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Abstract
A version of the dueling bandit problem is addressed in which a Condorcet winner
may not exist. Two algorithms are proposed that instead seek to minimize regret
with respect to the Copeland winner, which, unlike the Condorcet winner, is guar-
anteed to exist. The first, Copeland Confidence Bound (CCB), is designed for
small numbers of arms, while the second, Scalable Copeland Bandits (SCB),
works better for large-scale problems. We provide theoretical results bounding
the regret accumulated by CCB and SCB, both substantially improving existing
results. Such existing results either offer bounds of the form O(K log T ) but
require restrictive assumptions, or offer bounds of the form O(K2 log T ) without
requiring such assumptions. Our results offer the best of both worlds: O(K log T )
bounds without restrictive assumptions.

1 Introduction
The dueling bandit problem [1] arises naturally in domains where feedback is more reliable when
given as a pairwise preference (e.g., when it is provided by a human) and specifying real-valued
feedback instead would be arbitrary or inefficient. Examples include ranker evaluation [2, 3, 4] in
information retrieval, ad placement and recommender systems. As with other preference learning
problems [5], feedback consists of a pairwise preference between a selected pair of arms, instead of
scalar reward for a single selected arm, as in the K-armed bandit problem.

Most existing algorithms for the dueling bandit problem require the existence of a Condorcet win-
ner, which is an arm that beats every other arm with probability greater than 0.5. If such algorithms
are applied when no Condorcet winner exists, no decision may be reached even after many compar-
isons. This is a key weakness limiting their practical applicability. For example, in industrial ranker
evaluation [6], when many rankers must be compared, each comparison corresponds to a costly live
experiment and thus the potential for failure if no Condorcet winner exists is unacceptable [7].

This risk is not merely theoretical. On the contrary, recent experiments on K-armed dueling bandit
problems based on information retrieval datasets show that dueling bandit problems without Con-
dorcet winners arise regularly in practice [8, Figure 1]. In addition, we show in Appendix C.1 in the
supplementary material that there are realistic situations in ranker evaluation in information retrieval
in which the probability that the Condorcet assumption holds, decreases rapidly as the number of
arms grows. Since the K-armed dueling bandit methods mentioned above do not provide regret
bounds in the absence of a Condorcet winner, applying them remains risky in practice. Indeed, we
demonstrate empirically the danger of applying such algorithms to dueling bandit problems that do
not have a Condorcet winner (cf. Appendix A in the supplementary material).

The non-existence of the Condorcet winner has been investigated extensively in social choice theory,
where numerous definitions have been proposed, without a clear contender for the most suitable
resolution [9]. In the dueling bandit context, a few methods have been proposed to address this
issue, e.g., SAVAGE [10], PBR [11] and RankEl [12], which use some of the notions proposed by
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social choice theorists, such as the Copeland score or the Borda score to measure the quality of each
arm, hence determining what constitutes the best arm (or more generally the top-k arms). In this
paper, we focus on finding Copeland winners, which are arms that beat the greatest number of other
arms, because it is a natural, conceptually simple extension of the Condorcet winner.

Unfortunately, the methods mentioned above come with bounds of the form O(K2 log T ). In this
paper, we propose two new K-armed dueling bandit algorithms for the Copeland setting with sig-
nificantly improved bounds.

The first algorithm, called Copeland Confidence Bound (CCB), is inspired by the recently pro-
posed Relative Upper Confidence Bound method [13], but modified and extended to address the
unique challenges that arise when no Condorcet winner exists. We prove anytime high-probability
and expected regret bounds for CCB of the form O(K2 +K log T ). Furthermore, the denominator
of this result has much better dependence on the “gaps” arising from the dueling bandit problem
than most existing results (cf. Sections 3 and 5.1 for the details).

However, a remaining weakness of CCB is the additiveO(K2) term in its regret bounds. In applica-
tions with large K, this term can dominate for any experiment of reasonable duration. For example,
at Bing, 200 experiments are run concurrently on any given day [14], in which case the duration
of the experiment needs to be longer than the age of the universe in nanoseconds before K log T
becomes significant in comparison to K2.

Our second algorithm, called Scalable Copeland Bandits (SCB), addresses this weakness by elim-
inating the O(K2) term, achieving an expected regret bound of the form O(K logK log T ). The
price of SCB’s tighter regret bounds is that, when two suboptimal arms are close to evenly matched,
it may waste comparisons trying to determine which one wins in expectation. By contrast, CCB
can identify that this determination is unnecessary, yielding better performance unless there are very
many arms. CCB and SCB are thus complementary algorithms for finding Copeland winners.

Our main contributions are as follows:

1. We propose two algorithms that address the dueling bandit problem in the absence of a Condorcet
winner, one designed for problems with small numbers of arms and the other scaling well with
the number of arms.

2. We provide regret bounds that bridge the gap between two groups of results: those of the form
O(K log T ) that make the Condorcet assumption, and those of the formO(K2 log T ) that do not
make the Condorcet assumption. Our bounds are similar to those of the former but are as broadly
applicable as the latter. Furthermore, the result for CCB has substantially better dependence on
the gaps than the second group of results.

3. We include an empirical evaluation of CCB and SCB using a real-life problem arising from
information retrieval (IR). The experimental results mirror the theoretical ones.

2 Problem Setting
Let K ≥ 2. The K-armed dueling bandit problem [1] is a modification of the K-armed bandit
problem [15]. The latter considers K arms {a1, . . . , aK} and at each time-step, an arm ai can be
pulled, generating a reward drawn from an unknown stationary distribution with expected value µi.
The K-armed dueling bandit problem is a variation in which, instead of pulling a single arm, we
choose a pair (ai, aj) and receive one of them as the better choice, with the probability of ai being
picked equal to an unknown constant pij and that of aj being picked equal to pji = 1 − pij . A
problem instance is fully specified by a preference matrix P = [pij ], whose ij entry is equal to pij .

Most previous work assumes the existence of a Condorcet winner [10]: an arm, which without loss
of generality we label a1, such that p1i >

1
2 for all i > 1. In such work, regret is defined relative to

the Condorcet winner. However, Condorcet winners do not always exist [8, 13]. In this paper, we
consider a formulation of the problem that does not assume the existence of a Condorcet winner.

Instead, we consider the Copeland dueling bandit problem, which defines regret with respect to a
Copeland winner, which is an arm with maximal Copeland score. The Copeland score of ai, denoted
Cpld(ai), is the number of arms aj for which pij > 0.5. The normalized Copeland score, denoted
cpld(ai), is simply Cpld(ai)

K−1 . Without loss of generality, we assume that a1, . . . , aC are the Copeland
winners, where C is the number of Copeland winners. We define regret as follows:
Definition 1. The regret incurred by comparing ai and aj is 2cpld(a1)− cpld(ai)− cpld(aj).
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Remark 2. Since our results (see §5) establish bounds on the number of queries to non-Copeland
winners, they can also be applied to other notions of regret.

3 Related Work
Numerous methods have been proposed for the K-armed dueling bandit problem, including Inter-
leaved Filter [1], Beat the Mean [3], Relative Confidence Sampling [8], Relative Upper Confidence
Bound (RUCB) [13], Doubler and MultiSBM [16], and mergeRUCB [17], all of which require the
existence of a Condorcet winner, and often come with bounds of the form O(K log T ). However,
as observed in [13] and Appendix C.1, real-world problems do not always have Condorcet winners.

There is another group of algorithms that do not assume the existence of a Condorcet winner, but
have bounds of the form O(K2 log T ) in the Copeland setting: Sensitivity Analysis of VAriables
for Generic Exploration (SAVAGE) [10], Preference-Based Racing (PBR) [11] and Rank Elicitation
(RankEl) [12]. All three of these algorithms are designed to solve more general or more difficult
problems, and they solve the Copeland dueling bandit problem as a special case.

This work bridges the gap between these two groups by providing algorithms that are as broadly
applicable as the second group but have regret bounds comparable to those of the first group. Fur-
thermore, in the case of the results for CCB, rather than depending on the smallest gap between arms
ai and aj , ∆min :=mini>j |pij − 0.5|, as in the case of many results in the Copeland setting,1 our
regret bounds depend on a larger quantity that results in a substantially lower upper-bound, cf. §5.1.

In addition to the above, bounds have been proven for other notions of winners, including Borda
[10, 11, 12], Random Walk [11, 18], and very recently von Neumann [19]. The dichotomy discussed
also persists in the case of these results, which either rely on restrictive assumptions to obtain a linear
dependence onK or are more broadly applicable, at the expense of a quadratic dependence onK. A
natural question for future work is whether the improvements achieved in this paper in the case of the
Copeland winner can be obtained in the case of these other notions as well. We refer the interested
reader to Appendix C.2 for a numerical comparison of these notions of winners in practice. More
generally, there is a proliferation of notions of winners that the field of Social Choice Theory has put
forth and even though each definition has its merits, it is difficult to argue for any single definition
to be superior to all others.

A related setting is that of partial monitoring games [20]. While a dueling bandit problem can be
modeled as a partial monitoring problem, doing so yields weaker results. In [21], the authors present
problem-dependent bounds from which a regret bound of the formO(K2 log T ) can be deduced for
the dueling bandit problem, whereas our work achieves a linear dependence in K.

4 Method
We now present two algorithms that find Copeland winners.

4.1 Copeland Confidence Bound (CCB)
CCB (see Algorithm 1) is based on the principle of optimism followed by pessimism: it maintains
optimistic and pessimistic estimates of the preference matrix, i.e., matrices U and L (Line 6). It uses
U to choose an optimistic Copeland winner ac (Lines 7–9 and 11–12), i.e., an arm that has some
chance of being a Copeland winner. Then, it uses L to choose an opponent ad (Line 13), i.e., an arm
deemed likely to discredit the hypothesis that ac is indeed a Copeland winner.

More precisely, an optimistic estimate of the Copeland score of each arm ai is calculated using U
(Line 7), and ac is selected from the set of top scorers, with preference given to those in a shortlist, Bt
(Line 11). These are arms that have, roughly speaking, been optimistic winners throughout history.
To maintain Bt, as soon as CCB discovers that the optimistic Copeland score of an arm is lower than
the pessimistic Copeland score of another arm, it purges the former from Bt (Line 9B).

The mechanism for choosing the opponent ad is as follows. The matrices U and L define a confi-
dence interval around pij for each i and j. In relation to ac, there are three types of arms: (1) arms
aj s.t. the confidence region of pcj is strictly above 0.5, (2) arms aj s.t. the confidence region of pcj
is strictly below 0.5, and (3) arms aj s.t. the confidence region of pcj contains 0.5. Note that an arm
of type (1) or (2) at time t′ may become an arm of type (3) at time t > t′ even without queries to the
corresponding pair as the size of the confidence intervals increases as time goes on.

1Cf. [10, Equation 9 in §4.1.1] and [11, Theorem 1].
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Algorithm 1 Copeland Confidence Bound
Input: A Copeland dueling bandit problem and an exploration parameter α > 1

2 .
1: W = [wij ]← 0K×K // 2D array of wins: wij is the number of times ai beat aj
2: B1 = {a1, . . . , aK} // potential best arms
3: Bi1 = ∅ for each i = 1, . . . ,K // potential to beat ai
4: LC = K // estimated max losses of a Copeland winner
5: for t = 1, 2, . . . do
6: U := [uij ]=

W
W+WT +

√
α ln t

W+WT and L := [lij ]=
W

W+WT −
√

α ln t
W+WT , with uii= lii=

1
2 , ∀i

7: Cpld(ai) = #
{
k |uik ≥ 1

2 , k 6= i
}

and Cpld(ai) = #
{
k | lik ≥ 1

2 , k 6= i
}

8: Ct = {ai |Cpld(ai) = maxj Cpld(aj)}
9: Set Bt ← Bt−1 and Bit ← Bit−1 and update as follows:

A. Reset disproven hypotheses: If for any i and aj ∈ Bit we have lij > 0.5, reset Bt, LC and
Bkt for all k (i.e., set them to their original values as in Lines 2–4 above).

