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Abstract
We present a scalable Bayesian multi-label learning model based on learning low-
dimensional label embeddings. Our model assumes that each label vector is gen-
erated as a weighted combination of a set of topics (each topic being a distribution
over labels), where the combination weights (i.e., the embeddings) for each label
vector are conditioned on the observed feature vector. This construction, coupled
with a Bernoulli-Poisson link function for each label of the binary label vector,
leads to a model with a computational cost that scales in the number of posi-
tive labels in the label matrix. This makes the model particularly appealing for
real-world multi-label learning problems where the label matrix is usually very
massive but highly sparse. Using a data-augmentation strategy leads to full local
conjugacy in our model, facilitating simple and very efficient Gibbs sampling, as
well as an Expectation Maximization algorithm for inference. Also, predicting
the label vector at test time does not require doing an inference for the label em-
beddings and can be done in closed form. We report results on several benchmark
data sets, comparing our model with various state-of-the art methods.

1 Introduction
Multi-label learning refers to the problem setting in which the goal is to assign to an object (e.g., a
video, image, or webpage) a subset of labels (e.g., tags) from a (possibly very large) set of labels.
The label assignments of each example can be represented using a binary label vector, indicating the
presence/absence of each label. Despite a significant amount of prior work, multi-label learning [7,
6] continues to be an active area of research, with a recent surge of interest [1, 25, 18, 13, 10] in
designing scalable multi-label learning methods to address the challenges posed by problems such as
image/webpage annotation [18], computational advertising [1, 18], medical coding [24], etc., where
not only the number of examples and data dimensionality are large but the number of labels can also
be massive (several thousands to even millions).

Often, in multi-label learning problems, many of the labels tend to be correlated with each other.
To leverage the label correlations and also handle the possibly massive number of labels, a common
approach is to reduce the dimensionality of the label space, e.g., by projecting the label vectors to
a subspace [10, 25, 21], learning a prediction model in that space, and then projecting back to the
original space. However, as the label space dimensionality increases and/or the sparsity in the label
matrix becomes more pronounced (i.e., very few ones), and/or if the label matrix is only partially
observed, such methods tend to suffer [25] and can also become computationally prohibitive.

To address these issues, we present a scalable, fully Bayesian framework for multi-label learning.
Our framework is similar in spirit to the label embedding methods based on reducing the label space
dimensionality [10, 21, 25]. However, our framework offers the following key advantages: (1)
computational cost of training our model scales in the number of ones in the label matrix, which
makes our framework easily scale in cases where the label matrix is massive but sparse; (2) our
likelihood model for the binary labels, based on a Bernoulli-Poisson link, more realistically models
the extreme sparsity of the label matrix as compared to the commonly employed logistic/probit link;
and (3) our model is more interpretable - embeddings naturally correspond to topics where each
topic is a distribution over labels. Moreover, at test time, unlike other Bayesian methods [10], we do
not need to infer the label embeddings of the test example, thereby leading to faster predictions.
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In addition to the modeling flexibility that leads to a robust, interpretrable, and scalable model, our
framework enjoys full local conjugacy, which allows us to develop simple Gibbs sampling, as well
as an Expectation Maximization (EM) algorithm for the proposed model, both of which are simple
to implement in practice (and amenable for parallelization).

2 The Model

We assume that the training data are given in the form ofN examples represented by a feature matrix
X ∈ RD×N , along with their labels in a (possibly incomplete) label matrix Y ∈ {0, 1}L×N . The
goal is to learn a model that can predict the label vector y∗ ∈ {0, 1}L for a test example x∗ ∈ RD.

