Proposition 2 (Sufficiency). Distributions Pr(atj |st) across actions atj ∈ Aj for each state st is
sufficient predictive information about other agent j to obtain the most likely policy of i.

In the context of Proposition 2, we seek to infer Pr(atj |mt
j,0) for each (updated) model of j at

all time steps, which is denoted as φj,0. Other terms in the computation of Pr(atj |st) are known
parameters of the level 0 DBN. The likelihood maximization for the level 0 DBN is:

φ∗
j,0 = argmax

φj,0

(1− γ)
�∞

T=0

�
mj,0∈MT

j,0

γTPr(rTj = 1|T,mj,0;φj,0)

As the trajectory consisting of states, models, actions and observations of the other agent is hidden
at planning time, we may solve the above likelihood maximization using EM.

E-step Let z0:Tj = {st,mt
j,0, a

t
j , o

t
j}T0 where the observation at t = 0 is null, be the hidden trajectory.

The log likelihood is obtained as an expectation of these hidden trajectories:

Q(φ�
j,0|φj,0) =

�∞

T=0

�
z0:Tj

Pr(rTj = 1, z0:Tj , T ;φj,0) log Pr(rTj = 1, z0:Tj , T ;φ�
j,0) (2)

The “data” in the level 0 DBN consists of the initial belief over the state and models, b0i,1, and the
observed reward at T . Analogously to EM for POMDPs, this motivates forward filtering-backward
smoothing on a network with joint state (st,mt

j,0) for computing the log likelihood. The transition
function for the forward and backward steps is:

Pr(st,mt
j,0|st−1,mt−1

j,0 ) =
�

at−1
j ,otj

φj,0(m
t−1
j,0 , at−1

j ) Tmj (s
t−1, at−1

j , st) Pr(mt
j,0|mt−1

j,0 , at−1
j , otj)

×Omj (s
t, at−1

j , otj) (3)

where mj in the subscripts is j’s model at t− 1. Here, Pr(mt
j,0|at−1

j , otj ,m
t−1
j,0 ) is the Kronecker-

delta function that is 1 when j’s belief in mt−1
j,0 updated using at−1

j and otj equals the belief in mt
j,0;

otherwise 0.
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Forward filtering gives the probability of the next state as follows:

αt(st,mt
j,0) =

�
st−1,mt−1

j,0

Pr(st,mt
j,0|st−1,mt−1

j,0 ) αt−1(st−1,mt−1
j,0 )

where α0(s0,m0
j,0) is the initial belief of agent i. The smoothing by which we obtain the joint

probability of the state and model at t− 1 from the distribution at t is:

βh(st−1,mt−1
j,0 ) =

�
st,mt

j,0

Pr(st,mt
j,0|st−1,mt−1

j,0 ) βh−1(st,mt
j,0)

where h denotes the horizon to T and β0(sT ,mT
j,0) = EaT

j |mT
j,0
[Pr(rTj = 1|sT ,mT

j,0)]. Messages

αt and βh give the probability of a state at some time slice in the DBN. As we consider a mixture of
BNs, we seek probabilities for all states in the mixture model. Subsequently, we may compute the
forward and backward messages at all states for the entire mixture model in one sweep.

�α(s,mj,0) =
�∞

t=0
Pr(T = t) αt(s,mj,0) �β(s,mj,0) =

�∞

h=0
Pr(T = h) βh(s,mj,0) (4)

Model growth As the other agent performs its actions and makes observations, the space
of j’s models grows exponentially: starting from a finite set of |M0

j,0| models, we obtain
O(|M0

j,0|(|Aj ||Ωj |)t) models at time t. This greatly increases the number of trajectories in Z0:T
j .

We limit the growth in the model space by sampling models at the next time step from the distribu-
tion, αt(st,mt

j,0), as we perform each step of forward filtering. It limits the growth by exploiting
the structure present in φj,0 and Oj , which guide how the models grow.