B. Remove non-Copeland winners: For each ai ∈ Bt, if Cpld(ai) < Cpld(aj) holds for any
j, set Bt ← Bt \ {ai}, and if |Bit| 6= LC + 1, then set Bit ← {ak|uik < 0.5}. However, if
Bt = ∅, reset Bt, LC and Bkt for all k.

C. Add Copeland winners: For any ai ∈ Ct with Cpld(ai) = Cpld(ai), set Bt ← Bt ∪ {ai},
Bit ← ∅ and LC ← K − 1 − Cpld(ai). For each j 6= i, if we have |Bjt | < LC + 1, set
Bjt←∅, and if |Bjt |>LC+1, randomly choose LC+1 elements of Bjt and remove the rest.

10: With probability 1/4, sample (c, d) uniformly from the set {(i, j) | aj ∈ Bit and 0.5 ∈
[lij , uij ]} (if it is non-empty) and skip to Line 14.

11: If Bt ∩ Ct 6= ∅, then with probability 2/3, set Ct ← Bt ∩ Ct.
12: Sample ac from Ct uniformly at random.
13: With probability 1/2, choose the set Bi to be either Bit or {a1, . . . , aK} and then set

d ← arg max{j∈Bi | ljc≤0.5} ujc. If there is a tie, d is not allowed to be equal to c.
14: Compare arms ac and ad and increment wcd or wdc depending on which arm wins.
15: end for

CCB always chooses ad from arms of type (3) because comparing ac and a type (3) arm is most
informative about the Copeland score of ac. Among arms of type (3), CCB favors those that have
confidently beaten arm ac in the past (Line 13), i.e., arms that in some round t′ < t were of type (2).
Such arms are maintained in a shortlist of “formidable” opponents (Bit) that are likely to confirm
that ai is not a Copeland winner; these arms are favored when selecting ad (Lines 10 and 13).

The sets Bit are what speed up the elimination of non-Copeland winners, enabling regret bounds that
scale asymptotically with K rather than K2. Specifically, for a non-Copeland winner ai, the set
Bit will eventually contain LC+1 strong opponents for ai (Line 4.1C), where LC is the number of
losses of each Copeland winner. Since LC is typically small (cf. Appendix C.3), asymptotically this
leads to a bound of only O(log T ) on the number of time-steps when ai is chosen as an optimistic
Copeland winner, instead of a bound of O(K log T ), which a more naive algorithm would produce.

4.2 Scalable Copeland Bandits (SCB)
SCB is designed to handle dueling bandit problems with large numbers of arms. It is based on an
arm-identification algorithm, described in Algorithm 2, designed for a PAC setting, i.e., it finds an
ε-Copeland winner with probability 1 − δ, although we are primarily interested in the case with
ε = 0. Algorithm 2 relies on a reduction to a K-armed bandit problem where we have direct access

Algorithm 2 Approximate Copeland Bandit Solver
Input: A Copeland dueling bandit problem with preference matrix P = [pij ], failure probability

δ > 0, and approximation parameter ε > 0. Also, define [K] := {1, . . . ,K}.
1: Define a random variable reward(i) for i ∈ [K] as the following procedure: pick a uniformly

random j 6= i from [K]; query the pair (ai, aj) sufficiently many times in order to determine
w.p. at least 1− δ/K2 whether pij > 1/2; return 1 if pij > 0.5 and 0 otherwise.

2: Invoke Algorithm 4, where in each of its calls to reward(i), the feedback is determined by the
above stochastic process.

Return: The same output returned by Algorithm 4.
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to a noisy version of the Copeland score; the process of estimating the score of arm ai consists of
comparing ai to a random arm aj until it becomes clear which arm beats the other. The sample
complexity bound, which yields the regret bound, is achieved by combining a bound for K-armed
bandits and a bound on the number of arms that can have a high Copeland score.

Algorithm 2 calls a K-armed bandit algorithm as a subroutine. To this end, we use the KL-based
arm-elimination algorithm, a slight modification of Algorithm 2 in [22]: it implements an elimi-
nation tournament with confidence regions based on the KL-divergence between probability dis-
tributions. The interested reader can find the pseudo-code in Algorithm 4 contained in Appendix
J.

Combining this with the squaring trick, a modification of the doubling trick that reduces the number
of partitions from log T to log log T , the SCB algorithm, described in Algorithm 3, repeatedly calls
Algorithm 2 but force-terminates if an increasing threshold is reached. If it terminates early, then
the identified arm is played against itself until the threshold is reached.

Algorithm 3 Scalable Copeland Bandits
Input: A Copeland dueling bandit problem with preference matrix P = [pij ]

1: for all r = 1, 2, . . . do
2: Set T = 22r and run Algorithm 2 with failure probability log(T )/T in order to find an exact

Copeland winner (ε = 0); force-terminate if it requires more than T queries.
3: Let T0 be the number of queries used by invoking Algorithm 2, and let ai be the arm produced

by it; query the pair (ai, ai) T − T0 times.
4: end for

5 Theoretical Results
In this section, we present regret bounds for both CCB and SCB. Assuming that the number of
Copeland winners and the number of losses of each Copeland winner are bounded,2 CCB’s regret
bound takes the form O(K2 + K log T ), while SCB’s is of the form O(K logK log T ). Note that
these bounds are not directly comparable. When there are relatively few arms, CCB is expected to
perform better. By contrast, when there are many arms SCB is expected to be superior. Appendix A
in the supplementary material provides empirical evidence to support these expectations.

Throughout this section we impose the following condition on the preference matrix:

A There are no ties, i.e., for all pairs (ai, aj) with i 6= j, we have pij 6= 0.5.

This assumption is not very restrictive in practice. For example, in the ranker evaluation setting from
information retrieval, each arm corresponds to a ranker, a complex and highly engineered system,
so it is unlikely that two rankers are indistinguishable. Furthermore, some of the results we present
in this section actually hold under even weaker assumptions. However, for the sake of clarity, we
defer a discussion of these nuanced differences to Appendix F in the supplementary material.

5.1 Copeland Confidence Bound (CCB)
In this section, we provide a rough outline of our argument for the bound on the regret accumulated
by Algorithm 1. For a more detailed argument, the interested reader is referred to Appendix E.

Consider a K-armed Copeland bandit problem with arms a1, . . . , aK and preference matrix P =
[pij ], such that arms a1, . . . , aC are the Copeland winners, with C being the number of Copeland
winners. Moreover, we define LC to be the number of arms to which a Copeland winner loses in
expectation.

Using this notation, our expected regret bound for CCB takes the form: O
(
K2+(C+LC)K lnT

∆2

)
(1)

Here, ∆ is a notion of gap defined in Appendix E, which is an improvement upon the smallest gap
between any pair of arms.

This result is proven in two steps. First, we bound the number of comparisons involving non-
Copeland winners, yielding a result of the form O(K2 lnT ). Second, Theorem 3 closes the gap

2See Appendix C.3 in the supplementary material for experimental evidence that this is the case in practice.
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between this bound and the one in (1) by showing that, beyond a certain time horizon, CCB selects
non-Copeland winning arms as the optimistic Copeland winner very infrequently.
Theorem 3. Given a Copeland bandit problem satisfying Assumption A and any δ > 0 and α > 0.5,
there exist constants A(1)

δ and A(2)
δ such that, with probability 1− δ, the regret accumulated by CCB

is bounded by the following:

A
(1)
δ +A

(2)
δ

√
lnT +

2K(C + LC + 1)

∆2
lnT.

Using the high probability regret bound given in Theorem 3, we can deduce the expected regret
result claimed in (1) for α > 1, as a corollary by integrating δ over the interval [0, 1].

5.2 Scalable Copeland Bandits
We now turn to our regret result for SCB, which lowers the K2 dependence in the additive constant
of CCB’s regret result to K logK. We begin by defining the relevant quantities:
Definition 4. Given a K-armed Copeland bandit problem and an arm ai, we define the following:

1. Recall that cpld(ai) := Cpld(ai)/(K − 1) is called the normalized Copeland score.
2. ai is an ε-Copeland-winner if 1− cpld(ai) ≤ (1− cpld(a1)) (1 + ε).
3. ∆i := max{cpld(a1)− cpld(ai), 1/(K − 1)} and Hi :=

∑
j 6=i

1
∆2
ij

, with H∞ := maxiHi.

4. ∆ε
i = max {∆i, ε(1− cpld(a1))}.

We now state our main scalability result:
Theorem 5. Given a Copeland bandit problem satisfying Assumption A, the expected regret of SCB
(Algorithm 3) is bounded by O

(
1
K

∑K
i=1

Hi(1−cpld(ai))
∆2
i

)
log(T ), which in turn can be bounded by

O
(
K(LC+logK) log T

∆2
min

)
, where LC and ∆min are as in Definition 10.

Recall that SCB is based on Algorithm 2, an arm-identification algorithm that identifies a Copeland
winner with high probability. As a result, Theorem 5 is an immediate corollary of Lemma 6, obtained
by using the well known squaring trick. As mentioned in Section 4.2, the squaring trick is a minor
variation on the doubling trick that reduces the number of partitions from log T to log log T .

Lemma 6 is a result for finding an ε-approximate Copeland winner (see Definition 4.2). Note that,
for the regret setting, we are only interested in the special case with ε = 0, i.e., the problem of
identifying the best arm.
Lemma 6. With probability 1− δ, Algorithm 2 finds an ε-approximate Copeland winner by time

O
(

1

K

K∑
i=1

Hi(1− cpld(ai))

(∆ε
i)

2

)
log(1/δ) ≤ O

(
H∞

(
log(K) + min

{
ε−2, LC

}))
log(1/δ).

assuming3 δ = (KH∞)Ω(1). In particular when there is a Condorcet winner (cpld(a1) = 1, LC =
0) or more generally cpld(a1) = 1−O(1/K), LC = O(1), an exact solution is found with probabil-
ity at least 1−δ by using an expected number of queries of at mostO (H∞(LC + logK)) log(1/δ).

In the remainder of this section, we sketch the main ideas underlying the proof of Lemma 6, detailed
in Appendix I in the supplementary material. We first treat the simpler deterministic setting in which
a single query suffices to determine which of a pair of arms beats the other. While a solution can
easily be obtained using K(K − 1)/2 many queries, we aim for one with query complexity linear
in K. The main ingredients of the proof are as follows:

1. cpld(ai) is the mean of a Bernoulli random variable defined as such: sample uniformly at random
an index j from the set {1, . . . ,K} \ {i} and return 1 if ai beats aj and 0 otherwise.

2. Applying a KL-divergence based arm-elimination algorithm (Algorithm 4) to the K-armed ban-
dit arising from the above observation, we obtain a bound by dividing the arms into two groups:
those with Copeland scores close to that of the Copeland winners, and the rest. For the former,
we use the result from Lemma 7 to bound the number of such arms; for the latter, the resulting
regret is dealt with using Lemma 8, which exploits the possible distribution of Copeland scores.

3The exact expression requires replacing log(1/δ) with log(KH∞/δ).
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Figure 1: Small-scale regret results for a 5-armed Copeland dueling bandit problem arising from
ranker evaluation.

Let us state the two key lemmas here:
Lemma 7. Let D ⊂ {a1, . . . , aK} be the set of arms for which cpld(ai) ≥ 1− d/(K − 1), that is
arms that are beaten by at most d arms. Then |D| ≤ 2d+ 1.
Proof. Consider a fully connected directed graph, whose node set is D and the arc (ai, aj) is in the
graph if arm ai beats arm aj . By the definition of cpld, the in-degree of any node i is upper bounded
by d. Therefore, the total number of arcs in the graph is at most |D|d. Now, the full connectivity
of the graph implies that the total number of arcs in the graph is exactly |D|(|D| − 1)/2. Thus,
|D|(|D| − 1)/2 ≤ |D|d and the claim follows.

