Supplement:
Bregman Alternating Direction Method of Multipliers

1 Convergence Analysis of BADMM

Bregman ADMM (BADMM) has the following iterates:

X¢41 = argmin f(x) + (y¢, Ax + Bz, — ¢) + pBy(c — Ax,Bz;) + px B, (X, %¢) , (1)
xeX

z¢+1 = argmin g(z) + (y¢, Ax¢1 + Bz — ¢) + pBy(Bz,¢c — Axy11) + p2 By, (2, 2t) )
zEZ

Yi+1 =Yt + T(Axt+1 + Bz — C) . 3)

We need the following assumption in establishing the convergence of BADMM:

Assumption 1
(a) f : R™ — RU {400} and g : R™ — R U {+o0} are closed, proper and convex.
(b) An optimal solution exists.
(c) The Bregman divergence By is defined on an a-strongly convex function ¢ with respect to a p-norm

|- 112, i.e., Bg(u,v) > §llu—v|2, where oo > 0.

We start wth the partial Lagrangian, which is defined as follows:
L(x,y,2) = f(x) + 9(2) + {y, Ax + Bz — ¢). ©)

Assume that x* € X', z* € Z and {x*, z*, y*} satisfies the KKT conditions of (4), i.e.,

—ATy* € 9f(x), 5)
—BTy* € 9¢(z*) , (6)
Ax*+Bz* —c=0. @)

{x*,z*, y*} is an optimal solution. Considering (1) and (2), x € X and z € Z are always satisfied in
BADMM. Let f/(x¢41) € Of(x¢+1) and ¢'(z¢11) € 0g(z¢41). For x* € X and z* € Z, the optimality
conditions of (1) and (2) are

(f (xe51) + AT{Yt +p(=Vo(c — Axpy1) + Vo(Bze) } + px(Viox(Xe41) — Viox (%)), X1 —x7) <0,
3

(¢ (ze+1) + BT {yt + p(Vo(Bzig1) — Vo(c — Axe1)} + pa(Vor(2e1) — Vepa(2i)), 21 — 2) < 0.
©



If Ax¢y1 + Bz = c, then y; 11 = y¢. Further, if Ax;1 + Bz = ¢, %11 = x4, (8) reduces to
(' (xe41) + ATy, x* = x*) <0 (10)

Therefore, ATytH = f’(x¢+1) is a sufficient condition and (5) is satisfied. Similarly, (6) is satisfied if
z:+1 = Z¢ in (9). Overall, we have the following sufficient conditions for the KKT conditions (5)-(7) to be
satisfied:

By, (Xt11,%¢) =0, By, (2¢41,2t) =0, (11a)
Axi 1+Bzi —c=0, Axgy1 + Bz —c=0. (11b)

For the exact BADMM, px = p, = 01in (1) and (2), the optimality conditions are (11b), which is equivalent
to the optimality conditions used in the proof of ADMM in [2], i.e.,

Bz;1 —Bz; =0, Ax;11 +Bzi41 —c=0. (12)
Define the residuals of optimality conditions (11) at (¢ 4 1) as:
R(t+1) = By (xip1,%) + 2B, (2111, 21) + By(c — Axip1,Bzy) + 7| Axii1 + By — ¢,
p p 13)
where v > 0. If R(t + 1) = 0, the optimality conditions (11) and (11b) are satisfied. It is sufficient to show
the convergence of BADMM by showing R(t + 1) converges to zero. We need the following lemma.

Lemma 1 Let the sequence {x;,z:,y:} be generated by Bregman ADMM (1)-(3). For any x* € X,z* € Z
satisfying Ax* 4+ Bz* = ¢, we have

f&ip1) +9(ze1) = (f(X7) +9(2%))

< —(yt; Ax¢p1 + Bz —¢) — p(Bg(c — Axy11,Bz) + By(Bziy1,¢ — Axyy1))

+ p(By(Bz", Bzy) — By(Bz", Bz 11)) + px(By, (X7, x¢) — By, (X, X¢11) — By, (Xe41, %))

+ p2(By, (2", 2t) — By, (2%, 2141) — By, (2141,24)) - (14)
Proof: and its subgradient given in (8) at x'*! € X, For any x € X, the optimality condition of (8) is
(f'(%e11) + AT {y: + p(=Vo(c — Axii1) + Vo(Bz) } + px(Veox (Xe11) — Voo (x1)), Xe41 — x) < 0.