We model the binary label vector yn of the nth example by thresholding a count-valued vectormn

yn = 1(mn ≥ 1) (1)

which, for each individual binary label yln ∈ yn, l = 1, . . . , L, can also be written as yln =
1(mln ≥ 1). In Eq. (1), mn = [m1n, . . . ,mLn] ∈ ZL denotes a latent count vector of size L and
is assumed drawn from a Poisson

mn ∼ Poisson(λn) (2)
Eq (2) denotes drawing each component ofmn independently, from a Poisson distribution, with rate
equal to the corresponding component of λn ∈ RL

+, which is defined as

λn = Vun (3)

Here V ∈ RL×K
+ and un ∈ RK

+ (typically K � L). Note that the K columns of V can be thought
of as atoms of a label dictionary (or “topics” over labels) and un can be thought of as the atom
weights or embedding of the label vector yn (or “topic proportions”, i.e., how active each of the K
topics is for example n). Also note that Eq. (1)-(3) can be combined as

yn = f(λn) = f(Vun) (4)

where f jointly denotes drawing the latent countsmn from a Poisson (Eq. 2) with rate λn = Vun,
followed by thresholding mn at 1 (Eq. 1). In particular, note that marginalizing out mn from
Eq. 1 leads to yn ∼ Bernoulli(1− exp(−λn)). This link function, termed as the Bernoulli-Poisson
link [28, 9], has also been used recently in modeling relational data with binary observations.

In Eq. (4), expressing the label vector yn ∈ {0, 1}L in terms of Vun is equivalent to a low-rank
assumption on the L × N label matrix Y = [y1 . . .yN ]: Y = f(VU), where V = [v1 . . .vK ] ∈
RL×K

+ and U = [u1 . . .uN ] ∈ RK×N
+ , which are modeled as follows

vk ∼ Dirichlet(η1L) (5)

ukn ∼ Gamma(rk, pkn(1− pkn)−1) (6)

pkn = σ(w>k xn) (7)
wk ∼ Nor(0,Γ) (8)

σ(z) = 1/(1 + exp(−z)), Γ = diag(τ−1
1 , . . . , τ−1

D ), and hyperparameters rk, τ1, . . . , τD are given
improper gamma priors. Since columns of V are Dirichlet drawn, they correspond to distributions
(i.e., topics) over the labels. It is important to note here that the dependence of the label embedding
un = {ukn}Kk=1 on the feature vector xn is achieved by making the scale parameter of the gamma
prior on {ukn}Kk=1 depend on {pkn}Kk=1 which in turn depends on the features xn via regression
weight W = {wk}Kk=1 (Eq. 6 and 8).

Figure 1: Graphical model for the generative process of the label vector. Hyperpriors omitted for brevity.
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2.1 Computational scalability in the number of positive labels

For the Bernoulli-Poisson likelihood model for binary labels, we can write the conditional poste-
rior [28, 9] of the latent count vectormn as

(mn|yn,V,un) ∼ yn � Poisson+(Vun) (9)
where Poisson+ denotes the zero-truncated Poisson distribution with support only on the positive
integers, and � denotes the element-wise product. Eq. 9 suggests that the zeros in yn will result
in the corresponding elements of the latent count vector mn being zero, almost surely (i.e., with
probability one). As shown in Section 3, the sufficient statistics of the model parameters do not
depend on latent counts that are equal to zero; such latent counts can be simply ignored during the
inference. This aspect leads to substantial computational savings in our model, making it scale only
in the number of positive labels in the label matrix. In the rest of the exposition, we will refer to our
model as BMLPL to denote Bayesian Multi-label Learning via Positive Labels.

2.2 Asymmetric Link Function

In addition to the computational advantage (i.e., scaling in the number of non-zeros in the label ma-
trix), another appealing aspect of our multi-label learning framework is that the Bernoulli-Poisson
likelihood is also a more realistic model for highly sparse binary data as compared to the commonly
used logistic/probit likelihood. To see this, note that the Bernoulli-Poisson model defines the prob-
ability of an observation y being one as p(y = 1|λ) = 1 − exp(−λ) where λ is the positive rate
parameter. For a positive λ on the X axis, the rate of growth of the plot of p(y = 1|λ) on the Y axis
from 0.5 to 1 is much slower than the rate it drops from 0.5 to 0. This benavior of the Bernoulli-
Poisson link will encourage a much fewer number of nonzeros in the observed data as compared to
the number of zeros. On the other hand, a logistic and probit approach both 0 and 1 at the same rate,
and therefore cannot model the sparsity/skewness of the label matrix like the Bernoulli-Poisson link.
Therefore, in contrast to multilabel learning models based on logistic/probit likelihood function or
standard loss functions such as the hinge-loss [25, 14] for the binary labels, our proposed model
provides better robustness against label imbalance.

