
A Structural Smoothing Framework For Robust
Graph-Comparison

Pinar Yanardag
Department of Computer Science

Purdue University
West Lafayette, IN, 47906, USA

ypinar@purdue.edu

S.V.N. Vishwanathan
Department of Computer Science

University of California
Santa Cruz, CA, 95064, USA

vishy@ucsc.edu

Abstract

In this paper, we propose a general smoothing framework for graph kernels by
taking structural similarity into account, and apply it to derive smoothed variants
of popular graph kernels. Our framework is inspired by state-of-the-art smoothing
techniques used in natural language processing (NLP). However, unlike NLP ap-
plications which primarily deal with strings, we show how one can apply smooth-
ing to a richer class of inter-dependent sub-structures that naturally arise in graphs.
Moreover, we discuss extensions of the Pitman-Yor process that can be adapted
to smooth structured objects thereby leading to novel graph kernels. Our kernels
are able to tackle the diagonal dominance problem, while respecting the struc-
tural similarity between sub-structures, especially under the presence of edge or
label noise. Experimental evaluation shows that not only our kernels outperform
the unsmoothed variants, but also achieve statistically significant improvements
in classification accuracy over several other graph kernels that have been recently
proposed in literature. Our kernels are competitive in terms of runtime, and offer
a viable option for practitioners.

1 Introduction

In many applications we are interested in computing similarities between structured objects such as
graphs. For instance, one might aim to classify chemical compounds by predicting whether a com-
pound is active in an anti-cancer screen or not. A kernel function which corresponds to a dot product
in a reproducing kernel Hilbert space offers a flexible way to solve this problem [18]. R-convolution
[10] is a framework for computing kernels between discrete objects where the key idea is to recur-
sively decompose structured objects into sub-structures. Let 〈·, ·〉H denote a dot product in a repro-
ducing kernel Hilbert space, G represent a graph and φ (G) denote a vector of sub-structure frequen-
cies. The kernel between two graphs G and G′ is computed by k (G,G′) = 〈φ (G) , φ (G′)〉H. Many
existing graph kernels can be viewed as instance of R-convolution. For instance, the graphlet kernel
[21] decomposes a graph into graphlets, Weisfeiler-Lehman Subtree kernel (referred as Weisfeiler-
Lehman for the rest of the paper) [22] decomposes a graph into subtrees, and the shortest-path
kernel [1] decomposes a graph into shortest-paths. However, R-convolution based graph kernels
suffer from a few drawbacks. First, the size of the feature space often grows exponentially. As
size of the space grows, the probability that two graphs will contain similar sub-structures becomes
very small. Therefore, a graph becomes similar to itself but not to any other graph in the training
data. This is well known as the diagonal dominance problem, and the resulting kernel matrix is
close to the identity matrix. In other words, the graphs are orthogonal to each other in the fea-
ture space. Second, lower order sub-structures tend to be more numerous while a vast majority of
the sub-structures occur very rarely. In other words, a few sub-structures dominate the distribution
which exhibits a strong power-law behavior and results in underestimation of the true distribution.

1

Third, the sub-structures used to define a graph kernel are often related to each other. However, an
R-convolution kernel only respects exact matchings. This problem is particularly important when
noise is present in the data since considering partial similarity between sub-structures might alleviate
the noise problem.

Figure 1: Graphlets of size k ≤ 5.

Our solution: In this paper, we propose to tackle the above problems by using a general frame-
work to smooth graph kernels that are defined using a frequency vector of decomposed structures.
We use structure information by encoding relationships between lower order and higher order sub-
structures in order to derive our method. Consequently, our smoothing algorithm not only respects
the dependency between sub-structures but also tackles the diagonal dominance problem by dis-
tributing the probability mass across features. Moreover, we discuss extensions of the Pitman-Yor
process that can be adapted to smooth subgraph distributions. In our experiments, the smoothed
graph kernels outperform their base variants, especially in the presence of noise in edges or labels.

2 Graph kernels

Existing graphs kernels based on R-convolution can be categorized into three major families: graph
kernels based on limited-sized subgraphs [e.g. 21], graph kernels based on subtree patterns [e.g.
17, 20], and graph kernels based on walks [e.g. 26] or paths [e.g. 1].

