
Supplemental Material for “An Active Learning
Framework using Sparse-Graph Codes for Sparse

Polynomials and Graph Sketching”

Xiao Li
UC Berkeley

xiaoli@berkeley.edu

Kannan Ramchandran
UC Berkeley

kannanr@berkeley.edu

1 Proof of Theorem 1

It has been shown in Lemma 1 that the oracle-based peeling decoder succeeds with probability at
least 1 − O(1/s), therefore we only have to prove that the failure probability of the bin detection
routine is upper bounded by O(1/s). Let E0 be the event where the detector makes a mistake in any
of the O(s) peeling iteration, then as long as Pr (E0) = O

(
1
s

)
, we have

PF = Pr
(
supp (α̂) 6= supp (α)

∣∣Ec0)Pr (Ec0) + Pr
(
supp (α̂) 6= supp (α)

∣∣E0

)
Pr (E0)

≤ Pr
(
supp (α̂) 6= supp (α)

∣∣Ec0)+ Pr (E0) = O (1/s) .

Since the first term in the last inequality is obtained from Lemma 1 for the peeling decoder with an
oracle, it remains to show that Pr (E0) = O

(
1
s

)
holds, which is shown in details in Appendix C and

Appendix D in [1].

Since we have O(n) coded offsets for the single-ton detection, and another O(n) random offsets for
the zero-ton/multi-ton detection, we have a total of O(n) offsets. As a result, this leads to a sample
cost of Cηs × O(n) = O(sn), which is the same as the noiseless case [6]. In terms of complexity,
the runtime for each bin detection is O(n), contributing to a total of O(sn) complexity across all
O(s) bins. However, this complexity is dominated by the query constructor for generating O(n)
sets of B-point WHT, each imposing a complexity of O(s log s). This gives a total complexity of
O(ns log s), same as the noiseless case [6].

2 Proof of Lemma 1

Here we first provide a sketch of the proof and provide the details in Appendix B in [1]. The key
is to analyze the decoding process through peeling off all the edges in the bipartite graph ensemble
G(s, η, C, {Mc}c∈[C]). Our analysis is similar to the arguments in [2, 5] using the so-called density
evolution analysis from modern coding theory, which tracks the average density1 of the remaining
edges in the graph at each peeling iteration of the algorithm. Although the proof techniques are
similar to those from [2] and [5], the graph used in our peeling decoder is different from those in
[2,5]. This leads to fairly important differences in the analysis, such as the degree distributions of the
graphs and the expansion properties of the graphs. Since the analysis is quite space demanding and
technically driven, we provide a brief outline of the proof elements highlighting the main technical
components here.

• Density evolution: We analyze the performance of our peeling decoder over a typical
graph (i.e., cycle-free) of the ensemble G(s, η, C, {Mc}c∈[C]) for a fixed number of peeling

1The density here refers to fraction of the remaining edges, or namely, the number of remaining edges
divided by the total number of edges in the graph.

1

iterations i. We assume that a local neighborhood of every edge in the graph is cycle-
free (tree-like) and derive a recursive equation that represents the average density pi of
remaining edges2 in the graph at iteration i.

pi =
(
1− e−

1
η pi−1

)C−1
, i = 1, 2, 3, · · · (1)

Clearly, the probability pi can be made arbitrarily small for a sufficiently large but finite
i > 0 as long as C and η are chosen properly. One can find the minimum value η for a
given C to guarantee pi < pi−1, which is shown in Table I in Lemma 1. This suggests
that in a finite number of iterations i, the remaining edges in the graph is sCpi on average,
which can be made arbitrarily small for a sufficiently large i.
• Convergence to density evolution: Using a Doob martingale argument as in [5] and [3],

we show that the local neighborhood of most edges of a randomly chosen graph from the
ensemble G(s, η, C, {Mc}c∈[C]) is cycle-free with high probability. This proves that with
high probability, our peeling decoder removes all but an arbitrarily small fraction of the left
nodes spi (i.e., C edges associated with each left node are removed at the same time after
being decoded) in i iterations.