M-step We obtain the updated φ�
j,0 from the full log likelihood in Eq. 2 by separating the terms:

Q(φ�
j,0|φj,0) = �terms independent of φ�

j,0�+
�∞

T=0

�
z0:Tj

Pr(rTi = 1, z0:Tj , T ;φ�
j,0)

�T

t=0
φ�
j,0(a

t
j |mt

j,0)

and maximizing it w.r.t. φ�
j,0:

φ�
j,0(a

t
j ,m

t
j,0) ∝ φj,0(a

t
j ,m

t
j)

�
st
Rmj (s

t, at
j) �α(st,mt

j,0) +
�

st,st+1,mt+1
j,0 ,ot+1

j

γ

1− γ
�β(st+1,mt+1

j,0 )

× �α(st,mt
j,0) Tmj (s

t, at
j , s

t+1) Pr(mt+1
j,0 |mt

j,0, a
t
j , o

t+1
j ) Omj (s

t+1, at
j , o

t+1
j )

3.2 Improved EM for Level l I-POMDP

At strategy levels l ≥ 1, Eq. 1 defines the likelihood maximization problem, which is iteratively
solved using EM. We show the E- and M -steps next beginning with l = 1.

E-step In a multiagent setting, the hidden variables additionally include what the other agent
may observe and how it acts over time. However, a key insight is that Prop. 2 allows us to limit
attention to the marginal distribution over other agents’ actions given the state. Thus, let z0:Ti =
{st, oti, nt

i,l, a
t
i, a

t
j , . . . , a

t
k}T0 , where the observation at t = 0 is null, and other agents are labeled j

to k; this group is denoted −i. The full log likelihood involves an expectation over hidden variables:

Q(π�
i,l|πi,l) =

�∞

T=0

�
z0:Ti

Pr(rTi = 1, z0:Ti , T ;πi,l) log Pr(rTi = 1, z0:Ti , T ;π�
i,l) (5)

Due to the subjective perspective in I-POMDPs, Q computes the likelihood of agent i’s FSC only
(and not of joint FSCs as in team planning [9]).

In the T -step DBN of Fig. 1, observed evidence includes the reward, rTi , at the end and the initial
belief. We seek the likely distributions, Vi, Ti, and Li, across time slices. We may again realize the
full joint in the expectation using a forward-backward algorithm on a hidden Markov model whose
state is (st, nt

i,l). The transition function of this model is,

Pr(st, nt
i,l|st−1, nt−1

i,l ) =
�

at−1
i ,at−1

−i ,oti

Li(n
t−1
i,l , at−1

i )
�

−i
Pr(at−1

−i |st−1) Ti(n
t−1
i,l , at−1

i , oti, n
t
i,l)

× Ti(s
t−1, at−1

i , at−1
−i , st) Oi(s

t, at−1
i , at−1

−i , oti) (6)

In addition to parameters of I-POMDPi,l, which are given, parameters of agent i’s controller and
those relating to other agents’ predicted actions, φ−i,0, are present in Eq. 6. Notice that in conse-
quence of Proposition 2, Eq. 6 precludes j’s observation and node transition functions.
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The forward message, αt = Pr(st, nt
i,l), represents the probability of being at some state of the

DBN at time t:
αt(st, nt

i,l) =
�

st−1,nt−1
i,l

Pr(st, nt
i,l|st−1, nt−1

i,l ) αt−1(st−1, nt−1
i,l ) (7)

where, α0(s0, n0
i,l) = Vi(n

0
i,l)b

0
i,l(s

0). The backward message gives the probability of observing the
reward in the final T th time step given a state of the Markov model, βt(st, nt

i,l) = Pr(rTi = 1|st, nt
i,l):

βh(st, nt
i,l) =

�
st+1,nt+1

i,l

Pr(st+1, nt+1
i,l |st, nt

i,l) β
h−1(st+1, nt+1

i,l ) (8)

where, β0(sT , nT
i,l) =

�
aT
i ,aT

−i
Pr(rTi = 1|sT , aTi , aT−i) Li(n

T
i,l, a

T
i )

�
−i Pr(aT−i|sT ), and 1 ≤

h ≤ T is the horizon. Here, Pr(rTi = 1|sT , aTi , aT−i) ∝ Ri(s
T , aTi , a

T
−i).

A side effect of Pr(at−i|st) being dependent on t is that we can no longer conveniently define �α and
�β for use in M -step at level 1. Instead, the computations are folded in the M -step.