15)

Rearranging the terms using the convexity of f, we have

fxee1) = fF(x) < (F' (ke1), X1 — %) (16)
< —(AT{y: + p(=Vé(c — Axr11) + VO(B2)} + px(Vepx(Xe11) — Vipx(%1)), Xp1 — X)
= —(yt, A(xt41 — %)) + p(Vd(c — Axy11) — Vo(Bzy), A(xey1 — X))
— px(Vox(Xt41) — Viox (xt), X141 — X)) (17)
Setting x = x* and using Ax* + Bz* = c, we have
f(xit1) — f(x7)
< —(yt, Ax¢y1 +Bz" —¢) + p(Vo(c — Axiy1) — Vop(Bz:), Bz" — (¢ — Axyt1))
— px(Vox(xt+1) — Vox(Xt), X1 — X)
= —(yt,Axi11 +Bz" — ¢) + p(By(Bz*,Bz;) — By(Bz",c — Ax¢y1) — By(c — Axy41,Bzy))
+ Px (B (X", %t) = By (X", Xt41) — By (X141, %t)) - (18)



where the last equality uses the three point property of Bregman divergence, i.e.,
(Vé(u) — Vo(v),w — ) = By(w,v) — By(w,u) — By(u,v). (19)
Similarly, using the convexity of g and its subgradient given in (9) at z!*! € Z, forany z € Z,
9(ze1) — 9(2) < (¢ (2e41), 2e11 — 2)
< (=B {yi + p(Vo(Bz+1) — Vo(c — Axei1)} = pa(Vepa(2i41) — Vou()), Ze41 — 2)
= —(yt, B(z141 — 2)) + n(Vo(Bz11) — V(€ — Axyy1), Bz — Bzyy1))
— eV a(zi11) — Vpu(2t), Ze+1 — 2)
= —(yt,B(zi+1 — 2)) + p{By(Bz,c — Ax4y1) — By(Bz,Bz11) — By(Bzi11,¢ — Ax41)}
+ pz(By, (2,2t) — By, (2,2t+1) — By, (2Zt41,2t)) - (20)

where the last equality uses the three point property of Bregman divergence (19). Set z = z* in (20).
Adding (18) and (20) completes the proof. ]

Under Assumption 1(c), the following lemma shows that (13) is bounded by a telescoping series of
D(w*,wy)—D(w*, wyy1), where D(w*, w;) defines the distance from the current iterate w, = (x¢, ¢, y¢)
to a KKT point w* = (x*,z*, y*) as follows:

* 1 * * X * z *
(W', wi) = 5 lly* = yilld + Bo(Ba', Ba) + B (6 x0) + 2B, (4 m) @)

Lemma 2 Let the sequence {x;,2;,y:} be generated by Bregman ADMM (1)-(3), x* € X,z* € Z and
{x*,z*,y*} satisfying (5)-(7). Let the Assumption 1 hold. R(t + 1) and D(w*,w,) are defined in (13)

and (21) respectively. Set T < (oo — 27)p, where o0 = min{1, mgfl} and 0 < v < &7. Then
R(t+1) < D(w*,wy) — D(W*, Wip1) . (22)
Proof:  Assume x* € X and {x*,y*} satisfies (5). Since f is convex, then
F(x*) = fxem1) < —(ATy" x* —x1) = —(v", AX" — Axipa) - (23)
Similarly, for convex function g, z* € Z and {z*, y*} satisfying (6), we have
9(2") = g(z41) < —(BTy*, 2" — z441) = —(y*,Bz" — Bzy1) - (24)
Adding them together and using the fact that Ax* + Bz* = c, we have
F&) +9(2") = (F(xi1) + 9(ze41)) < (y", Axpp1 +Bzyyr — ) (25)
Adding (25) and (14) together yields

0 < (y* -y AXt+l + th+1 — C> — p(B¢(C — AXt-‘r].) BZt) + B¢(th+17 C — AXt_;,_l))
+ p(By(Bz", Bz) — By(Bz", Bz 11)) + px (B, (X7, X¢t) — B (X, X¢41) — By (Xe41,%¢))
+ p2(By, (2", 2t) — By, (2", 2t41) — By, (2141,24)) - (26)



. 1 _ .
Using Axsy1 + Bz —c = ;(Yt+1 yt), the first term can be rewritten as

* 1 *
(Y =yt Axip1 + Bz —¢) = ;<Y — Y6, Vi1 — Ye)
1 * *
=5 (ly* = yell3 = [ly* = yesll3 + lyesr — YtHg)
1 T
= o (I =yl = Iy = yeril2) + I Axe1 + Bz —cf3 - @7)

Plugging into (26) and rearranging the terms, we have
1 * * * *
5 Iy = villz = Iy" = yiall3) + p(By(Bz", Bzy) — By(Bz", Bz141))
Px(Bcpx (x*,%x¢) — By, (x*,%x¢41)) + pZ(B@z (z%,2¢) — By, (2", 2441))