3 Inference

A key aspect of our framework is that the conditional posteriors of all the model parameters are
available in closed form using data augmentation strategies that we will describe below. In particular,
since we model binary label matrix as thresholded counts, we are also able to leverage some of the
inference methods proposed for Bayesian matrix factorization of count-valued data [27] to derive an
efficient Gibbs sampler for our model.

Inference in our model requires estimating V ∈ RL×K
+ , W ∈ RD×K , U ∈ RK×N

+ , and the
hyperparameters of the model. As we will see below, the latent count vectors {mn}Nn=1 (which are
functions of V and U) provide sufficient statistics for the model parameters. Each element of mn

(if the corresponding element in yn is one) is drawn from a truncated Poisson distribution
mln ∼ Poisson+(Vl,:un) = Poisson+(λln) (10)

Vl,: denotes the lth row of V and λln =
∑K

k=1 λkln =
∑K

k=1 vlkukn. Thus we can also write
mln =

∑K
k=1mlkn where mlkn ∼ Poisson+(λkln) = Poisson+(vlkukn).

On the other hand, if yln = 0 then mln = 0 with probability one (Eq. (9)), and therefore need not
be sampled because it does not affect the sufficient statistics of the model parameters.

Using the equivalence of Poisson and multinomial distribution [27], we can express the decomposi-
tion mln =

∑K
k=1mlkn as a draw from a multinomial

[ml1n, . . . ,mlKn] ∼Mult(mln; ζl1n, . . . , ζlKn) (11)
where ζlkn = vlkukn∑K

k=1 vlkukn
. This allows us to exploit the Dirichlet-multinomial conjugacy and

helps designing efficient Gibbs sampling and EM algorithms for doing inference in our model. As
discussed before, the computational cost of both algorithms scales in the number of ones in the
label matrix Y, which males our model especially appealing for dealing with multilabel learning
problems where the label matrix is massive but highly sparse.
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3.1 Gibbs Sampling

Gibbs sampling for our model proceeds as follows

Sampling V: Using Eq. 11 and the Dirichlet-multinomial conjugacy, each column of V ∈ RL×K
+

can be sampled as
vk ∼ Dirichlet(η +m1k, . . . , η +mLk) (12)

where mlk =
∑

nmlnk, ∀l = 1, . . . , L.

Sampling U: Using the gamma-Poisson conjugacy, each entry of U ∈ RK×N
+ can be sampled as

ukn ∼ Gamma(rk +mkn, pkn) (13)

where mkn =
∑

lmlnk and pkn = σ(w>k xn).

Sampling W: Sincemkn =
∑

lmlnk andmlnk ∼ Poisson+(vlkukn), p(mkn|ukn) is also Poisson.
Further, since p(ukn|r, pkn) is gamma, we can integrate out ukn from p(mkn|ukn) which gives

mkn = NegBin(rk, pkn)

where NegBin(., .) denotes the negative Binomial distribution.

Although the negative Binomial is not conjugate to the Gaussian prior onwk, we leverage the Pólya-
Gamma strategy [17] data augmentation to “Gaussianify” the negative Binomial likelihood. Doing
this, we are able to derive closed form Gibbs sampling updates wk, k = 1, . . . ,K. The Pólya-
Gamma (PG) strategy is based on sampling a set of auxiliary variables, one for each observation
(which, in the context of sampling wk, are the latent counts mkn). For sampling wk, we draw N
Pólya-Gamma random variables [17] ωk1, . . . , ωkN (one for each training example) as

ωkn ∼ PG(mkn + rk,w
>
k xn) (14)

where PG(., .) denotes the Pólya-Gamma distribution [17].