M-step We update the parameters, Li, Ti and Vi, of πi,l to obtain π�
i,l based on the expectation

in the E-step. Specifically, take log of the likelihood Pr(rT = 1, z0:Ti , T ;πi,l) with πi,l substituted
with π�

i,l and focus on terms involving the parameters of π�
i,l:

logPr(rT = 1, z0:Ti , T ;π�
i,l) =�terms independent of π�

i,l�+
�T

t=0
log L�

i(n
t
i,l, a

t
i)+

�T−1

t=0
log T �

i (n
t
i,l, a

t
i, o

t+1
i , nt+1

i,l ) + logV �
i(ni,l)

In order to update, Li, we partially differentiate the Q-function of Eq. 5 with respect to L�
i. To

facilitate differentiation, we focus on the terms involving Li, as shown below.

Q(π�
i,l|πi,l) = �terms indep. of L�

i�+
�∞

T=0
Pr(T )

�T

t=0

�
z0:Ti

Pr(rTi = 1, z0:ti |T ;πi,l) logL�
i(n

t
i,l, a

t
i)

L�
i on maximizing the above equation is:

L�
i(n

t
i,l, a

t
i) ∝ Li(n

t
i,l, a

t
i)
�∞

T=0

�
−i

�
sT ,aT

−i

γT

1− γ
Pr(rTi = 1|sT , aT

i , a
T
−i) Pr(aT

−i|sT ) αT (sT , nT
i,l)

Node transition probabilities Ti and node distribution Vi for π�
i,l, is updated analogously to Li.

Because a FSC is inferred at level 1, at strategy levels l = 2 and greater, lower-level candidate
models are FSCs. EM at these higher levels proceeds by replacing the state of the DBN, (st, nt

i,l)

with (st, nt
i,l, n

t
j,l−1, . . . , n

t
k,l−1).

3.3 Block-Coordinate Descent for Non-Asymptotic Speed Up

Block-coordinate descent (BCD) [4, 5, 10] is an iterative scheme to gain faster non-asymptotic rate
of convergence in the context of large-scale N -dimensional optimization problems. In this scheme,
within each iteration, a set of variables referred to as coordinates are chosen and the objective func-
tion, Q, is optimized with respect to one of the coordinate blocks while the other coordinates are
held fixed. BCD may speed up the non-asymptotic rate of convergence of EM for both I-POMDPs
and POMDPs. The specific challenge here is to determine which of the many variables should be
grouped into blocks and how.

We empirically show in Section 5 that grouping the number of time slices, t, and horizon, h, in
Eqs. 7 and 8, respectively, at each level, into coordinate blocks of equal size is beneficial. In other
words, we decompose the mixture model into blocks containing equal numbers of BNs. Alternately,
grouping controller nodes is ineffective because distribution Vi cannot be optimized for subsets of
nodes. Formally, let Ψt

1 be a subset of {T = 1, T = 2, . . . , T = Tmax}. Then, the set of blocks is,
Bt = {Ψt

1,Ψ
t
2,Ψ

t
3, . . .}. In practice, because both t and h are finite (say, Tmax), the cardinality of

Bt is bounded by some C ≥ 1. Analogously, we define the set of blocks of h, denoted by Bh.

In the M -step now, we compute αt for the time steps in a single coordinate block Ψt
c only, while

using the values of αt from the previous iteration for the complementary coordinate blocks, Ψ̃t
c.

Analogously, we compute βh for the horizons in Ψh
c only, while using β values from the previous

iteration for the remaining horizons. We cyclically choose a block, Ψt
c, at iterations c + qC where

q ∈ {0, 1, 2, . . .}.
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3.4 Forward Filtering - Backward Sampling

An approach for exploiting embedded structure in the transition and observation functions is to
replace the exact forward-backward message computations with exact forward filtering and back-
ward sampling (FFBS) [11] to obtain a sampled reverse trajectory consisting of �sT , nT

i,l, a
T
i �,

�nT−1
i,l , aT−1

i , oTi , n
T
i,l�, and so on from T to 0. Here, Pr(rTi = 1|sT , aTi , aT−i) is the likelihood

weight of this trajectory sample. Parameters of the updated FSC, π�
i,l, are obtained by summing and

normalizing the weights.