Lemma 8. The sum
∑
{i|cpld(ai)<1}

1
1−cpld(ai)

is in O(K logK).

Proof. Follows from Lemma 7 via a careful partitioning of arms. Details are in Appendix I.

Given the structure of Algorithm 2, the stochastic case is similar to the deterministic case for the
following reason: while the latter requires a single comparison between arms ai and aj to determine

which arm beats the other, in the stochastic case, we need roughly
log(K log(∆−1

ij )/δ)

∆2
ij

comparisons

between the two arms to correctly answer the same question with probability at least 1− δ/K2.

6 Experiments
To evaluate our methods CCB and SCB, we apply them to a Copeland dueling bandit problem arising
from ranker evaluation in the field of information retrieval (IR) [23].

We follow the experimental approach in [3, 13] and use a preference matrix to simulate comparisons
between each pair of arms (ai, aj) by drawing samples from Bernoulli random variables with mean
pij . We compare our proposed algorithms against the state of the art K-armed dueling bandit al-
gorithms, RUCB [13], Copeland SAVAGE, PBR and RankEl. We include RUCB in order to verify
our claim that K-armed dueling bandit algorithms that assume the existence of a Condorcet winner
have linear regret if applied to a Copeland dueling bandit problem without a Condorcet winner.

More specifically, we consider a 5-armed dueling bandit problem obtained from comparing five
rankers, none of whom beat the other four, i.e. there is no Condorcet winner. Due to lack of space,
the details of the experimental setup have been included in Appendix B4. Figure 1 shows the regret
accumulated by CCB, SCB, the Copeland variants of SAVAGE, PBR, RankEl and RUCB on this
problem. The horizontal time axis uses a log scale, while the vertical axis, which measures cumula-
tive regret, uses a linear scale. CCB outperforms all other algorithms in this 5-armed experiment.

Note that three of the baseline algorithms under consideration here (i.e., SAVAGE, PBR and RankEl)
require the horizon of the experiment as an input, either directly or through a failure probability δ,

4Sample code and the preference matrices used in the experiments can be found at http://bit.ly/nips15data.
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which we set to 1/T (with T being the horizon), in order to obtain a finite-horizon regret algo-
rithm, as prescribed in [3, 10]. Therefore, we ran independent experiments with varying horizons
and recorded the accumulated regret: the markers on the curves corresponding to these algorithms
represent these numbers. Consequently, the regret curves are not monotonically increasing. For
instance, SAVAGE’s cumulative regret at time 2 × 107 is lower than at time 107 because the runs
that produced the former number were not continuations of those that resulted in the latter, but rather
completely independent. Furthermore, RUCB’s cumulative regret grows linearly, which is why the
plot does not contain the entire curve.

Appendix A contains further experimental results, including those of our scalability experiment.

7 Conclusion
In many applications that involve learning from human behavior, feedback is more reliable when
provided in the form of pairwise preferences. In the dueling bandit problem, the goal is to use such
pairwise feedback to find the most desirable choice from a set of options. Most existing work in
this area assumes the existence of a Condorcet winner, i.e., an arm that beats all other arms with
probability greater than 0.5. Even though these results have the advantage that the bounds they
provide scale linearly in the number of arms, their main drawback is that in practice the Condorcet
assumption is too restrictive. By contrast, other results that do not impose the Condorcet assumption
achieve bounds that scale quadratically in the number of arms.

In this paper, we set out to solve a natural generalization of the problem, where instead of assuming
the existence of a Condorcet winner, we seek to find a Copeland winner, which is guaranteed to
exist. We proposed two algorithms to address this problem: one for small numbers of arms, called
CCB, and a more scalable one, called SCB, that works better for problems with large numbers of
arms. We provided theoretical results bounding the regret accumulated by each algorithm: these
results improve substantially over existing results in the literature, by filling the gap that exists in the
current results, namely the discrepancy between results that make the Condorcet assumption and are
of the form O(K log T ) and the more general results that are of the form O(K2 log T ).

Moreover, we have included in the supplementary material empirical results on both a dueling bandit
problem arising from a real-life application domain and a large-scale synthetic problem used to test
the scalability of SCB. The results of these experiments show that CCB beats all existing Copeland
dueling bandit algorithms, while SCB outperforms CCB on the large-scale problem.

One open question raised by our work is how to devise an algorithm that has the benefits of both
CCB and SCB, i.e., the scalability of the latter together with the former’s better dependence on the
gaps. At this point, it is not clear to us how this could be achieved. Another interesting direction
for future work is an extension of both CCB and SCB to problems with a continuous set of arms.
Given the prevalence of cyclical preference relationships in practice, we hypothesize that the non-
existence of a Condorcet winner is an even greater issue when dealing with an infinite number of
arms. Given that both our algorithms utilize confidence bounds to make their choices, we anticipate
that continuous-armed UCB-style algorithms like those proposed in [24, 25, 26, 27, 28, 29, 30] can
be combined with our ideas to produce a solution to the continuous-armed Copeland bandit problem
that does not rely on the convexity assumptions made by algorithms such as the one proposed in
[31]. Finally, it is also interesting to expand our results to handle scores other than the Copeland
score, such as an ε-insensitive variant of the Copeland score (as in [12]), or completely different
notions of winners, such as the Borda, Random Walk or von Neumann winners (see, e.g., [32, 19]).
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Appendix

A Experimental Results

In this section, we continue using the experimental setup laid out in Section 6 to carry out a more
detailed investigation of our proposed algorithms. In particular, we conduct both a scalability ex-
periment to understand the behaviours of CCB and SCB as the number of arms grows as well as an
experiment on a dueling bandit problem that satisfies the Condorcet assumption.
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Figure 2: Large-scale regret results for a synthetic 500-armed Copeland dueling bandit problem.
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Our scalability experiment uses a 500-armed synthetic example created to test the scalability of
SCB. In particular, we fix a preference matrix in which the three Copeland winners are in a cycle,
each with a Copeland score of 498, and the other arms have Copeland scores ranging from 0 to 496.

Figure 2, which depicts the results of this experiment, shows that when there are many arms, SCB
can substantially outperform CCB. We omit SAVAGE, PBR and RankEl from this experiment be-
cause they scale poorly in the number of arms [10, 11, 12].

The reason for the sharp transition in the regret curves of CCB and SCB in the synthetic experiment
is as follows. Because there are many arms, as long as one of the two arms being compared is not a
Copeland winner, the comparison can result in substantial regret; since both algorithms choose the
second arm in each round based on some criterion other than the Copeland score, even if the first
chosen arm in a given time-step is a Copeland winner, the incurred regret may be as high as 0.5. The
sudden transition in Figure 2 occurs when the algorithm becomes confident enough of its choice for
the first arm to begin comparing it against itself, at which point it stops accumulating regret.

As advertised previously, our next experiment is on an example with a Condorcet winner in order
to show how CCB compares against RUCB when the condition required by RUCB is satisfied. The
regret plots for the remaining algorithms were excluded here since they both perform substantially
worse than either RUCB or CCB, as expected. This example was extracted in the same fashion as the
example used in the ranker evaluation experiment detailed in Appendix B, with the sole difference
that this time we ensured that one of the rankers is a Condorcet winner. The results, depicted in
Figure 3, show that CCB enjoys a slight advantage over RUCB in this case. We attribute this to the
careful process of identifying and utilizing the weaknesses of non-Copeland winners, as carried out
by lines 12 and 18 of Algorithm 1.
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Figure 3: Regret results for a Condorcet example.

B Ranker Evaluation Details

A ranker is a function that takes as input a user’s search query and ranks the documents in a collection
according to their relevance to that query. Ranker evaluation aims to determine which among a set
of rankers performs best. One effective way to achieve this is to use interleaved comparisons [33],
which interleave the ranked lists of documents proposed by two rankers and present the resulting
list to the user, whose subsequent click feedback is used to infer a noisy preference for one of the
rankers. Given a set of K rankers, the problem of finding the best ranker can then be modeled as a
K-armed dueling bandit problem, with each arm corresponding to a ranker.
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We use interleaved comparisons to estimate the preference matrix for the full set of rankers included
with the MSLR dataset [34], from which we select 5 rankers such that a Condorcet winner does
not exist. The MSLR dataset [34] consists of relevance judgments provided by expert annotators
assessing the relevance of a given document to a given query. Using this data set, we create a set of
136 rankers, each corresponding to a ranking feature provided in the data set, e.g., PageRank. The
ranker evaluation task in this context corresponds to determining which single feature constitutes
the best ranker [4].

To compare a pair of rankers, we use probabilistic interleave (PI) [35], a recently developed method
for interleaved comparisons. To model the user’s click behavior on the resulting interleaved lists,
we employ a probabilistic user model [35, 36] that uses as input the manual labels (classifying doc-
uments as relevant or not for given queries) provided with the MSLR dataset. Queries are sampled
randomly and clicks are generated probabilistically by conditioning on these assessments in a way
that resembles the behavior of an actual user [37]. Specifically, we employ an informational click
model in our ranker evaluation experiments [38].

The informational click model simulates the behavior of users whose goal is to acquire knowledge
about multiple facets of a topic, rather than seeking a specific page that contains all the information
that they need. As such, in the informational click model, the user tends to continue examining
documents even after encountering a highly relevant document. The informational click model is
one of the three click models utilized in the ranker evaluation literature, along with the perfect and
navigational click models [38]. It turns out that the full preference matrix of the feature vectors of
the MSLR dataset has a Condorcet winner when the perfect or the navigational click-models are
used. As we will see in Appendix C.1, using the informational click model that is no longer true.

Following [3, 13], we first use the above approach to estimate the comparison probabilities pij for
each pair of rankers and then use these probabilities to simulate comparisons between rankers. More
specifically, we estimate the full preference matrix, called the informational preference matrix, by
performing 400, 000 interleaved comparisons on each pair of the 136 feature rankers.
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Figure 4: The probability that the Condorcet assumption holds for subsets of the feature rankers.
The probability is shown as a function of the size of the subset.
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C Assumptions and Key Quantities

In this section, we provide quantitative analysis of the various assumptions, definitions and quantities
that were discussed in the main body of the paper.

C.1 The Condorcet Assumption

To test how stringent the Condorcet assumption is, we use the informational preference matrix de-
scribed in Section B to estimate for each K = 1, . . . , 136 the probability PK that a given K-armed
dueling bandit problem, obtained from considering K of our 136 feature rankers, would have a
Condorcet winner by randomly selecting 10, 000 K-armed dueling bandit problems and counting
the ones with Condorcet winners. As can be seen from Figure 4, as K grows the probability that
the Condorcet assumption holds decreases rapidly. We hypothesize that this is because the informa-
tional click model explores more of the list of ranked documents than the navigational click model,
which was used in [13], and so it is more likely to encounter non-transitivity phenomena of the sort
described in [39].

C.2 Other Notions of Winners

As mentioned in Section 3, numerous other definitions of what constitutes the best arm have been
proposed, some of which specialize to the Condorcet winner, when it exists. This latter property is
desirable both in preference learning and social choice theory: the Condorcet winner is the choice
that is preferred over all other choices, so if it exists, there is good reason to insist on selecting it.
The Copeland winner, as discussed in this paper, and the von Neumann winner [19, 40] satisfy this
property, while the Borda (a.k.a. Sum of Expectations) and the Random Walk (a.k.a. PageRank)
winners [41] do not. The von Neumann winner is in fact defined as a distribution over arms such
that playing it will maximize the probability to beat any fixed arm. The Borda winner is defined as
the arm maximizing the score

∑
j 6=i pij and can be interpreted as the arm that beats other arms by

the most, rather than beating the most arms. The Random Walk winner is defined as the arm we
are most likely to visit in some Markov Chain determined by the preference matrix. In this section,
we provide some numerical evidence for the similarity of these notions in practice, based on the
sampled preference matrices obtained from the ranker evaluation from IR, which was described in
the Section B/C.1. Table 1 lists the percentage of preference matrices for which pairs of winners
overlap. In the case of the von Neumann winner, which is defined as a probability distribution over
the set of arms [19], we used the support of the distribution (i.e., the set of arms with non-zero
probability) to define overlap with the other definitions.