Given these PG variables, the posterior distribution of wk is Gaussian Nor(µwk
,Σwk

) where

Σwk
= (XΩkX

> + Γ−1)−1 (15)
µwk

= Σwk
Xκk (16)

where Ωk = diag(ωk1, . . . , ωkN ) and κk = [(mk1 − rk)/2, . . . , (mkN − rk)/2]>.

Sampling the hyperparameters: The hyperparameter rk is given a gamma prior and can be sam-
pled easily. The other hyperparameters τ1, . . . , τD are estimated using Type-II maximum likelihood
estimation [22].

3.2 Expectation Maximization

The Gibbs sampler described in Section 3.1 is efficient and has a computational complexity that
scales in the number of ones in the label matrix. To further scale up the inference, we also develop
an efficient Expectation-Maximization (EM) inference algorithm for our model. In the E-step, we
need to compute the expectations of the local variables U, the latent counts, and the Pólya-Gamma
variables ωk1, . . . , ωkN , for k = 1, . . . ,K. These expectations are available in closed form and can
thus easily be computed. In particular, the expectation of each Pólya-Gamma variable ωkn is very
efficient to compute and is available in closed form [20]

E[ωkn] =
(mkn + rk)

2w>k xn
tanh(w>k xn/2) (17)

The M-step involves a maximization w.r.t. V and W, which essentially involves solving for their
maximum-a-posteriori (MAP) estimates, which are available in closed form. In particular, as shown
in [20], estimating wk requires solving a linear system which, in our case, is of the form

Skwk = dk (18)

where Sk = XΩkX
> + Γ−1, dk = Xκk, Ωk and κk are defined as in Section 3.1, except that the

Pólya-Gamma random variables are replaced by their expectations given by Eq. 17. Note that Eq. 18
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can be straighforwardly solved as wk = S−1
k dk. However, convergence of the EM algorithm [20]

does not require solving for wk exactly in each EM iteration and running a couple of iterations of
any of the various iterative methods that solves a linear system of equations can be used for this step.
We use the Conjugate Gradient [2] method to solve this, which also allows us to exploit the sparsity
in X and Ωk to very efficiently solve this system of equations, even when D and N are very large.
Although in this paper, we only use the batch EM, it is possible to speed it up even further using
an online version of this EM algorithm, as shown in [20]. The online EM processes data in small
minibatches and in each EM iteration updates the sufficient statistics of the global parameters. In
our case, these sufficient statistics include Sk and dk, for k = 1, . . . ,K, and can be updated as

S
(t+1)
k = (1− γt)S(t)

k + γtX
(t)Ω

(t)
k X(t)>

d
(t+1)
k = (1− γt)d(t)

k + γtX
(t)κ

(t)
k

where X(t) denotes the set of examples in the current minibatch, and Ω
(t)
k and κ(t)

k denote quantities
that are computed using the data from the current minibatch.

3.3 Predicting Labels for Test Examples

Predicting the label vector y∗ ∈ {0, 1}L for a new test example x∗ ∈ RD can be done as

p(y∗ = 1|x∗) =

∫
u∗

(1− exp(−Vu∗))p(u∗)du∗

If using Gibbs sampling, the integral above can be approximated using samples {u(m)
∗ }Mm=1 from

the posterior of u∗. It is also possible to integrate out u∗ (details skipped for brevity) and get closed
form estimates of probability of each label yl∗ in terms of the model parameters V and W, and it is
given by

p(yl∗ = 1|x∗) = 1−
K∏

k=1

1

[Vlk exp(w>k x∗) + 1]rk
(19)