• Graph expansion property: We show that if the sub-graph consisting of the remaining
edges is an “expander”, and if our peeling decoder successfully removes all but a suffi-
ciently small fraction of the left nodes from the graph, then it removes all the remaining
edges of the graph successfully. As long as the number of groups satisfies C ≥ 3, we show
that our graph ensemble is an expander with high probability. This completes the decoding
of all the non-zero coefficients.

Since the graph expansion property in the analysis suggests C ≥ 3, the minimum redundancy
parameter in the query generator is at least η ≥ 0.4073 for C = 3 according to Table I in Lemma
1. Finally, the failure probability of the oracle-based peeling decoder is bounded by the sum of the
probability of not achieving the density evolution result, and the probability of the remaining graph
not being an expander even when the density evolution result is met. Both of these events occur with
probability O(1/s), which approaches zero asymptotically in s. Last but not least, since there are a
total of O(s) edges in the graph, and there is at least one edge being peeled off in each iteration with
high probability, the result in Lemma 1 follows.

3 GraphSketch Bin Detection Scheme

The observation vector is denoted by U = [· · · , Up, · · ·]T and the offset matrix is D ∈ FP×n2 . In
the absence of noise, we specifically impose a reference offset d0 = 0 such that the type of the
observation vector can be easily determined as

type =

zero-ton, if |Up| = 0,∀p = 0, 1, · · · , P
single-ton, if |Up/U0| = 1

multi-ton, if |Up/U0| 6= 1

. (2)

This procedure guarantees that the single-tons are identified from zero-tons and multi-tons with
probability one as long as the coefficients α[k] take generic values from some continuous distribution
PA indicated by the polynomial ensemble F(s, n,A).
After ruling out zero-tons and multi-tons, we focus on the single-ton detection in the GraphSketch
bin detection scheme. To do so, we use the sign3 of each Up = α[k](−1)〈dp,k〉 for p = 0, · · · , P
to find k, because the sign is a linear measurement of the unknown index sgn [Up] = 〈dp,k〉 ⊕
sgn [α[k]] over F2. Since the oracle-based decoder succeeds with probability at least 1−O(1/s), it
suffices to show that the error probability of the single-ton detection is upper bounded by O(1/s).

3.1 Design of Subsampling Offsets for GraphSketch

Recall from Proposition 3 that the sign vector of the observations of a single-ton is
sgn [U] = c = Dk (3)

2pi is the fraction of edges remaining in the graph over sC edges in the i-th iteration.
3Note that the sign function here is defined as sgn [x] = 1 if x < 0 and sgn [x] = 0 if x > 0.

2

over F2. Without loss of generality, we assume that the sign sgn [α[k]] is 0 since it can be obtained
by simply introducing a reference offset d0 = 0 as mentioned in Section 2.2.2. Therefore, if the
offset matrix is chosen as D = In×n, the index can be directly read out as c = k, as shown in [6].

In graph sketching, each index k has a sparsity d. Therefore, we can leverage the sparsity of k and
use much fewer offsets P � n in the spirit of compressed sensing.

To facilitate the description of our subsampling offset design for graph sketching, we introduce the
the row-tensor product �:

[
a b c d
e f g h

]
�

[
0 0 1 1
0 1 0 1

]
=

0 0 c d
0 b 0 d
0 0 g h
0 f 0 h

 . (4)

Definition 1. Let P = P1P2 with P1 = λ1d and P2 = 2 log2 n + λ2 log s for some λ1, λ2 > 0.
Given a coding matrix H ∈ FP1×n

2 and an index identification matrix S ∈ FP2×n
2 , the offset matrix

is chosen as D = H�S, where the coding matrix H and index identification matrix S are specified
below:

• Let H be the λ1d × n adjacency matrix of an expander graph with n left nodes and λ1d
right nodes for some universal constant λ1 > 0, where any subset of v left nodes (for any
v ≤ d) are connected to at least v/2 nodes;

• The index identification matrix

S :=

[
B
R

]
(5)

is a concatenated matrix where R = [r0, · · · , rn−1] is a λ2 log s × n i.i.d. random
Bernoulli(1/2) matrix and B = [b0, · · · ,bn−1] is the 2 log2 n × n augmented binary ex-
pansion matrix of 0 through n − 1. For instance, when n = 4, B consists of a binary
expansion matrix of 0 to 3 and its binary complement:

B =

0 0 1 1
0 1 0 1
1 1 0 0
1 0 1 0

 . (6)

3.2 Algorithm for Single-ton Detection for GraphSketch

With this offset design based on the row-tensor product, the associated sign vector c can be divided
into multiple bins c = [· · · , cTi , · · ·]T for i = 1, · · · , λ1d, where each bin ci is

ci = S diag [hi]k, j = 1, · · · , λ1d

where hi is the i-th row of H. The relationship between the bins {ci}λ1d
j=1 and the non-zero bits in k

is similarly captured by the bipartite graph given by H.

Therefore, the non-zero bit in the n-tuple k can be decoded in a similar peeling fashion. This sub-
routine is explained as follows. Given S = [B;R], we separate ci into two parts as

ci,1 = B diag [hi]k (7)
ci,2 = R diag [hi]k. (8)

We decode the unknown index k = [k[1], · · · , k[n]] bit-by-bit using the following iterative sub-
routine for each ci over i = 1, · · · , λ1d. At each iteration of this sub-routine, we perform

• zero-ton test: ci is a zero-ton if ‖ci‖2 = 0;

• single-ton search: assuming that ci is a single-ton (i.e. contributed by only one non-zero
bit in k), then the estimate q̂ of the location of the non-zero bit is obtained by reading out
ci,1 as the binary expansion of the column in B;

3

• single-ton test: if ci,2 matches with the pattern ci,2 = rq̂ of the q̂-th column of R, then ci
is indeed a single-ton and the non-zero bit is confirmed as k̂[q̂] = 1;

• iterative peeling: this single-ton contribution can be peeled off from other bins ci:

ci,1 ← ci,1 ⊕ bq̂, ci,2 ← ci,2 ⊕ rq̂, (9)

where bq̂ is the binary expansion of q̂ and rq̂ is the q̂-th column of R.

Since H is an expander such that any subset of v left nodes (for any v ≤ d) are connected to at least
v/2 nodes, the peeling is guaranteed to recover all unknown left nodes (i.e. all the non-zero bits in k).
The construction of the expander graph H can be obtained offline with high probability [4] and used
for all instances of graph sketching. Therefore, the probability of error of this procedure is upper
bounded by the probability of confusing a multi-ton with a single-ton, which decays exponentially
with respect to O(log s) given by the tail bounds of O(log s) random i.i.d. entries in each column
of R. Finally, this leads to a probability of error at most O(1/s).

Therefore, if the graph ensemble G(s, η, C, {Mc}c∈[C]) guarantees oracle-based peeling, then the
GraphSketch bin detection scheme leads to an overall sketching algorithm that uses only C× ηs×
P = O(ds(log n+ log s)) queries and runs in time O(P × s log s) = O(ds log s(log n+ log s)).

References

[1] X. Li, J. K. Bradley, S. Pawar, and K. Ramchandran. Spright: A fast and robust framework for
sparse walsh-hadamard transform. arXiv preprint arXiv:1508.06336, 2015.

[2] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman. Efficient erasure cor-
recting codes. IEEE Trans. on Information Theory, 47(2):569–584, 2001.

[3] R. Pedarsani, K. Lee, and K. Ramchandran. Phasecode: Fast and efficient compressive phase
retrieval based on sparse-graph-codes. arXiv preprint arXiv:1408.0034, 2014.

[4] T. Richardson and R. Urbanke. Modern coding theory. Cambridge University Press, 2008.
[5] T. J. Richardson and R. L. Urbanke. The capacity of low-density parity-check codes under

message-passing decoding. IEEE Trans. on Information Theory, 47(2):599–618, 2001.
[6] R. Scheibler, S. Haghighatshoar, and M. Vetterli. A fast hadamard transform for signals with

sub-linear sparsity. arXiv preprint arXiv:1310.1803, 2013.

4

	Proof of Theorem 1
	Proof of Lemma 1
	GraphSketch Bin Detection Scheme
	Design of Subsampling Offsets for GraphSketch
	Algorithm for Single-ton Detection for GraphSketch