Table 1: Percentage of matrices for which the different notions of winners overlap in the experimen-
tal setup described in Appendices B and C.1.

Overlap Copeland von Neumann Borda Random Walk
Copeland 100% 99.94% 51.49% 56.15%

von Neumann 99.94% 100% 77.66% 82.11%
Borda 51.49% 77.66% 100% 94.81%

RandomWalk 56.15% 82.11% %94.81 100%

As these numbers demonstrate, the Copeland and the von Neumann winners are very likely to over-
lap, as are the Borda and Random Walk winners, while the first two definitions are more likely to
be incompatible with the latter two. Furthermore, in the case of 94.2% of the preference matrices,
all Copeland winners were contained in the support of the von Neumann winner, suggesting that in
practice the Copeland winner is a more restrictive notion of what constitutes a winner.

C.3 The Quantities C and LC

We also examine additional quantities relevant to our regret bounds: the number of Copeland win-
ners, C; the number of losses of each Copeland winner, LC ; and the range of values in which these
quantities fall. Using the above randomly chosen preference sub-matrices, we counted the number
of times each possible value for C and LC was observed. The results are depicted in Figure 5: the
area of the circle with coordinates (x, y) is proportional to the percentage of examples with K = x
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Figure 5: Observed values of the parameters C and LC : the area of the circle with coordinates (x, y)
is proportional to the percentage of examples with K = x which satisfied C = y (in the top plot) or
LC = y in the bottom plot.

which satisfied C = y (in the top plot) or LC = y (in the bottom plot). As these plots show, the
parameters C and LC are generally much lower than K.

C.4 The Gap ∆

The regret bound for CCB, given in (1), depends on the gap ∆ defined in Definition 10.6, rather than
the smallest gap ∆min as specified in Definition 10.2. The latter would result in a looser regret bound
and Figure 6 quantifies this deterioration in the ranker evaluation example under consideration here.
In particular, the plot depicts the average of the ratio between the two bounds (the one using ∆
and the one using ∆min) across the 10, 000 sampled preference matrices used in the analysis of the
Condorcet winner for each K in the set {2, . . . , 135}. The average ratio decreases as the number
of arms approaches 136 because, as K increases, the sampled preference matrices increasingly
resemble the full preference matrix and so their gaps ∆ and ∆min approach those of the full 136-
armed preference matrix as well. As it turns out, the ratio ∆2/∆2

min for the full matrix is equal to
1, 419. Hence, the curve in Figure 6 approaches that number as the number of arms approaches 136.

D Background Material

Maximal Azuma-Hoeffding Bound [42, §A.1.3]: Given random variables X1, . . . , XN with com-
mon range [0, 1] satisfying E[Xn|X1, . . . , Xn−1] = µ, define the partial sums Sn = X1 + · · ·+Xn.
Then, for all a > 0, we have

P
(

max
n≤N

Sn > nµ+ a
)
≤ e−2a2/N

P
(

min
n≤N

Sn < nµ− a
)
≤ e−2a2/N

Here, we will quote a useful Lemma that we will refer to repeatedly in our proofs:

Lemma 9 (Lemma 1 in [13]). Let P := [pij ] be the preference matrix of a K-armed dueling bandit
problem with arms {a1, . . . , aK}. Then, for any dueling bandit algorithm and any α > 1

2 and δ > 0,
we have

P
(
∀ t > C(δ), i, j, pij ∈ [lij(t), uij(t)]

)
> 1− δ.
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Figure 6: The average advantage gained by having the bound in (1) depend on ∆ rather than ∆min:
for each number of armsK, the expectation is taken across the 10, 000K-armed preference matrices
obtained using the sampling procedure described above.

E An Outline of the Proof of Theorem 3

To analyze Algorithm 1, consider a K-armed Copeland bandit problem with arms a1, . . . , aK and
preference matrix P = [pij ], such that arms a1, . . . , aC are the Copeland winners, with C being the
number of Copeland winners. Throughout this section, we assume that the parameter α in Algorithm
1 satisfies α>0.5, unless otherwise stated. We first define the relevant quantities:
Definition 10. Given the above setting we define:5
1. Li := {aj | pij < 0.5}, i.e., the arms to which ai loses, and LC := |L1|.
2. ∆ij := |pij − 0.5| and ∆min := mini 6=j ∆ij

3. Given i > C, define i∗ as the index of the (LC+1)th largest element in the set {∆ij | pij < 0.5}.
4. Define ∆∗i to be ∆ii∗ if i > C and 0 otherwise. Moreover, let us set ∆∗min := mini>C ∆∗i .
5. Define ∆∗ij to be ∆∗i + ∆ij if pij ≥ 0.5 and max{∆∗i ,∆ij} otherwise.6

6. ∆ := min {mini≤C<j ∆ij ,∆
∗
min}, where ∆∗min is defined as in item 4 above.

7. C(δ) :=
(
(4α− 1)K2/(2α− 1)δ

) 1
2α−1 where α is as in Algorithm 1.

8. Nδ
ij(t) is the number of time-steps between times C(δ) and t when ai was chosen as the opti-

mistic Copeland winner and aj as the challenger. Also, N̂δ
ij(t) is defined to be (4α ln t)/

(
∆∗ij
)2

if i 6= j, 0 if i = j > C and t if i = j ≤ C. We also define N̂δ(t) :=
∑
i 6=j N̂

δ
ij(t) + 1.

Using this notation, our expected regret bound for CCB takes the form: O
(
K2+(C+LC)K lnT

∆2

)
(2)

This result is proven in two steps. First, Proposition 11 bounds the number of comparisons involving
non-Copeland winners, yielding a result of the form O(K2 lnT ). Second, Theorem 18 closes the
gap between this bound and that of (2) by showing that, beyond a certain time horizon, CCB selects
non-Copeland winning arms as the optimistic Copeland winner very infrequently.

Note that we have ∆∗ij ≥ ∆ij for all pairs i 6= j. Thus, for simplicity, the analysis in this section
can be read as if the bounds were given in terms of ∆ij . We use ∆∗ij instead because it gives

5See Tables 2 and 3 in the supplementary material for a summary of the definitions used in this paper.
6See Figures 7 and 8 in the supplementary material for a pictorial explanation.
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tighter upper bounds. In particular, simply using the gaps ∆ij would replace the denominator of
the expression in (2) with ∆2

min, which leads to a substantially worse regret bound in practice. For
instance, in the ranker evaluation application used in the experiments in the supplementary material,
this change would on average increase the regret bound by a factor that is of the order of tens of
thousands. See Appendix C.4 for a more quantitative discussion of this point.

We can now state our first bound, proved in Appendix F under weaker assumptions.
Proposition 11. Given any δ > 0 and α > 0.5, if we apply CCB (Algorithm 1) to a dueling bandit
problem satisfying Assumption A, the following holds with probability 1− δ: for any T > C(δ) and
any pair of arms ai and aj , we have Nδ

ij(T ) ≤ N̂δ
ij(T ).

One can sum the inequalities in the last proposition over pairs (i, j) to get a regret bound of the form
O(K2 log T ) for Algorithm 1. However, as Theorem 18 will show, we can use the properties of the
sets Bit to obtain a tighter regret bound of the form O(K log T ). Before stating that theorem, we
need a few definitions and lemmas. We begin by defining the key quantity:
Definition 12. Given a preference matrix P and δ > 0, then Tδ is the smallest integer satisfying

Tδ ≥ C( δ2 )+8K2(LC+1)2 ln 6K2

δ +K2 ln 6K
δ + 32αK(LC+1)

∆2
min

lnTδ+N̂
δ
2(Tδ)+4K max

i>C
N̂

δ
2
i (Tδ).

Remark 13. Tδ is poly(K, δ−1) and our regret bound below scales as log Tδ .

The following two lemmas are key to the proof of Theorem 18. Lemma 14 (proved in Appendix G)
states that, with high probability by time Tδ , each set Bit contains LC + 1 arms aj , each of which
beats ai (i.e., pij < 0.5). This fact then allows us to prove Lemma 15 (Appendix H), which states
that, after time-step Tδ , the rate of suboptimal comparisons is O(K lnT ) rather than O(K2 lnT ).
Lemma 14. Given δ > 0, with probability 1− δ, each set BiTδ with i > C contains exactly LC + 1

elements with each element aj satisfying pij < 0.5. Moreover, for all t ∈ [Tδ, T ], we haveBit = BiTδ .
Lemma 15. Given a Copeland bandit problem satisfying Assumption A and any δ > 0, with prob-
ability 1 − δ the following holds: the number of time-steps between Tδ/2 and T when each non-
Copeland winner ai can be chosen as optimistic Copeland winners (i.e., times when arm ac in Algo-

rithm 1 satisfies c > C) is bounded by N̂ i := 2N̂ i
B+2

√
N̂ i
B ln 2K

δ , where N̂ i
B :=

∑
j∈BiTδ/2

N̂
δ/4
ij (T ).

Remark 16. Due to Lemma 14, with high probability we have N̂ i
B ≤ (LC+1) lnT

(∆∗min)
2 for each i >

C and so the total number of times between Tδ and T when a non-Copeland winner is chosen
as an optimistic Copeland winner is in O(KLC lnT ) for a fixed minimal gap ∆∗min. The only
other way a suboptimal comparison can occur is if a Copeland winner is compared against a non-
Copeland winner, and according to Proposition 11, the number of such occurrences is bounded by
O(KC lnT ). Hence, the number of suboptimal comparisons is in O(K lnT ) assuming that C and
LC are bounded. In Appendix C.3 in the supplementary material, we provide experimental evidence
for this.

We now define the quantities needed to state the main theorem.

Definition 17. We define the following three quantities: A(1)
δ := C(δ/4) + N̂δ(Tδ/2), A(2)

δ :=∑
i>C

√
LC+1
∆∗i

ln 2K
δ and A(3) :=

∑
i≤C<j

1
(∆ij)

2 + 2
∑
i>C

LC+1

(∆∗i )
2 .

Finally, we repeat the statement of Theorem 3 for the reader’s convenience.
Theorem 18. Given a Copeland bandit problem satisfying Assumption A and any δ > 0 and α >
0.5, with probability 1− δ, the regret accumulated by CCB is bounded by the following:

A
(1)
δ +A

(2)
δ

√
lnT +A(3) lnT ≤ A

(1)
δ +A

(2)
δ

√
lnT +

2K(C + LC + 1)

∆2
lnT.

For a general assessment of the above quantities, assuming that LC and C are both O(1), the above
quantities in terms of K become A(1)

δ = O(K2), A(2)
δ = O(K log(K)), A(3) = O(K). Hence, the

above bound boils down to the expression in (2). We now turn to the proof of the theorem.

Proof of Theorem 18. Let us consider the two disjoint time-intervals [1, Tδ/2] and (Tδ/2, T ]:
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[1,Tδ/2]: In this case, applying Proposition 11 to Tδ , we get that the number of time-steps when
a non-Copeland winner was compared against another arm is bounded by A(1)

δ . As the maximum
regret such a comparison can incur is 1, this deals with the first term in the above expression.

(Tδ/2,T]: In this case, applying Lemma 15, we get the other two terms in the above regret bound.

Now that we have the high probability regret bound given in Theorem 18, we can deduce the ex-
pected regret result claimed in (2) for α > 1, as a corollary by integrating δ over the interval [0, 1].