Each trajectory is obtained by first sampling T̂ ∼ Pr(T ), which becomes the length of i’s DBN for
this sample. Forward message, αt(st, nt

i,l), t = 0 . . . T̂ is computed exactly (Eq. 7) followed by the
backward message, βh(st, nt

i,l), h = 0 . . . T̂ and t = T̂ − h. Computing βh differs from Eq. 8 by
utilizing the forward message:

βh(st, nt
i,l|st+1, nt+1

i,l ) =
�

at
i,a

t
−i,o

t+1
i

αt(st, nt
i,l) Li(n

t
i,l, a

t
i)

�
−i

Pr(at
−i|st) Ti(s

t, at
i, a

t
−i, s

t+1)

Ti(n
t
i,l, a

t
i, o

t+1
i , nt+1

i,l ) Oi(s
t+1, at

i, a
t
−i, o

t+1
i ) (9)

where β0(sT , nT
i,l, r

T
i ) =

�
at
i,a

t
−i

αT (sT , nT
i,l)

�
−i Pr(aT−i|sT ) L(nT

i,l, a
T
i ) Pr(rTi |sT , aTi , aT−i).

Subsequently, we may easily sample �sT , nT
i,l, r

T
i � followed by sampling sT−1

i , nT−1
i,l from Eq. 9.

We sample aT−1
i , oTi ∼ Pr(ati, o

t+1
i |st, nt

i,l, s
t+1, nt+1

i,l ), where:

Pr(at
i, o

t+1
i |st, nt

i,l, s
t+1, nt+1

i,l ) ∝
�

−i
Pr(at

−i|st) Li(n
t
i,l, a

t
i) Ti(n

t
i,l, a

t
i, o

t+1
i , nt+1

i,l ) Ti(s
t, at

i, a
t
−i, s

t+1)

Oi(s
t+1, at

i, a
t
−j , o

t+1
i )

4 Computational Complexity

Our EM at level 1 is significantly quicker compared to ascribing FSCs to other agents. In the latter,
nodes of others’ controllers must be included alongside s and ni,l.
Proposition 3 (E-step speed up). Each E-step at level 1 using the forward-backward pass as shown
previously results in a net speed up of O((|M ||N−i,0|)2K |Ω−i|K) over the formulation that ascribes
|M | FSCs each to K other agents with each having |N−i,0| nodes.

Analogously, updating the parameters Li and Ti in the M-step exhibits a speedup of
O((|M ||N−i,0|)2K |Ω−i|K), while Vi leads to O((|M ||N−i,0|)K). This improvement is exponential
in the number of other agents. On the other hand, the E-step at level 0 exhibits complexity that is
typically greater compared to the total complexity of the E-steps for |M | FSCs.
Proposition 4 (E-step ratio at level 0). E-steps when |M | FSCs are inferred for K agents exhibit a
ratio of complexity, O(

|N−i,0|2
|M | ), compared to the E-step for obtaining φ−i,0.

The ratio in Prop. 4 is < 1 when smaller-sized controllers are sought and there are several models.

5 Experiments

Five variants of EM are evaluated as appropriate: the exact EM inference-based planning (labeled as
I-EM); replacing the exact M-step with its greedy variant analogously to the greedy maximization in
EM for POMDPs [12] (I-EM-Greedy); iterating EM based on coordinate blocks (I-EM-BCD) and
coupled with a greedy M-step (I-EM-BCD-Greedy); and lastly, using forward filtering-backward
sampling (I-EM-FFBS).

We use 4 problem domains: the noncooperative multiagent tiger problem [13] (|S|= 2, |Ai|= |Aj |=
3, |Oi|= |Oj |= 6 for level l ≥ 1, |Oj |= 3 at level 0, and γ = 0.9) with a total of 5 agents and 50
models for each other agent. A larger noncooperative 2-agent money laundering (ML) problem [14]
forms the second domain. It exhibits 99 physical states for the subject agent (blue team), 9 actions
for blue and 4 for the red team, 11 observations for subject and 4 for the other, with about 100 models