Graph kernels based on subgraphs: A graphlet G [16] is non-isomorphic sub-graph of size-k,
(see Figure 1). Given two graphs G and G′, the kernel [21] is defined as KGK(G,G′) =

〈
fG , fG

′
〉

where fG and fG
′

are vectors of normalized counts of graphlets, that is, the i-th component of fG

(resp. fG
′
) denotes the frequency of graphlet Gi occurring as a sub-graph of G (resp. G′).

Graph kernels based on subtree patterns: Weisfeiler-Lehman [20] is a popular instance of graph
kernels that decompose a graph into its subtree patterns. This kernel simply iterates over each vertex
in a graph, and compresses the label of the vertex and labels of its neighbors into a multiset label. The
vertex is then relabeled with the compressed label to be used for the next iteration. Algorithm con-
cludes after running for h iterations, and the compressed labels are used for constructing a frequency
vector for each graph. Formally, given G and G′, this kernel is defined as KWL(G,G′) =

〈
lG , lG

′
〉

where lG contains the frequency of each compressed label occurring in h iterations.

Graph kernels based on walks or paths: Shortest-path graph kernel [1] is a popular instance of
this family. This kernel simply compares the sorted endpoints and the length of shortest-paths that
are common between two graphs. Formally, let PG represent the set of all shortest-paths in graph
G, and pi ∈ PG denote a triplet (ls, le, nk) where nk is the length of the path and ls and le are
the labels of the starting and ending vertices, respectively. The kernel between graphs G and G′ is
defined as KSP (G,G′) =

〈
pG ,pG

′
〉

where i-th component of pG contains the frequency of i-th

triplet occurring in graph G (resp. pG
′
).

3 Smoothing multinomial distributions

In this section, we briefly review smoothing techniques for multinomial distributions. Let
e1, e2, . . . , em represent a sequence of n discrete events drawn from a ground setA = {1, 2, . . . , V }.

2

Figure 2: Topologically sorted graphlet DAG for k ≤ 5 where nodes are colored based on degree.

Suppose, we would like to estimate the probability P (ei = a) for some a ∈ A. It is well known
that the Maximum Likelihood Estimate (MLE) can be computed as PMLE (ei = a) = ca

m where ca
denotes the number of times the event a appears in the observed sequence and m =

∑
j cj denotes

the total number of observed events. However, MLE of the multinomial distribution is spiky since it
assigns zero probability to the events that did not occur in the observed sequence. In other words, an
event with low probability is often estimated to have zero probability mass. The general idea behind
smoothing is to adjust the MLE of the probabilities by pushing the high probabilities downwards
and pushing low or zero probabilities upwards in order to produce a more accurate distribution on
the events [29]. Interpolated smoothing methods offer a flexible solution between the higher-order
maximum likelihood model and lower-order smoothed model (or so-called, fallback model). The
way the fallback model is designed is the key to define a new smoothing method1. Absolute dis-
counting [14] and Interpolated Kneser-Ney [11] are two popular instances of interpolated smoothing
methods:

PA (ei = a) =
max {ca − d, 0}

m
+
md × d
m

P ′A (ei = a) . (1)

Here, d > 0 is a discount factor, md := |{a : ca > d}| is the number of events whose counts
are larger than d, while P ′A is the fallback distribution. Absolute discounting defines the fallback
distribution as the smoothed version of the lower-order MLE while Kneser-Ney uses an unusual
estimate of the fallback distribution by using number of different contexts that the event follows in
the lower order model.

4 Smoothing structured objects

In this section, we first propose a new interpolated smoothing framework that is applicable to a
richer set of objects such as graphs by using a Directed Acyclic Graph (DAG). We then discuss how
to design such DAGs for various graph kernels.

4.1 Structural smoothing

The key to deriving a new smoothing method is to define a fallback distribution, which not only
incorporates domain knowledge but is also easy to estimate recursively. Suppose, we have access
to a weighted DAG where every node at the k-th level represents an event from the ground set A.
Moreover let wij denote the weight of the edge connecting event i to event j, and Pa (resp. Ca)
denote the parents (resp. children) of event a ∈ A in the DAG. We define our structural smoothing
for events at level k as follows:

P k
SS (ei = a) =

max {ca − d, 0}
m

+
md × d
m

∑
j∈Pa

P k−1
SS (j)

wja∑
a′∈Cj wja′

. (2)

The way to understand the above equation is as follows: we subtract a fixed discounting factor d
from every observed event which accumulates to a total mass of md × d. Each event a receives
some portion of this accumulated probability mass from its parents. The proportion of the mass that
a parent j at level k − 1 transmits to a given child a depends on the weight wja between the parent
and the child (normalized by the sum of the weights of the edges from j to all its children), and the
probability mass P k−1

SS (j) that is assigned to node j. In other words, the portion a child event a is
able to obtain from the total discounted mass depends on a) how authoritative its parents are, and b)
how strong the relationship between the child and its parents.