F Proof of Proposition 11

Before starting with the proof, let us point out the following two properties that can be derived from
Assumption A in Section 5:

P1 There are no ties involving a Copeland winner and a non-Copeland winner, i.e., for all pairs
of arms (ai, aj) with i ≤ C < j, we have pij 6= 0.5.

P2 Each non-Copeland winner has more losses than every Copeland winner, i.e., for every pair
of arms (ai, aj), with i ≤ C < j, we have |Li| < |Lj |.

Even though we have assumed in the statement of Proposition 11 that Assumption A holds, it turns
out that the proof provided in this section holds as long as the above two properties hold.

Proposition 11 Applying CCB to a dueling bandit problem satisfying properties P1 and P2, we have
the following bounds on the number of comparisons involving various arms for each T > C(δ): for
each pair of arms ai and aj , such that either at least one of them is not a Copeland winner or
pij 6= 0.5, with probability 1− δ we have

Nδ
ij(T ) ≤ N̂δ

ij(T ) :=


4α lnT(
∆∗ij
)2 if i 6= j

0 if i = j > C

(3)

Proof of Proposition 11. We will prove these bounds by considering a number of cases separately:

1. i ≤ C and pij 6= 0.5: First of all, since ai is a Copeland winner, this means that according
to the definitions in Tables 2 and 3, ∆∗ij is simply equal to ∆ij ; secondly, assuming by way of
contradiction that Nδ

ij(t) >
4α lnT

∆ij
> 0, then we have τij > C(δ) and so by Lemma 9, we

have with probability 1−δ that the confidence interval [lij(τij), uij(τij)] contains the preference
probability pij . But, in order for arm aj to have been chosen as the challenger to ai, we must
also have 0.5 ∈ [lij(τij), uij(τij)]; to see this, let us consider the two possible cases:

(a) If we have pij > 0.5, then having

0.5 /∈ [lij(τij), uij(τij)]

implies that we have lij(τij) > 0.5, which in turn implies

uji(τij) = 1− lij(τij) < 0.5 = uii(τij),

but this is impossible since in that case ai would’ve been chosen as the challenger.
(b) If we have pij < 0.5, then have

0.5 /∈ [lij(τij), uij(τij)]

implies that we have uij(τij) < 0.5, but this is impossible because it means that we had
lji(τij) > 0.5, and CCB would’ve eliminated it from considerations in its second round.

So, in either case, we cannot have 0.5 /∈ [lij(τij), uij(τij)]. Therefore, at time τij , we must have
had uij(τij) − lij(τij) > |pij − 0.5| =: ∆ij . From this, we can conclude the following, using
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∆∗iK

Figure 7: This figure illustrates the definition of the quantities ∆∗i and ∆∗ij in the case that arm ai is a
Copeland winner, as well as the idea behind Case 1 in the proof of Proposition 11. In this setting we
have ∆∗i = 0 and ∆∗ij = ∆ij . On the one hand, by Lemma 9, we know that the confidence intervals
will contain the pij (the blue dots in the plots), and on the other as soon as the confidence interval
of pij stops containing 0.5 for some arm aj , we know that it could not be chosen to be compared
against ai. In this way, the gaps ∆∗ij regulate the number of times that arm each arm can be chosen
to be played against ai during time-steps when ai is chosen as optimistic Copeland winner.

the definition of uij and lij :

uij(τij)− lij(τij) := 2

√
α ln τij
Nij(τij)

≥ ∆ij

∴ 2

√
α ln τij
Nδ
ij(τij)

≥ ∆ij ∵ Nδ
ij(τij) ≤ Nij(τij)

∴ 2

√
α lnT

Nδ
ij(τij)

≥ ∆ij ∵ τij ≤ T

∴ Nδ
ij(τij) ≤

4α lnT

∆2
ij

,

giving us the desired bound. The reader is referred to Figure 7 for an illustration of this argument.

2. C < i: Let us deal with the two cases included in Inequality (3) separately:

(a) i = j > C: In plain terms, this says that with probability 1 − δ no non-Copeland winner
will be compared against itself after time C(δ). The reason for this is the following set of
facts:
• Since ai is a non-Copeland winner, we have by Property P1 that it loses to more arms than

any Copeland winner.
• For ai to have been chosen as an optimistic Copeland winner, it has to have (optimistically)

lost to no more than LC arms, which means that there exists an arm k such that pik < 0.5,
but uik ≥ 0.5.

• By Lemma 9, for all time steps after C(δ), we have lik ≤ pik < 0.5, and so in the second
round we have uki > 0.5 = uii, and so ai could be not chosen as the challenger to itself.

(b) i 6= j: In the case that ai is not a Copeland winner and aj is different from ai, we distinguish
between the following two cases, where ∆∗i is defined as in Tables 2 and 3:
i. pij ≤ 0.5 − ∆∗i : In this case, the definition of ∆∗i reduces to ∆ij . Now, since when

choosing the challenger, CCB eliminates from consideration any arm aj that has lji >
0.5, the last time-step τij after C(δ) when aj was chosen as the challenger for ai, we
must’ve had uij(τij) := 1 − lji(τij) ≥ 0.5. On the other hand, Lemma 9 implies that
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we must also have lij(τij) ≤ pij , and therefore, we have uij(τij) − lij(τij) ≥ ∆ij ; so,
doing the same calculation as in part 1 of this proof, we have

uij(τij)− lij(τij) := 2

√
α ln τij
Nij(τij)

≥ ∆ij

∴ 2

√
α ln τij
Nδ
ij(τij)

≥ ∆ij ∵ Nδ
ij(τij) ≤ Nij(τij)

∴ 2

√
α lnT

Nδ
ij(τij)

≥ ∆ij ∵ τij ≤ T

∴ Nδ
ij(τij) ≤

4α lnT

∆2
ij

,

ii. pij > 0.5 − ∆∗i : Repeating the above argument about uij(τij), we can deduce that
uij(τij) ≥ 0.5 must hold. On the other hand, Lemma 9 states that with probability 1− δ
we have uij(τij) ≥ pij . Putting these two together we get

uij(τij) ≥ max{0.5, pij}. (4)

On the other hand, we will show next that with probability 1 − δ, we have lij(τij) ≤
0.5−∆∗i ; this is a consequence of the following facts:
• Since ai was chosen as the optimistic Copeland winner, we can deduce that ai had no

more that LC optimistic losses.
• Let ak1

, . . . , akl be the l ≤ LC arms to which ai lost optimistically during time-step
τij . Then, the smallest pik with k /∈ {k1, . . . , kl}, must be less than to equal to the
{LC + 1}th smallest element in the set {pik | k = 1, . . . ,K}.

• This, in turn, is equal to the {LC + 1}th smallest element in the set {pik|pik < 0.5}
(since this latter set of numbers are the smallest ones in the former set). But, this is
equal to 0.5−∆∗i by definition.

So, we have the desired bound on lij(τij) and combining this with Inequality (4), we
have

uij(τij)− lij(τij) ≥ max{0, pij − 0.5}+ ∆∗i = ∆∗ij ,

where the last equality follows directly from the definition of ∆∗ij and the fact that pij >
0.5 − ∆∗i . Now, repeating the same calculations as before, we can conclude that with
probability 1− δ, we have

Nδ
ij(τij) ≤

4α lnT(
∆∗ij
)2 .

A pictorial depiction of the various steps in this part of the proof can be found in Figure 8.
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a1
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ai∗ aC ai

pii∗

1
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ai
∆∗i1

∆∗i2 ∆∗i ∆∗iK

Figure 8: This figure illustrates the definition of the quantities ∆∗i and ∆∗ij in the case that arm ai is
not a Copeland winner, as well as the idea behind Case 2 in the proof of Proposition 11. The bottom
row of plots in the figure corresponds to the confidence intervals around probabilities pij (depicted
using the blue dots) for j = 1, . . . ,K, while the top row corresponds to those for probabilities p1j ,
where a1 is by assumption one of the Copeland winners (although we could use any other Copeland
winner instead).
The two boxes in the top row with red intervals represent arms to which a1 loses (i.e. p1j < 0.5), the
number of which happens to be 2 in this example, which means that LC = 2. Now, by Definition
10.3, i∗ is the index with the index j with the (LC + 1)th (in this case 3rd) lowest pij , and since the
three lowest pij in this example are piK , piC and pii∗ , this means that the column labeled as ai∗ is
indeed labeled correctly. Given this, Definition 10.4 tells us that ∆∗i is the size of the gap shown in
the block corresponding to pair (ai, ai∗).
Moreover, by Definition 10.5, the gap ∆∗ij is defined using one of the following three cases: (1) if
we have pij < pii∗ (as with the ones with red confidence intervals in the bottom row of plots), then
we get ∆∗ij := ∆ij = 0.5− pij ; (2) if we have pii∗ < pij ≤ 0.5 (as in the plots in the 2nd, 3rd and
7th column of the bottom row), then we get ∆∗ij := ∆∗i ; (3) if we have 0.5 < pij (as in the 1st and
6th column in the bottom row), then we get ∆∗ij := ∆ij + ∆∗i .
The reasoning behind this trichotomy is as follows: in the case of arms aj in group (1), they are
not going to be chosen to be played against ai as soon as top of the interval goes below 0.5, and
by Lemma 9, we know that the bottom of the interval will be below pij . In the case of the arms
in groups (2) and (3), the bottom of their interval needs to be below pii∗ because otherwise that
would mean that neither arm ai∗ nor arms in group (1) were eligible to be included in the arg max
expression in Line 13 of Algorithm 1, which can only happen if we have uij < 0.5 for j = i∗ as
well as the arms in group (1), from which we can deduce that the optimistic Copeland score of ai
must have been lower than K − 1 − LC , and so ai could not have been chosen as an optimistic
Copeland winner. Using the same argument, we can also see that the tops of the confidence intervals
corresponding to arms in group (2) must be above 0.5, or else it would be impossible for ai to be
chosen as an optimistic Copeland winner. Moreover, by Lemma 9, the intervals of the arms aj in
group (3) must contain pij .
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G Proof of Lemma 14

Let us begin with the following direct corollary of Proposition 11:

Corollary 19. Given any δ > 0, any T > C(δ) and any sub-interval of length N̂δ(T ) :=∑
i 6=j N̂

δ
ij(T ) + 1, with probability 1 − δ, there is at least one time-step when there exists c ≤ C

such that

Cpld(ac) = Cpld(ac) = Cpld(ac)

≥ Cpld(aj) ∀ j, (5)

Proof. According to Proposition 11, with probability 1 − δ, there are at most
∑
i6=j N̂

δ
ij(T ) time-

steps between C(δ) and T when Algorithm 1 did not compare a Copeland winner against itself: i.e.
c and d in Algorithm 1 did not satisfy c = d ≤ C.

In other words, during this time-period, in any sub-interval of length N̂δ(T ) :=
∑
i6=j N̂

δ
ij(T ) + 1,

there is at least one time-step when a Copeland winner was compared against itself. During this
time-step, we must have had

Cpld(ac) = Cpld(ac) = Cpld(ac)

≥ Cpld(aj) ∀ j,
where the first two equalities are due to the fact that in order for Algorithm 1 to set c = d, we must
have 0.5 /∈ [lcj , ucj ] for each j 6= c, or else ac would not be played against itself; on the other hand,
the last inequality is due to the fact that ac was chosen as an optimistic Copeland winner by Line 8 of
Algorithm 1, so its optimistic Copeland score must have been greater than or equal to the optimistic
Copeland score of the rest of the arms.