4 Computational Cost
Computing the latent count mln for each nonzero entry yln in Y requires computing
[ml1n, . . . ,mlKn], which takes O(K) time; therefore computing all the latent counts takes
O(nnz(Y)K) time, which is very efficient if Y has very few nonzeros (which is true of most real-
world multi-label learning problems). Estimating V, U, and the hyperparameters is relatively cheap
and can be done very efficiently. The Pólya-Gamma variables, when doing Gibbs sampling, can be
efficiently sampled using methods described in [17]; and when doing EM, these can be even more
cheaply computed because the Pólya-Gamma expectations, which are available in closed form (as
a hyperbolic tan function), can be very efficiently computed [20]. The most dominant step is esti-
mating W; when doing Gibbs sampling, if done naı̈vely, it would O(DK3) time if sampling W
row-wise, and O(KD3) time if sampling column-wise. However, if using the EM algorithm, esti-
mating W can be done much more efficiently, e.g., using Conjugate Gradient updates because, it is
not even required to solved for W exactly in each iteration of the EM algorithm [20]. Also note that
since most of the parameters updates for different k = 1, . . . ,K, n = 1, . . . , N are all independent
of each other, our Gibbs sampler and the EM algorithms can be easily parallelized/block-updated.

5 Connection: Topic Models with Meta-Data

As discussed earlier, our multi-label learning framework is similar in spirit to a topic model as the
label embeddings naturally correspond to topics - each Dirichlet-drawn column vk of the matrix
V ∈ RL×K

+ can be seen as representing a “topic”. In fact, our model, interestingly, can directly be
seen as a topic model [3, 27] where we have side-information associated with each document (e.g.,
document features). For example, if each document yn ∈ {0, 1}L (in a bag-of-words representation
with vocabulary of size L) may also have some meta-data xn ∈ RD associated with it. Our model
can therefore also be used to perform topic modeling of text documents with such meta-data [15, 12,
29, 19] in a robust and scalable manner.
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6 Related Work

Despite a significant number of methods proposed in the recent years, learning from multi-label
data continues to remain an active area of research, especially due to the recent surge of interest in
learning when the output space (i.e., the number of labels) is massive. To handle the huge dimen-
sionality of the label space, a common approach is to embed the labels in a lower-dimensional space,
e.g., using methods such as Canonical Correlation Analysis or other methods for jointly embedding
feature and label vectors [26, 5, 23], Compressed Sensing[8, 10], or by assuming that the matrix
consisting of the weight vectors of all the labels is a low-rank matrix [25]. Another interesting line
of work on label embedding methods makes use of random projections to reduce the label space
dimensionality [11, 16], or use methods such as multitask learning (each label is a task).

Our proposed framework is most similar in spirit to the aforementioned class of label embedding
based methods (we compare with some of these in our experiments). In contrast to these methods,
our framework reduces the label-space dimensionality via a nonlinear mapping (Section 2), our
framework has accompanying inference algorithms that scale in the number of positive labels 2.1,
has an underlying generative model that more realistically models the imbalanced nature of the labels
in the label matrix (Section 2.2), can deal with missing labels, and is easily parallelizable. Also, the
connection to topic models provide a nice interpretability to the results, which is usually not possible
with the other methods (e.g., in our model, the columns of the matrix V can be seen as a set of topics
over the labels; in Section 7.2, we show an experiment on this). Moreover, although in this paper, we
have focused on the multi-label learning problem, our framework can also be applied for multiclass
problems via the one-vs-all reduction, in which case the label matrix is usually very sparse (each
column of the label matrix represents the labels of a single one-vs-all binary classification problem).

Finally, although not a focus of this paper, some other important aspects of the multi-label learning
problem have also been looked at in recent work. For example, fast prediction at test time is an
important concern when the label space is massive. To deal with this, some recent work focuses
on methods that only incur a logarithmic cost (in the number of labels) at test time [1, 18], e.g., by
inferring and leveraging a tree structure over the labels.

7 Experiments

We evaluate the proposed multi-label learning framework on four benchmark multi-label data sets -
bibtex, delicious, compphys, eurlex [25], with their statistics summarized in Table 1. The data sets
we use in our experiments have both feature and label dimensions that range from a few hundreds
to a several thousands. In addition, the feature and/or label matrices are also quite sparse.