6



5-agent Tiger

-300

-250

-200

-150

-100

-50

 0

 10  100  1000

L
e
v
e
l 
1
 V

a
lu

e

time(s) in log scale

I-EM
I-EM-Greedy

I-EM-BCD
I-EM-FFBS

(I-a) EM methods

2-agent ML

-140

-130

-120

-110

-100

-90

 100  1000  10000

time(s) in log scale

I-EM
I-EM-Greedy

I-EM-BCD-Greedy
I-EM-FFBS

(I-b) EM methods

3-agent UAV

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10000 20000 30000 40000 50000 60000 70000

time(s)

I-EM-Greedy
I-EM-BCD-Greedy

I-EM-FFBS

(I-c) EM methods

-300

-250

-200

-150

-100

-50

 0

 10  100  1000  10000

L
e
v
e
l 
1
 V

a
lu

e

time(s) in log scale

I-EM-BCD
I-BPI

(II-a) I-EM-BCD, I-BPI

-140

-130

-120

-110

-100

-90

 100  1000

time(s) in log scale

I-EM-BCD-Greedy
I-BPI

(II-b) I-EM-BCD-Greedy, I-BPI

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  10000  20000  30000  40000

time(s)

I-EM-BCD-Greedy
I-BPI

(II-c) I-EM-BCD-Greedy, I-BPI

5-agent policing

 500

 600

 700

 800

 900

 1000

 1100

 0  5000  10000  15000  20000

time(s)

I-EM
I-EM-Greedy

I-EM-BCD
I-EM-BCD-Greedy

 600

 700

 800

 900

 1000

 1100

 1200

 0  5000  10000  15000  20000

time(s)

I-EM-BCD
I-BPI

(I-d) EM methods (II-d) I-EM-BCD, I-BPI

Figure 2: FSCs improve with time for I-POMDPi,1 in the (I-a) 5-agent tiger, (I-b) 2-agent money laundering,
(I-c) 3-agent UAV, and (I-d) 5-agent policing contexts. Observe that BCD causes substantially larger improve-
ments in the initial iterations until we are close to convergence. I-EM-BCD or its greedy variant converges
significantly quicker than I-BPI to similar-valued FSCs for all four problem domains as shown in (II-a, b, c and
d), respectively. All experiments were run on Linux with Intel Xeon 2.6GHz CPUs and 32GB RAM.

for red team. We also evaluate a 3-agent UAV reconnaissance problem involving a UAV tasked with
intercepting two fugitives in a 3x3 grid before they both reach the safe house [8]. It has 162 states for
the UAV, 5 actions, 4 observations for each agent, and 200,400 models for the two fugitives. Finally,
the recent policing protest problem is used in which police must maintain order in 3 designated
protest sites populated by 4 groups of protesters who may be peaceful or disruptive [15]. It exhibits
27 states, 9 policing and 4 protesting actions, 8 observations, and 600 models per protesting group.
The latter two domains are historically the largest test problems for self-interested planning.

Comparative performance of all methods In Fig. 2-I(a-d), we compare the variants on all prob-
lems. Each method starts with a random seed, and the converged value is significantly better than
a random FSC for all methods and problems. Increasing the sizes of FSCs gives better values in
general but also increases time; using FSCs of sizes 5, 3, 9 and 5, for the 4 domains respectively
demonstrated a good balance. We explored various coordinate block configurations eventually set-
tling on 3 equal-sized blocks for both the tiger and ML, 5 blocks for UAV and 2 for policing protest.
I-EM and the Greedy and BCD variants clearly exhibit an anytime property on the tiger, UAV and
policing problems. The noncooperative ML shows delayed increases because we show the value of
agent i’s controller and initial improvements in the other agent’s controller may maintain or decrease
the value of i’s controller. This is not surprising due to competition in the problem. Nevertheless,
after a small delay the values improve steadily which is desirable.

I-EM-BCD consistently improves on I-EM and is often the fastest: the corresponding value improves
by large steps initially (fast non-asymptotic rate of convergence). In the context of ML and UAV,
I-EM-BCD-Greedy shows substantive improvements leading to controllers with much improved
values compared to other approaches. Despite a low sample size of about 1,000 for the problems,
I-EM-FFBS obtains FSCs whose values improve in general for tiger and ML, though slowly and
not always to the level of others. This is because the EM gets caught in a worse local optima due
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to sampling approximation – this strongly impacts the UAV problem; more samples did not escape
these optima. However, forward filtering only (as used in Wu et al. [6]) required a much larger
sample size to reach these levels. FFBS did not improve the controller in the fourth domain.