Lemma 20. If there exists an arm ai with i > C such that BiC(δ/2) contains an arm aj that loses to
ai (i.e. pij > 0.5) or such that BiC(δ/2) contains fewer than LC + 1 arms, then the probability that
by time-step T0 the sets Bit and Bt are not reset by Line 9.A of Algorithm 1 is less than δ/6, where
we define

T0 := C(δ/2) + N̂δ/2(Tδ)

+
32αK(LC + 1) lnTδ

∆2
min

+ 8K2(LC + 1)2 ln
6K2

δ
.

Proof. By Line 9.A of Algorithm 1, as soon as we have lij > 0.5, the set Bit will be emptied. In what
follows, we will show that the probability that the number of time-steps before we have lij > 0.5 is
greater than

∆T := N̂δ/2(Tδ) +N

with

N :=
32αK(LC + 1) lnTδ

∆2
min

+ 8K2(LC + 1)2 ln
6K2

δ

is bounded by δ/6K2. This is done using the amount of exploration infused by Line 10 of Algorithm
1. To begin, let us note that by Corollary 19, there is a time-step before T0 := C(δ/2) + N̂δ/2(Tδ)
when the condition of Line 9.C of Algorithm 1 is satisfied for some Copeland winner. At this point,
if Bit contains fewer than LC + 1 elements, then it will be emptied; furthermore, for all k > C, the
sets BkT0

will have at most LC + 1 elements and so the set

St := {(k, `)|a` ∈ Bkt and 0.5 ∈ [lk`, uk`]}
contains at most K(LC + 1) elements for all t ≥ T0. Moreover, if at time-step T1 := C(δ/2) + ∆T
we have aj ∈ BiT1

, then we can conclude that (i, j) ∈ St for all t ∈ [C(δ/2), T1], since, if at any
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time after C(δ/2) arm aj were to be removed from Bit, it will never be added back because that can
only happen through Line 9.B of Algorithm 1 and by Lemma 9 and the assumption of the lemma
we have uij > pij > 0.5.

What we can conclude from the observations in the last paragraph is that if at time-step T1 we still
have aj ∈ BiT1

, then there are ∆T time-steps during which the probability of comparing arms ai and
aj was at least 1

4K(LC+1) and yet no more than 4α lnTδ
∆2
ij

comparisons took place, since otherwise, we

would have lij > 0.5 at some point before T1. Now, let Bijn denote the indicator random variable
that is equal to 1 if arms ai and aj were chosen to be played against each other by Line 10 of
Algorithm 1 during time-step T1 + n. Also, let X1, . . . , XN be iid Bernoulli random variables with
mean 1

4K(LC+1) . Since Bijn and Xn are Bernoulli and we have E
[
Bijn
]
≤ E[Xn] for each n, then

we can conclude that

P

(
N∑
n=1

Bijn < s

)
≤ P

(
N∑
n=1

Xn < s

)
for all s.

On the other hand, we can use the Hoeffding bound to show that the right hand side of the above
inequality is smaller than δ/6 if we set s = 4α lnTδ

∆2
ij

:

P

(
N∑
n=1

Xn <
4α lnTδ

∆2
ij

)
≤ P

(
N∑
n=1

Xn <
4α lnTδ

∆2
min

)

= P

(
N∑
n=1

Xn <
N

4K(LC + 1)
− a
)
≤ e
−

2a2

N

with a := −4α lnTδ
∆2

min

+
N

4K(LC + 1)

= e
− 32α2 ln2 Tδ

∆4
min

N
+

4α lnTδ
K(LC+1)∆2

min

− N
8K2(LC+1)2

≤ e
4α lnTδ

K(LC+1)∆2
min

− N
8K2(LC+1)2

= e− ln 6K2/δ = δ/6K2.

Now, if we take a union bound over all pairs of arms ai and aj satisfying the condition stated at
the beginning of this scenario, we get that with probability δ/6 by time-step C(δ/2) + ∆T all such
erroneous hypotheses are reset by Line 9.A of Algorithm 1, emptying the sets Bit.

Lemma 21. Let t1 ∈ [C(δ/2), Tδ) be such that for all i, j satisfying aj ∈ Bit1 we have pij < 0.5.
Then, the following two statements hold with probability 1− 5δ/6:

1. If the set Bt1 in Algorithm 1 contains at least one Copeland winner, then if we set t2 = t1 +nmax,
where

nmax := 2K max
i>C

N̂
δ/2
i (Tδ) +

K2 ln(6K/δ)

2
,

then Bt2 is non-empty and contains no non-Copeland winners, i.e. for all ai ∈ Bt2 we have
i ≤ C.

2. If the set Bt1 in Algorithm 1 contains no Copeland winners, i.e. for all ai ∈ Bt1 , we have i > C,
then within nmax time-steps the set Bt will be emptied by Line 9.B of Algorithm 1.

Therefore, with probability 1 − 5δ/6, by time t1 + 2nmax all non-Copeland winners (i.e. arms ai
with i > C) are eliminated from Bt.

Proof. We will consider the two cases in the following, conditioning on the conclusions of Lemma
9, Proposition 11 and Corollary 19, all simultaneously holding with 1− δ/2:
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1. Bt1 contains a Copeland winner (i.e. ac ∈ Bt1 for some c ≤ C): in this case, by Lemma 9, we
know that the Copeland winner will forever remain in the set Bt because

Cpld(ac) ≥ max
j

Cpld(aj) ≥ max
j

Cpld(aj),

then Bt2 will indeed be empty. Moreover, in what follows, we will show that the probability
that any non-Copeland winner in Bt is not eliminated by time t2 is less than δ/6. Let us assume
by way of contradiction that there exists an arm ab with b > C such that ab is in Bt2 : we will
show that the probability of this happening is less than δ/6K, and so, taking a union bound over
non-Copeland winning arms, the probability that any non-Copeland winner is in Bt2 is seen to
be smaller than δ/6.

Now, to see that the probability of ab being in the set Bt2 is small, note that the fact that ab being
in Bt2 implies that ab was in the set Bt for the entirety of the time interval [C(δ/2), t2] as we will
show in the following. If ab is eliminated from Bt at some point between t1 and t2, it will not get
added back into Bt because that can only take place if the set Bt is reset at some point and there
are only two ways for that to happen:

(a) By Line 9.A of Algorithm 1 in the case that for some pair (i, j) with aj ∈ Bit we have
lij > 0.5; however, this is ruled out by our assumption that at time t1 we have pij < 0.5 and
by Lemma 9, which stipulates that we have lij ≤ pij < 0.5.

(b) By Line 9.B of Algorithm 1 in the case that all arms are eliminated from Bt, but this cannot
happen by the fact mentioned above that ac will not not be removed from Bt.

So, as mentioned above, we indeed have that at each time-step between t1 and t2, the set Bt
contains ab. Next, we will show that the probability of this happening is less than δ/6K. To do
so, let us denote by Sb the time-steps when arm ab was in the set of optimistic Copeland winners,
i.e.

Sb :=
{
t ∈ (t1, t2]

∣∣ ab ∈ Ct } .
We can use Corollary 19 above with T = Tδ to show that the size of the set Sb (which we
denote by |Sb|) is bounded from below by t2 − t1 −

∑
i6=j N̂

δ/2
ij (Tδ): this is because whenever

any Copeland winner ac is played against itself, Equation (5) holds, and so if we were to have
ab /∈ Ct during that time-step ab would have had to get eliminated from Bt because ab not being
an optimistic Copeland winner would imply that

Cpld(ab) < Cpld(ac) = Cpld(ac).

But, we know from facts (a) and (b) above that ab remains in Bt for all t ∈ (t1, t2]. Therefore, as
claimed, we have

|Sb| ≥ t2 − t1 −
∑
i 6=j

N
δ/2
ij (Tδ) ≥ 2KN̂

δ/2
b (Tδ) +

K2 ln(6K/δ)

2
=: nb, (6)

where the last inequality is due to the definition of nmax := t2−t1. On the other hand, Proposition
11 tells us that the number of time-steps between t1 and t2 when ab could have been chosen as
an optimistic Copeland winner is bounded as

N
δ/2
b (Tδ) ≤ N̂δ/2

b (Tδ). (7)

Furthermore, given the fact that during each time-step t ∈ Sb we have ab ∈ Bt∩Ct, the probability
of ab being chosen as an optimistic Copeland winner is at least 1/K because of the sampling
procedure in Lines 14-17 of Algorithm 1. However, this is considerably higher than the ratio
obtained by dividing the right-hand sides of Inequality (7) by that of Inequality (6). We will
make this more precise in the following: for each t ∈ Sb, denote by µbt the probability that
arm ab would be chosen as the optimistic Copeland winner by Algorithm 1, and let Xb

t be the
Bernoulli random variable that returns 1 when arm ab is chosen as the optimistic Copeland winner
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or 0 otherwise. As pointed out above, we have that µbt ≥ 1
K for all t ∈ Sb, which, together with

the fact that |Sb| ≥ nb, implies that the random variable Xb :=
∑
t∈Sb X

b
t satisfies

P (Xb < x) ≤ P (Binom(nb, 1/K) < x). (8)
This is both because the Bernoulli summands of Xb have higher means than the Bernoulli sum-
mands ofBinom(nb, 1/K) and becauseXb is the sum of a larger number of Bernoulli variables,
soXb has more mass away from 0 than doesBinom(nb, 1/K). So, we can bound the right-hand
side of Inequality (8) by δ/6K with x = N̂

δ/2
b (Tδ) to get our desired result. But, this is a simple

consequence of the Hoeffding bound, a more general form of which is quoted in Section D. More
precisely, we have

P
(
Binom(nb, 1/K) < N̂

δ/2
b (Tδ)

)
= P

(
Binom(nb, 1/K) <

nb
K
− a
)

with a :=
nb
K
− N̂δ/2

b (Tδ)

< e−2a2/nb = e

−2(nbK −N̂
δ/2
b

(Tδ))
2

nb

= e−2nb/K
2+4N̂

δ/2
b (Tδ)/K−2N̂

δ/2
b (Tδ)

2/nb

≤ e−2nb/K
2+4N̂

δ/2
b (Tδ)/K = e− ln(6K/δ) = δ/6K

Using the union bound over the non-Copeland winning arms that were in Bt1 , of whom there is
at most K − 1, we can conclude that with probability δ/6 they are all eliminated from Bt2 .

2. Bt1 does not contain any Copeland winners: in this case, we can use the exact same argument
as above to conclude that the probability that the set Bt is non-empty for all t ∈ (t1, t2] is less
than δ/6 because as before the probability that each arm ab ∈ Bt1 is not eliminated within nb
time-steps is smaller than δ/6K.

Let us now state the following consequence of the previous lemmas:

Lemma 14. Given δ > 0, the following fact holds with probability 1 − δ: for each i > C, the set
BiTδ contains exactly LC + 1 elements with each element aj satisfying pij < 0.5. Moreover, for all
t ∈ [Tδ, T ], we have Bit = BiTδ .

Proof. In the remainder of the proof, we will condition on the high probability event that the conclu-
sions of Lemma 9, Corollary 19, Lemma 20 and Lemma 21 all hold simultaneously with probability
1− δ.

Combining Lemma 21, we can conclude that by time-step T1 := T0 + 2nmax all non-Copeland
winners are removed from BT1 , which also means by Line 9.B of Algorithm 1 that the corresponding
sets BiT1

, with i > C are non-empty, and Lemma 20 tells us that these sets have at least LC + 1
elements aj each of which beats ai (i.e. pij < 0.5).

Now, applying Corollary 19, we know that within N̂δ/2(Tδ) time-steps, Line 9.C of Algorithm 1
will be executed, at which point we will have LC = LC and so Bit will be reduced to LC + 1
elements. Moreover, by Lemma 9, for all t > T1 and aj ∈ Bit we have lij ≤ pij < 0.5 and so Bit
will not be emptied by any of the provisions in Line 9 of Algorithm 1.