> pxBy (Xt41,Xt) + pa By, (Ze41,2¢) + pBy(c — Axiy1, Bzy)

-
+ pBy(Bziy1,¢ — Axpq1) — §”AXt+1 + Bz —clf3. (28)

Dividing both sides by p and letting R(t + 1) and D(w™, w;) be defined in (13) and (21) respectively, we
have

* * T
D(w*,wy)—D(w*, w1 1) > R(t + 1)+ Bg(Bziy1,¢ — AXtH)—(% +9)||[Ax¢11 4+ Bzi1 — |3

o T
> R(t+1)+ §||Axt+1 + Bz —cf) - (% +7)[[Ax 41+ Bz — |3, (29)
where the last inequality uses the Assumption 1(c).
If0 <p <2 |[ul, > [ullz. Set § > 3, t7in(29),ie.,7 < (a — 27)p. We can always finday < §,
thus (22) follows.

Ifp > 2,

21

1 1 2
ufl2 <m?2 7 ||ull, forany u € R™*', so [[ul|Z > m» ™ |Jul[3. In (29), set Yyt

> le—l-’}/,

2 2
e, < (ozm?—1 — 27)p. Aslong as v < %mE_l, we have (22). n

Remark 1 (a) If0 < p < 2, then o = 1 and 7 < (o — 27)p. The case that 0 < p < 2 includes two
widely used Bregman divergences, i.e., Euclidean distance and KL divergence. For KL divergence in the
unit simplex, we have o = 1,p = 1 in the Assumption 1 (c), i.e., KL(u,v) > |lu— v} [1].

(b) Since we often set By, to be a quadratic function (p = 2), the three special cases in Section 2.1 could
choose step size T = (o — 27)p.

(c) If p > 2, o will be small, leading to a small step size T which may be not be necessary in practice. It
would be interesting to see whether a large step size can be used for any p > 0.

The following theorem establishes the global convergence for BADMM.

Theorem 1 Let the sequence {x;,z;,y:} be generated by Bregman ADMM (1)-(3), x* € X,z* € Z and
{x*,z*,y*} satisfying (5)-(7). Let the Assumption 1 hold and T, satisfy the conditions in Lemma 2. Then
R(t + 1) converges to zero and {x, z¢,y+} converges to a KKT point {x*,z*,y*}.

Proof:  Since R(t+ 1) > 0, (22) implies D(w*, wy11) < D(w*, w;). Therefore, D(w*, w;) is monoton-
ically nonincreasing and w; converges to a KKT point w*. Summing (22) over ¢ from 0 to oo yields

D> R(t+1) < D(w*, w) . (30)
t=0



Since R(t+ 1) > 0, R(t + 1) — 0 as ¢ — oo, which completes the proof. ]
The following theorem establishs a O(1/7") convergence rate for the objective and residual of constraints

in an ergodic sense.

Theorem 2 Let the sequences {x, 2.,y } be generated by Bregman ADMM (1),(2),(3) and yo = 0. Let
2

X7 = % Zle Xy, Zr = %Zle zy. Set 7 < (a0 — 27)p, where o = min{1,m» '} and 0 < v < . For

any X* € X,z* € Z and (x*,z*,y") satisfying KKT conditions (5)-(7), we have

_ _ » . Dy
f&xr) +g(zr) — (f(x7) +9(2") = — (31)
D(w*,w
| A%y + Bay — cf < 2020 (32)
~T
where D1 = pBy(Bz*,Bzg) + px By, (x*,%X0) + pz By, (2%, 20).
Proof:  Using (3), we have
1
—(yt, AXy11 + Bziy1 —¢) = —;<Yt, Yi+1 — Yt)
1
= —§(H3’t+1H§ — llyell3 = llyesr — vell3)
1 T
= g(lb’t\lg —llye1l13) + 5 I1AXe 1 + Bz — cl3 . (33)

Plugging into (14) and ignoring some negative terms yield
f(xe41) + 9(ze41) — (f(X7) + 9(27))
< %(H%ﬁ”% — lye+1l3) + p(By(Bz*, Bzy) — By(Bz*, Bzi11)) + px( By (X", X4) = By (X*, X141))
+ p2(By, (2", 2¢) — By, (2", 2141)) — pBy(Bzey1,¢ — Axq1) + g”AXt_H + Bz 1 — CH% . (34)
Assume By(Bz11,¢ — Axyy1) > §[|Axiq1 + Bz — 2. If 0 < p < 2, using [[ul|, < [Julfz,

op —T
P | Axipr + Bagys —cf3

-
—pBy(Bziy1,¢ — Axyq1) + §HAXt+1 + Bz —cl3 < -

Setting 7 < (v — 27)p, the last two terms on the right hand side of (34) can be removed.