Training set Test set
Data set D L Ntrain L̄ D̄ Ntest L̄ D̄
bibtex 1836 159 4880 2.40 68.74 2515 2.40 68.50
delicious 500 983 12920 19.03 18.17 3185 19.00 18.80
compphys 33,284 208 161 9.80 792.78 40 11.83 899.20
eurlex 5000 3993 17413 5.30 236.69 1935 5.32 240.96

Table 1: Statistics of the data sets used in our experiments. L̄ denotes average number of positive
labels per example; D̄ denotes the average number of nonzero features per example.

We compare the proposed model BMLPL with four state-of-the-art methods. All these methods,
just like our method, are based on the assumption that the label vectors live in a low dimensional
space.

• CPLST: Conditional Principal Label Space Transformation [5]: CPLST is based on em-
bedding the label vectors conditioned on the features.
• BCS: Bayesian Compressed Sensing for multi-label learning [10]: BCS is a Bayesian

method that uses the idea of doing compressed sensing on the labels [8].
• WSABIE: It assumes that the feature as well as the label vectors live in a low dimensional

space. The model is based on optimizing a weighted approximate ranking loss [23].
• LEML: Low rank Empirical risk minimization for multi-label learning [25]. For LEML, we

report the best results across the three loss functions (squared, logistic, hinge) they propose.
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Table 2 shows the results where we report the Area Under the ROC Curve (AUC) for each method on
all the data sets. For each method, as done in [25], we vary the label space dimensionality from 20%
- 100% of L, and report the best results. For BMLPL, both Gibbs sampling and EM based inference
perform comparably (though EM runs much faster than Gibbs); here we report results obtained with
EM inference only (Section 7.4 provides another comparison between these two inference methods).
The EM algorithms were run for 1000 iterations and they converged in all the cases.

As shown in the results in Table 2, in almost all of the cases, the proposed BMLPL model performs
better than the other methods (except for compphys data sets where the AUC is slightly worse than
LEML). The better performance of our model justifies the flexible Bayesian formulation and also
shows the evidence of the robustness provided by the asymmetric link function against sparsity and
label imbalance in the label matrix (note that the data sets we use have very sparse label matrices).

CPLST BCS WSABIE LEML BMLPL
bibtex 0.8882 0.8614 0.9182 0.9040 0.9210
delicious 0.8834 0.8000 0.8561 0.8894 0.8950
compphys 0.7806 0.7884 0.8212 0.9274 0.9211
eurlex - - 0.8651 0.9456 0.9520

Table 2: Comparison of the various methods in terms of AUC scores on all the data sets. Note: CPLST and
BCS were not feasible to run on the eurlex data, so we are unable to report those numbers here.

7.1 Results with Missing Labels

Our generative model for the label matrix can also handle missing labels (the missing labels may
include both zeros or ones). We perform an experiment on two of the data sets - bibtex and compphys
- where only 20% of the labels from the label matrix are revealed (note that, of all these revealed
labels, our model uses only the positive labels), and compare our model with LEML and BCS (both
are capable of handling missing labels). The results are shown in Table 3. For each method, we
set K = 0.4L. As the results show, our model yields better results as compared to the competing
methods even in the presence of missing labels.

BCS LEML BMLPL
bibtex 0.7871 0.8332 0.8420
compphys 0.6442 0.7964 0.8012

Table 3: AUC scores with only 20% labels observed.

7.2 Qualitative Analysis: Topic Modeling on Eurlex Data

Since in our model, each column of the L × K matrix V represents a distribution (i.e., a “topic”)
over the labels, to assess its ability of discovering meaningful topics, we run an experiment on the
Eurlex data with K = 20 and look at each column of V. The Eurlex data consists of 3993 labels
(each of which is a tags; a document can have a subset of the tags), so each column in V is of that
size. In Table 4, we show five of the topics (and top five labels in each topic, based on the magnitude
of the entries in the corresponding column of V). As shown in Table 4, our model is able to discover
clear and meaningful topics from the Eurlex data, which shows its usefulness as a topic model when
each document yn ∈ {0, 1}L has features in form of meta data xn ∈ RD associated with it.