Now, since by definition we have T δ ≥ T1 + N̂δ/2(Tδ), we have the desired result.
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H Proof of Lemma 15

Lemma 15 Given a Copeland bandit problem satisfying Assumption A and any δ > 0, with proba-
bility 1− δ the following statement holds: the number of time-steps between Tδ/2 and T when each
non-Copeland winning arm ai can be chosen as optimistic Copeland winners (i.e. time-steps when
arm ac in Algorithm 1 satisfies c = i > C) is bounded by

N̂ i := 2N̂ i
B + 2

√
N̂ i
B ln

2K

δ
,

where
N̂ i
B :=

∑
j∈BiTδ/2

N̂
δ/4
ij (T ).

Proof. The idea of the argument is outlined in the following sequence of facts:

1. By Lemma 14, we know that with probability 1− δ/2, for each i > C and all times t > Tδ/2 the
sets Bit will consist of exactly LC + 1 arms that beat the arm ai, and that Bit = BiTδ/2

.
2. Moreover, if at time t > Tδ/2 > C(δ/4), Algorithm 1 chooses a non-Copeland winner as an

optimistic Copeland winner (i.e. i > C), then with probability 1− δ/4 we know that

Cpld(ai) ≥ Cpld(a1) ≥ Cpld(a1) = K − 1− LC .
3. This means that there could be at most LC arms aj that optimistically lose to ai (i.e. uij < 0.5)

and so at least one arm ab ∈ Bit does satisfy uib ≥ 0.5
4. This, in turn, means that in Line 13 of Algorithm 1 with probability 0.5 the arm ad will be chosen

from Bit.
5. By Proposition 11, we know that with probability 1− δ/4, in the time interval [Tδ/2, T ] each arm
aj ∈ BiTδ/2

can be compared against ai at most N̂δ/4
ij (T ) many times.

Given that by Fact 3 above we need at least one arm aj ∈ Bit to satisfy uij ≥ 0.5 for Algorithm
1 to set (c, d) = (i, j), and that by Fact 4 arms from Bit have a higher probability of being chosen
to be compared against ai, this means that arm ai will be chosen as optimistic Copeland winner
roughly twice as many times we had (c, d) = (i, j) for some j ∈ BiTδ/2

. A high probability version
of the claim in the last sentence together with Fact 5 would give us the bound on regret claimed by
the theorem. In the remainder of this proof, we will show that indeed the number of times we have
c = i is unlikely to be too many times higher than twice the number of times we get (c, d) = (i, j),
where j ∈ BiTδ/2

. To do so, we will introduce the following notation:

N i: the number of time-steps between Tδ/2 and T when arm ai was chosen as optimistic Copeland
winner.

Bin: the indicator random variable that is equal to 1 if Line 13 in Algorithm 1 decided to choose
arm ad only from the set Bitn and zero otherwise, where tn is the nth time-step after Tδ/2
when arm ai was chosen as optimistic Copeland winner. Note thatBi is simply a Bernoulli
random variable mean 0.5.

N i
B: the number of time-steps between Tδ and T when arm ai was chosen as optimistic Copeland

winner and that Line 13 in Algorithm 1 chose to pick an arm from BiTδ/2
to be played

against ai. Note that this definition implies that we have

N i
B =

Ni∑
n=1

Bin. (9)

Moreover, by Fact 5 above, we know that with probability 1− δ/4 we have

N i
B ≤ N̂ i

B :=
∑

j∈BiTδ/2

N̂
δ/4
ij (T ). (10)
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Now, we will use the above high probability bound on N i
B to put the following high probability

bound on N i: with probability 1− δ/2 we have

N i ≤ N̂ i := 2N̂ i
B + 2

√
N̂ i
B ln

2K

δ
.

To do so, let us assume that the we have N i > N̂ i and consider the first N̂ i time-steps after Tδ/2
when arm ai was chosen as optimistic Copeland winner and note that by Equation (9) we have

N̂i∑
n=1

Bin ≤ N i
B

and so by Inequality (10) with probability 1−δ/4 the left-hand side of the last inequality is bounded
by N̂ i

B: let us denote this event with E . On the other hand, if we apply the Hoeffding bound (cf.
Appendix D) to the variables Bi1, . . . , B

i
N̂i

, we get

P
(
E ∧ N i > N̂ i

)
≤ P

 N̂i∑
n=1

Bin < N̂ i
B


= P

 N̂i∑
n=1

Bin < N̂ i/2−
√
N̂ i
B ln

2K

δ



≤ e
−

A2N̂
i
B
(
ln 2K

δ

)2
A2N̂

i
B + A2

√
N̂ i
B ln 2K

δ (11)

To simplify the last expression in the last chain of inequalities, let us use the notation α := N̂ i
B and

β := ln 2K
δ . Given this notation, we claim that the following inequality holds if we have α ≥ 4 and

β ≥ 2 (which hold by the assumptions of the theorem):

αβ2

α+
√
αβ
≥ β. (12)

To see this, let us multiply both sides by the denominator of the left-hand side of the above inequality:

αβ2 ≥ αβ +
√
αβ. (13)

To see why Inequality (13) holds, let us note that the restrictions imposed on α and β imply the
following pair of inequalities, whose sum is equivalent to Inequality (13):

αβ2 ≥ 2αβ
+ αβ2 ≥ 2

√
αβ2

= 2αβ2 ≥ 2αβ + 2
√
αβ2

Now that we know that Inequality (12) holds, we can combine it with Inequality (11) to get

P
(
E ∧ N i > N̂ i

)
≤ e
− ln

2K

δ =
δ

2K
.

Taking a union over the non-Copeland winning arms, we get

P (E ∧ ∀ i > C, N i > N̂ i) > 1− δ/2.

So, given the fact that we have P (E) < δ/4, we know that with probability 1−δ each non-Copeland
winner is selected as optimistic Copeland winner between Tδ/2 and T no more than N̂ i times.
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I A Scalable Solution to the Copeland Bandit Problem

In this section, we prove Lemma 6, providing an analysis to the PAC solver of the Copeland winner
identification algorithm.

To simplify the proof, we begin by solving a slightly easier variant of Lemma 6 where the queries
are deterministic. Specifically, rather than having a query to the pair (ai, aj) be an outcome of a
Bernoulli r.v. with an expected value of pij , we assume that such a query simply yields the answer
to whether pij > 0.5. Clearly, a solution can be obtained using K(K − 1)/2 many queries but we
aim for a solution with query complexity linear in K. In this section we prove the following.

Lemma 22. Given K arms and a parameter ε, Algorithm 2 finds a (1 + ε)-approximate best arm
with probability at least 1− δ, by using at most

log(K/δ) · O
(
K log(K) + min

{
K

ε2
,K2(1− cpld(a1))

})
many queries. In particular, when there is a Condorcet winner (cpld(a1) = 1) or more generally
cpld(a1) = 1−O(1/K), an exact solution can be found with probability at least 1− δ by using at
most

O (K log(K) log(K/δ))

many queries.

The idea behind our algorithm is as follows. We provide an unbiased estimator of the normalized
Copeland score of arm ai by picking an arm aj uniformly at random and querying the pair (ai, aj).
This method allows us to apply proof techniques for the classic MAB problem. These techniques
provide a bound on the number of queries dependent on the gaps between the different Copeland
scores. Our result is obtained by noticing that there cannot be too many arms with a large Copeland
score; the formal statement is given later in Lemma 7. If the Copeland winner has a large Copeland
score, i.e., LC is small, then only a small number of arms can be close to optimal. Hence, the main
argument of the proof is that the majority of arms can be eliminated quickly and only a handful of
arms must be queried many times.

As stated above, our algorithm uses as a black box Algorithm 4, an approximate-best-arm identifi-
cation algorithm for the classical MAB setup. Recall that here, each arm ai has an associated reward
µi and the objective is to identify an arm with the (approximately) largest reward. Without loss of
geenrality, we assume that µ1 is the maximal reward. The following lemma provides an analysis of
Algorithm 4 that is tight for the case where µ1 is close to 1. In this case, it is exactly the set of near
optimal arms that will be queried many times hence it is important to take into consideration that the
random variables associated with near optimal arms have a variance of roughly 1 − µi, which can
be quite small. This translates to savings in the number of queries to arm ai by a factor of 1 − µi
compared to an algorithm that does not take the variances into account.

Lemma 23. Algorithm 4 requires as input an error parameter ε, failure probability δ and an oracle
to k Bernoulli distributions. It outputs, with probability at least 1 − δ, a (1 + ε)-approximate best
arm, that is an arm ai with corresponding expected reward of µ ≥ 1− (1−µ1)(1+ε) with µ1 being
the maximum expected value among arms. The expected number of queries made by the algorithm
is upper bounded by

O
(∑

i

(1− µi) log(K/(δ∆iε))

(∆ε
i)

2

)
,

with ∆ε
i = max {µ1 − µi, ε(1− µ1)}. Moreover, with probability at least 1−δ, the number of times

arm i will be queried is at most

O
(

(1− µi) log(K/(δ∆iε))

(∆ε
i)

2

)
.

We prove Lemma 23 in Appendix J.

For convenience, we denote by µi the normalized Copeland score of arm ai and µ1 the maximal
normalized Copeland score. To get an informative translation of the above expression to our setting,
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let A be the set of arms with normalized Copeland score in (1− 2(1− µ1), µ1] and let Ā be the set
of the other arms. In our setting, this query complexity of Algorithm 4 is upper bounded by

O

2|A| log(K/δ)

(1− µ1)ε2
+
∑
i∈Ā

log(K/δ)(1− µi)
(µ1 − µi)2

 , (14)

assuming7 δ < (1− µ1)ε.

It remains to provide an upper bound for the above expression given the structure of the normalized
Copeland scores. In particular, we use the results of Lemma 7, repeated here for convenience.

Lemma 7. Let D ⊂ [K] be the set of arms for which cpld(ai) ≥ 1 − d/(K − 1), that is arms that
are beaten by at most d arms. Then |D| ≤ 2d+ 1.

We bound the left summand in (14):

2|A| log(K/δ)

(1− µ1)ε2
≤ (4(1− µ1)(K − 1) + 2) log(K/δ)

(1− µ1)ε2
= O

(
log(K/δ)K

ε2

)
. (15)

We now bound the right summand in (14). Let i ∈ Ā. According to the definition of Ā it holds that
(1− µi) ≤ 2(µ1 − µi). Hence:∑

i∈Ā

log(K/δ)(1− µi)
(µ1 − µi)2

≤
∑
i∈Ā

4 log(K/δ)

1− µi
.

Lemma 24. We have
∑

i: µi<1

1

1− µi
= O(K log(K)).

Proof. Let Aτ be the set of arms for which 2τ ≤ 1− µi < 2τ+1. According to Lemma 7, we have
that |Aτ | ≤ 2τ+2(K − 1) + 1. Other than that, since 1 ≥ 1 − µi ≥ 1/(K − 1) for all i > C we
have that Aτ = ∅ for any τ ≤ − log2(K − 1)− 1 and τ > 0. It follows that:

∑
i>C

1

1− µi
≤
dlog2(K−1)e∑

`=0

|A`−log2(K−1)|
2`−log2(K−1)

≤
dlog2(K−1)e∑

`=0

22+` + 1

2`−log2(K−1)

≤ (dlog2(K − 1)e+ 1) · 5(K − 1).

From (14), (15) and Lemma 24, we conclude that the total number of queries is bounded by

O
(

log(K/δ)

(
K log(K) +

K

ε2

))
.

In order to prove Lemma 22, it remains to analyze the case where ε is extremely small. Specifically,
when ε2(1−µ1) takes a value smaller than 1/K then the algorithm becomes inefficient in the sense
that it queries the same pair more than once. This can be avoided by taking the samples of j when
querying the score of arm ai to be uniformly random without replacement. The same arguments hold
but are more complex as now the arm pulls are not i.i.d. Nevertheless, the required concentration
bounds still hold. The resulting argument is that the number of queries is Õ

(
log(1/δ)

(
K + K

ε̄2

))
with ε̄ = max{ε, 1/

(√
K(1− µ1)

)
}. Lemma 22 immediately follows.