Characterization of local optima While an exact solution for the smaller tiger problem with 5
agents (or the larger problems) could not be obtained for comparison, I-EM climbs to the optimal
value of 8.51 for the downscaled 2-agent version (not shown in Fig. 2). In comparison, BPI does
not get past the local optima of -10 using an identical-sized controller – corresponding controller
predominantly contains listening actions – relying on adding nodes to eventually reach optimum.
While we are unaware of any general technique to escape local convergence in EM, I-EM can reach
the global optimum given an appropriate seed. This may not be a coincidence: the I-POMDP value
function space exhibits a single fixed point – the global optimum – which in the context of Propo-
sition 1 makes the likelihood function, Q(π�

i,l|πi,l), unimodal (if πi,l is appropriately sized as we
do not have a principled way of adding nodes). If Q(π�

i,l|πi,l) is continuously differentiable for the
domain on hand, Corollary 1 in Wu [16] indicates that πi,l will converge to the unique maximizer.

Improvement on I-BPI We compare the quickest of the I-EM variants with previous best algo-
rithm, I-BPI (Figs. 2-II(a-d)), allowing the latter to escape local optima as well by adding nodes.
Observe that FSCs improved using I-EM-BCD converge to values similar to those of I-BPI almost
two orders of magnitude faster. Beginning with 5 nodes, I-BPI adds 4 more nodes to obtain the same
level of value as EM for the tiger problem. For money laundering, I-EM-BCD-Greedy converges to
controllers whose value is at least 1.5 times better than I-BPI’s given the same amount of allocated
time and less nodes. I-BPI failed to improve the seed controller and could not escape for the UAV
and policing protest problems. To summarize, this makes I-EM variants with emphasis on BCD the
fastest iterative approaches for infinite-horizon I-POMDPs currently.

6 Concluding Remarks
The EM formulation of Section 3 builds on the EM for POMDP and differs drastically from the E-
and M-steps for the cooperative DEC-POMDP [9]. The differences reflect how I-POMDPs build on
POMDPs and differ from DEC-POMDPs. These begin with the structure of the DBNs where the
DBN for I-POMDPi,1 in Fig. 1 adds to the DBN for POMDP hexagonal model nodes that contain
candidate models; chance nodes for action; and model update edges for each other agent at each
time step. This differs from the DBN for DEC-POMDP, which adds controller nodes for all agents
and a joint observation chance node. The I-POMDP DBN contains controller nodes for the subject
agent only, and each model node collapses into an efficient distribution on running EM at level 0.

In domains where the joint reward function may be decomposed into factors encompassing subsets
of agents, ND-POMDPs allow the value function to be factorized as well. Kumar et al. [17] exploit
this structure by simply decomposing the whole DBN mixture into a mixture for each factor and it-
erating over the factors. Interestingly, the M-step may be performed individually for each agent and
this approach scales beyond two agents. We exploit both graphical and problem structures to speed
up and scale in a way that is contextual to I-POMDPs. BCD also decomposes the DBN mixture
into equal blocks of horizons. While it has been applied in other areas [18, 19], these applications
do not transfer to planning. Additionally, problem structure is considered by using FFBS that ex-
ploits information in the transition and observation distributions of the subject agent. FFBS could be
viewed as a tenuous example of Monte Carlo EM, which is a broad category and also includes the
forward sampling utilized by Wu et al. [6] for DEC-POMDPs. However, fundamental differences
exist between the two: forward sampling may be run in simulation and does not require the transition
and observation functions. Indeed, Wu et al. utilize it in a model free setting. FFBS is model based
utilizing exact forward messages in the backward sampling phase. This reduces the accumulation of
sampling errors over many time steps in extended DBNs, which otherwise afflicts forward sampling.

The advance in this paper for self-interested multiagent planning has wider relevance to areas such
as game play and ad hoc teams where agents model other agents. Developments in online EM for
hidden Markov models [20] provide an interesting avenue to utilize inference for online planning.
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