1 1 2
Ifp > 2, [Jully < m?2 7 |ul, for any u € R™*!, s0 ||ul|2 > m? ' ||u/|2. Then

2

pm»

— T
5 |Axy i1+ Bzep —clf3 .

T a
—pBy(Bzi1,¢ — Axq) + §HAXt+1 + Bz —c3 < —

Setting 7 < (am%_l — 27y)p, the last two terms on the right hand side of (34) can be removed. Summing
over ¢t from 0 to 7" — 1, we have the following telescoping sum

S
-

[f (xt41) + 9(ze41) — (f(X") + g(z"))]

-
Il
o

1 * * *
< EHY(JH% + de)(BZ ,Bzg) + Pwax(X ,X0) + pZ(B@Z (Z ,Z0)

= pBy(Bz",Bzg) + px By, (X, X0) + pz(By, (2", 20) . 35)



Dividing both sides by 7" and applying the Jensen’s inequality gives (31).
Dividing both sides of (30) by 7" and applying the Jensen’s inequality yield (32). ]

2 Convergence of BADMM with Time Varying Step Size

Under the assumption that y; is bounded, the following theorem requires a large step size to establish the
convergence of BADMM.

Theorem 3 Let the sequences {x;,z,y:} be generated by Bregman ADMM (1)-(3), x* € X,z* € Z and
{x*,z*,y*} satisfying (5)-(7). Let the Assumption I hold and ||ly:||2 < Dy. Setting px = p, = iV T, 7 =
CQ\/T and p = ﬁfor some positive constant c1, ca, then R(t + 1) converges to zero.

Proof: Assuming ||y|l2 < Dy and using (3), we have

1 2 AD?
|Ax;11 + Bzi1 —cf3 = ﬁ”b’tﬂ —yill3 < ﬁ(”%ﬂ”% + llyell3) < Tgy : (36)

Plugging into (29) and rearranging the terms yields

* * T 4D§’
R(t-+1) € D(w*we) = Dw' wein) + (50 +9) " (37)

Setting px = pz = c1VT, 7 = /T and p = /T for some positive constant ¢y, ¢, we have

R(t+1) = ¢1 By, (Xe41,%t) + 1By, (2141, 21) + Bg(c — Axy11, Bzy) + || Axyy1 + Bzyy1 — |3,

(38)
Summing (37) over ¢ from 0 to T' — 1, we have the following telescoping sum
T-1 T-1 2 2
4D 4(ca/2 4+ v)D
R(t+1) < D(w*,wq) + T = D(w*,wq) + M . 39)
t=0 t:O €3
Therefore, R(t + 1) — 0 as t — oo. ]

The following theorem establishs the convergence rate for the objective and residual of constraints in an
ergodic sense.

Theorem 4 Let the sequences {x, 2.,y } be generated by Bregman ADMM (1)-(3). Let X = % 23:1 X¢, ZT =
% Z;le z;. Let the Assumption 1 hold and ||y||2 < Dy. Set px = p, = c1VT, 7 = coV/T,p = VT for
some positive constants cy, ca. For any x* € X,z* € Z and (x*,z*,y") satisfying KKT conditions (5)-(7),

we have

F(%r) + 9(ar) — (f(x) + g(a)) < 2% 4 volB_ Do (40)
cQ\F 2eTVT VT
_ _ 2 D(w,wo) 4(c2/2+ ) D3
|Axr + Bz — c||5 < T + 7c2T , 41

where Dy = By(Bz*, Bzg) + ¢1 (B, (x*,%X0) + By, (2*,20)).

6



Proof:  Assuming ||y||2 < Df, and using (3), we have

1 1 2D?
—(yt, Ax¢41 + Bz —c) = _;<Yt7y't+1 —yi) < ;(HYtH% + llyell2 * [[yesll2) < (42)
Plugging into (14) and ignoring some negative terms yield
f(xe1) + 9(ze41) = (f(x7) + 9(2"))
< T + p<B¢(BZ ,th) - B¢>(BZ ;th-i-l)) + pX(BL.Dx<X ,Xt) - BsDx(X 7Xt+1))
+ pZ(Bcpz (z%,2¢) — B, (2%, 2¢41)) - (43)

Summing over ¢ from 0 to 7' — 1, we have the following telescoping sum

f(xt41) + g(ze41) — (F(X7) + g(z"))]

|M‘

T—
Z +nyoH2+pB¢<Bz Bzo) + px By, (X*,%0) + paBy, (2*, 20) .

Setting px = pz = VT, T = cVT,p = /T, dividing both sides by T and applying the Jensen’s
inequality yield (40).
Dividing both sides of (39) by 7" and applying the Jesen’s inequality yield (41). ]
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