We are now ready to analyze the stochastic setting.

Proof of Lemma 6. By querying arm ai we choose a random arm j 6= i and in fact query the pair
(ai, aj) sufficiently many times in order to determine whether pij > 0.5 with probability at least
1−δ/K2. Standard concentration bounds show that achieving this requires querying the pair (ai, aj)

7The value of δ we require is 1/T . If the assumption does not follow in that case, the regret must be linear
and all of the statements hold trivially.
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at most O
(
log(K/(∆ijδ))∆

−2
ij

)
many times. It follows that a single query to arm ai in the deter-

ministic case translates into an expected number of

O
(

log(KHi/δ))
Hi

K − 1

)
= O

(
log(KH∞/δ)H∞

K

)
many queries in the stochastic setting. The claim now follows from the bound on the expected
number of queries given in Lemma 22.

J KL-based approximate best arm identification algorithm

Algorithm 4 solves an approximate best arm identification problem using confidence bounds based
on Chernoff’s inequality stated w.r.t the KL-divergence of two random variables. Recall that for
two Bernoulli random variables with parameters p, q the KL-divergence from q to p is defined as
d(p, q) = (1−p) ln((1−p)/(1−q))+p ln(p/q) with 0 ln(0) = 0. The building block of Algorithm 4
is the well known Chernoff bound stating that for a Bernoulli random variable with expected value
q, the probability of the average of n i.i.d samples from it to be smaller (larger) than p, for p < q
(p > q), is bounded by exp(−nd(p, q)).

Algorithm 4 KL-best arm identification
Input: Access to oracle giving a noisy approximation of the reward of arm i for K arms, success

probability δ > 0, approximation parameter ε > 0
1: for all i ∈ [K] do
2: T = 1
3: Si ← reward(i)
4: Ii ← [0, 1]
5: end for
6: B ← [K]
7: t← 2
8: while 1−maxi∈B min Ii

1−maxi∈B max Ii
> (1 + ε) do

9: For all i ∈ B, Si ← Si + reward(i)
10: For all i ∈ B, let Ii = {q ∈ [0, 1], t · d(Sit , q) ≤ ln(4tK/δ) + 2 ln ln(t)}
11: For all i ∈ B for which there exist some j ∈ B with max{q ∈ Ii} < min{q ∈ Ij}, remove i

from B.
12: t← t+ 1
13: end while
Return: arg maxi∈B min Ii.

Proof of Lemma 23. We use an immediate application of the Chernoff-Hoeffding bound

Lemma 25. Fix i ∈ [K]. Let Eit denote the event that at iteration t, µi /∈ Ii. We have that
Pr[Eit ] ≤ 2 δ

4tK · 1
log(t)2 ≤ δ

2t log(t)2K .

Let E denote the union, over all t, i of events Eit . That is, E denotes the event in which there exist
some iteration t, and for some arm ai such that µi /∈ Ii. By the above lemma we get that

Pr[E] ≤
∑
t

∑
i

Pr[Eit ] ≤ K
∞∑
t=2

δ

2t log(t)2K
≤ δ

It follows that given that event E did not happen, the algorithm will never eliminate the top arm and
furthermore, will output an (1 + ε)-approximate best arm. We proceed to analyze the total number
of pulls per arm, while having a separate analysis for (1 + ε)-approximate best arms and the other
arms. We begin by stating an auxiliary lemma giving explicit bounds for the confidence regions.

Lemma 26. Assume that event E did not occur and let ρ ≥ 0. For a sufficiently large uni-
versal constant c we have for any t ≥ c log(tK/δ)(1−µi)

ρ2 that max Ii < µi + ρ. Also, for

t ≥ c log(tK/δ)(1−µi+ρ/2)
ρ2 it holds that min Ii > µ− ρ.
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Proof. We consider the Taylor series associated with f(x) = d(p+ x, p). Since f(0) = f ′(0) = 0
it holds that for any x ≤ 1− p there exists some |x′| ≤ |x| with

f(x) = x2f ′′(x′) =
x2

(p+ x′)(1− p− x′) ≤
2x2

1− p

To prove that max Ii < µi+ρ we apply the above observation for ρ ≤ 1−µi (otherwise µi+ρ > 1
and the claim is trivial) and reach the conclusion that for sufficiently large universal constant c it
holds that

t · d(µi + ρ/2, µi) > log(tK/δ) + 2 log log(tK/δ)

t · d(µi + ρ/2, µi + ρ) > log(tK/δ) + 2 log log(tK/δ)

The first inequality dictates that Si/t ≤ µi+ρ/2. The second inequality dictates that t ·d(Si/t, µi+
ρ) ≥ d(µi + ρ/2, µi + ρ) is too large in order for µi + ρ to be an element of Ii.

The bound for min Ii is analogous. Since now we have t ≥ c log(tK/δ)(1−µi+ρ/2)
ρ2 , it holds that

t · d(µi − ρ/2, µi) > log(tK/δ) + 2 log log(tK/δ)

t · d(µi − ρ/2, µi − ρ) > log(tK/δ) + 2 log log(tK/δ)

This means that first, Si/t ≥ µi − ρ/2 and second, that t · d(Si/t, µi − ρ) ≥ d(µi − ρ/2, µi − ρ) is
too large in order for µi − ρ to be an element of Ii.

Lemma 27. Let i be a suboptimal arm, meaning one where µi ≤ 1 − (1 − µ1)(1 + ε). Denote by

∆i its gap µ1−µi. If event E does not occur then i is queried at most O
(

log
(
K
δ∆i

)
vi

(∆i)2

)
many times,

where vi = 1− µi

Proof. We first notice that as we are assuming that event E did not happen, it must be the case that
arm 1 is never eliminated from B. Consider an iteration t such that

t ≥ c log(tK/δ)vi
(∆i)2

(16)

for a sufficiently large c, then according to Lemma 26 it holds that max Ii < µi + ∆i/2. Now, since
vi = 1−µi ≥ 1−µ1+∆i/2 we have that for the same t it must be the case that min I1 > µ1−∆i/2.
It follows that min I1 > max Ii and arm ai is eliminated at round t.

Lemma 28. Assume ε ≤ 1. If event E does not occur then for some sufficiently large universal
constant c it holds that when t ≥ c log(tK/δ)

(1−µ1)ε2 the algorithm terminates.

Proof. Let i be an arbitrary arm. Since

t ≥ c log(tK/δ)

(1− µ1)ε2
=
c log(tK/δ)(1− µi)
(1− µ1)(1− µi)ε2

we get, according to Lemma 26 that

max Ii ≤ µi +
ε

3

√
(1− µi)(1− µ1)

In order to bound
√

(1− µi)(1− µ1) we consider the function f(x) =
√
v(v + x). Notice that

f(0) = v and f ′(x) = v

2
√
v(v+x)

≤ 1
2 for x ≥ 0. It follows that for positive x,

√
v(v + x) ≤

v + x/2, meaning that

max Ii ≤ µi +
ε ((1− µi) + ∆i/2)

3
≤ µ1 +

ε(1− µ1)

3

Now, since ε ≤ 1 we have

t ≥ c log(tK/δ)(1− µ1)

(1− µ1)2ε2
≥ (c/2) log(tK/δ)(1− µ1 + ε(1− µ1))

(1− µ1)2ε2
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hence for sufficiently large c we can apply Lemma 26 and obtain

min I1 ≥ µ1 −
ε(1− µ1)

3

It follows that assuming ε ≤ 1,

min I1 ≥ 1−
(

1−max
i
Ii

)
(1 + ε)

meaning that the algorithm will terminate at iteration t.

This concludes the proof of Lemma 23
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Table 2: List of notation used in this paper
Symbol Definition

K Number of arms

[K] The set {1, . . . ,K}
a1, . . . , aK Set of arms

pij Probability of arm ai beating arm aj

Cpld(ai) Copeland score: number of arms that ai beats, i.e. |{j | pij > 0.5}|

cpld(ai) Normalized Copeland score:
Cpld(ai)

K − 1
C Number of Copeland winners, i.e. arms ai with Cpld(ai) ≥ Cpld(aj) for all j

a1, . . . , aC Copeland winner arms

α UCB parameter of Algorithm 1

δ Probability of failure

C(δ)

(
(4α− 1)K2

(2α− 1)δ

) 1
2α−1

Ni(t) Number of times arm ai was chosen as the optimistic Copeland winner until time t

Nδ
i (t) Number of times arm ai was chosen as the optimistic Copeland winner in the interval (C(δ), t]

Nij(t) Total number of time-steps before twhen ai was compared against aj (notice that this definition
is symmetric with respect to i and j)

Nδ
ij(t) Number of time-steps between timesC(δ) and twhen ai was chosen as the optimistic Copeland

winner and aj as the challenger (note that, unlike Nij(t), this definition is not symmetric with
respect to i and j)

τij The last time-step when ai was chosen as the optimistic Copeland winner and aj as the chal-
lenger (note that τij ≥ C(δ) iff Nδ

ij(t) > 0)

wij(t) Number of wins of ai over aj until time t

uij(t)
wij(t)

Nij(t)
+

√
α ln t

Nij(t)

lij(t) 1− uji(t)

Cpld(ai) #
{
k |uik ≥ 1

2
, k 6= i

}
Cpld(ai) #

{
k | lik ≥ 1

2
, k 6= i

}
Ct {i |Cpld(ai) = maxj Cpld(aj)}
Li the set of arms to which ai loses, i.e. aj such that pij < 0.5

LC The largest number of losses that any Copeland winner has, i.e. maxCi=1 |{j | pij < 0.5}|

LC Algorithm 1’s estimate of LC

Bt The potentially best arms at time t, i.e. the set of arms that according to Algorithm 1 have some
chance of being Copeland winners

Bit The arms that at time t have the best chance of beating arm ai (Cf. Line 12 in Algorithm 1)

∆ij |pij − 0.5|
∆min min{∆ij |∆ij 6= 0}

i∗ the index of the (LC + 1)th largest element in the set {∆ij | pij < 0.5} in the case that i > C

∆∗i

{
∆ii∗ if i > C

0 otherwise
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Table 3: List of notation used in this paper (Cont’d)
Symbol Definition

∆∗ij

{
∆∗i + ∆ij if pij ≥ 0.5

max{∆∗i ,∆ij} otherwise

(See Figures 8 and 7 for a pictorial explanation.)

∆∗min min
i>C

∆∗i

N̂δ
ij(T )


4α lnT

(∆∗ij)
2 if i 6= j

0 if i = j and i > C

N̂δ
i (T )

K∑
j=1

N̂δ
ij(T )

N̂δ(T )
∑
i 6=j

N̂δ
ij(T ) + 1

Tδ ≥ C( δ
2
) + 8K2(LC + 1)2 ln 6K2

δ
+K2 ln 6K

δ

+ 32αK(LC+1)

∆2
min

lnTδ + N̂δ/2(Tδ)

+4K maxi>C N̂
δ/2
i (Tδ)

Tδ is the smallest integer satisfying the above inequality (Cf. Definition 12).

T0 C(δ/2) + N̂δ/2(Tδ)

+ 32αK(LC+1) lnTδ
∆2

min

+8K2(LC + 1)2 ln 6K2

δ

nb 2KN̂
δ/2
b (T̂δ) + K2 ln(4K/δ)

2

Binom(n, p) A “binomial” random variable obtained from the sum of n independent Bernoulli random
variables, each of which produces 1 with probability p and 0 otherwise.

∆i max
{

cpld(a1)− cpld(ai),
1

K−1

}
Hi

∑
j 6=i

1

∆2
ij

H∞ maxiHi

∆ε
i max {∆i, ε(1− cpld(a1))}
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