Topic 1 (Nuclear) Topic 2 (Agreements) Topic 3 (Environment) Topic 4 (Stats & Data) Topic 5 (Fishing Trade)
nuclear safety EC agreement environmental protection community statistics fishing regulations
nuclear power station trade agreement waste management statistical method fishing agreement
radioactive effluent EC interim agreement env. monitoring agri. statistics fishery management
radioactive waste trade cooperation dangerous substance statistics fishing area
radioactive pollution EC coop. agree. pollution control measures data transmission conservation of fish stocks

Table 4: Most probable words in different topics.
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7.3 Scalability w.r.t. Number of Positive Labels

To demonstrate the linear scalability in the number of positive labels, we run an experiment on the
Delicious data set by varying the number of positive labels used for training the model from 20% to
100% (to simulate this, we simply treat all the other labels as zeros, so as to have a constant label
matrix size). We run each experiment for 100 iterations (using EM for the inference) and report
the running time for each case. Fig. 2 (left) shows the results which demonstrates the roughly linear
scalability w.r.t. the number of positive labels. This experiment is only meant for a small illustration.
Note than the actual scalability will also depend on the relative values of D and L and the sparsity
of Y. In any case, the amount of computations the involve the labels (both positive and negatives)
only depend on the positive labels, and this part, for our model, is clearly linear in the number of
positive labels in the label matrix.
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Figure 2: (Left) Scalability w.r.t. number of positive labels. (Right) Time vs accuracy comparison for Gibbs
and EM (with exact and with CG based M steps)

7.4 Gibbs Sampling vs EM

We finally show another experiment comparing both Gibbs sampling and EM for our model in terms
of accuracy vs running time. We run each inference method only for 100 iterations. For EM, we
try two settings: EM with an exact M step for W, and EM with an approximate M step where
we run 2 steps of conjugate gradient (CG). Fig. 2 (right), shows a plot comparing each inference
method in terms of the accuracy vs running time. As Fig. 2 (right) shows, the EM algorithms (both
exact as well as the one that uses CG) attain reasonably high AUC scores in a short amount of time,
which the Gibbs sampling takes much longer per iteration and seems to converge rather slowly.
Moreover, remarkably, EM with 2 iterations CG in each M steps seems to perform comparably
to the EM with an exact M step, while running considerably faster. As for the Gibbs sampler,
although it runs slower than the EM based inference, it should be noted that the Gibbs sampler
would still be considerably faster than other fully Bayesian methods for multi-label prediction (such
as BCS [10]) because it only requires evaluating the likelihoods over the positive labels in the label
matrix). Moreover, the step involving sampling of the W matrix can be made more efficient by using
cholesky decompositions which can avoid matrix inversions needed for computing the covariance
of the Gaussian posterior on wk.

8 Discussion and Conclusion

We have presented a scalable Bayesian framework for multi-label learning. In addition to providing
a flexible model for sparse label matrices, our framework is also computationally attractive and
can scale to massive data sets. The model is easy to implement and easy to parallelize. Both full
Bayesian inference via simple Gibbs sampling and EM based inference can be carried out in this
model in a computationally efficient way. Possible future work includes developing online Gibbs
and online EM algorithms to further enhance the scalability of the proposed framework to handle
even bigger data sets. Another possible extension could be to additionally impose label correlations
more explicitly (in addition to the low-rank structure already imposed by the current model), e.g.,
by replacing the Dirichlet distribution on the columns of V with logistic normal distributions [4].
Because our framework allows efficiently computing the predictive distribution of the labels (as
shown in Section 3.3), it can be easily extend for doing active learning on the labels [10]. Finally,
although here we only focused on multi-label learning, our framework can be readily used as a robust
and scalable alternative to methods that perform binary matrix factorization with side-information.
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