1See Table 2 in [3] for summarization of various smoothing algorithms using this general framework.

3

4.2 Designing the DAG

In order to construct a DAG for smoothing structured objects, we first construct a vocabulary V
that denotes the set of all unique sub-structures that are going to be smoothed. Each item in the
vocabulary V represents a node in the DAG. V can be generated statically or dynamically based
on the type of sub-structure the graph kernel exploits. For instance, it requires a one-time O(2k)
effort to generate the vocabulary of size ≤ k graphlets for graphlet kernel. However, one needs
to build the vocabulary dynamically in Weisfeiler-Lehman and Shortest-Path kernels since the sub-
structures depend on the node labels obtained from the datasets. After constructing the vocabulary
V , parent/child relationship between sub-structures needs to be obtained. Given a sub-structure s
of size k, we apply a transformation to find all possible sub-structures of size k − 1 that s can be
reduced into. Each sub-structure s′ that is obtained by this transformation is assigned as a parent
of s. After obtaining the parent/child relationship between sub-structures, the DAG is constructed
by drawing a directed edge from each parent to its children nodes. Since all descendants of a given
sub-structure at depth k − 1 are at depth k, this results in a topological ordering of the vertices,
and hence the resulting graph is indeed a DAG. Next, we discuss specific details of constructing the
DAG for different graph kernels.

Graphlet Kernel: We construct the vocabulary V for graphlet kernel by enumerating all canonical
graphlets of size up to k2. Each canonically-labeled graphlet is a node in the DAG. We then apply
a transformation to infer the parent/child relationship between graphlets as follows: we place a
directed edge from graphlet G to G′ if, and only if, G can be obtained from G′ by deleting a node.
In other words, all edges from a graphlet G of size k− 1 point to a graphlet G′ of size k. In order to
assign weights to the edges, given a graphlet pair G and G′, we count the number of times G can be
obtained from G′ by deleting a node (call this number nGG′). Recall that G is of size k − 1 and G′
is of size k, and therefore nGG′ can at most be k. Let CG denote the set of children of node G in the
DAG, and nG :=

∑
Ḡ∈CG nGḠ. Then we define the weight wGG′ of the edge connecting G and G′

as nGG′/nG. The idea here is that the weight encodes the proportion of different ways of extending
G which results in the graphlet G′. For instance, let us consider G15 and its parents G5, G6, G7 (see
Figure 2 for the DAG of graphlets with size k ≤ 5). Even if graphlet G15 is not observed in the
training data, it still gets a probability mass proportional to the edge weight from its parents in order
to overcome the sparsity problem of unseen data.

Weisfeiler-Lehman Kernel: The Weisfeiler-Lehman kernel performs an exact matching between
the compressed multiset labels. For instance, given two labels ABCDE and ABCDF, it simply as-
signs zero value for their similarity even though two labels have a partial similarity. In order to
smooth Weisfeiler-Lehman kernel, we first run the original algorithm and obtain the multiset rep-
resentation of each graph in the dataset. We then apply a transformation to infer the parent/child
relationship between compressed labels as follows: in each iteration of Weisfeiler-Lehman algo-
rithm, for each multiset label of size k in the vocabulary, we generate its power set by computing all
subsets of size k − 1 while keeping the root node fixed. For instance, the parents of a multiset label
ABCDE are {ABCD, ABCE, ABDE, ACDE}. Then, we simply construct the DAG by drawing a
directed edge from parent labels to children. Notice that considering only the set of labels gener-
ated from the Weisfeiler-Lehman kernel is not sufficient enough for constructing a valid DAG. For
instance, it might be the case that none of the possible parents of a given label exists in the vocab-
ulary simply due to the sparsity problem (e.g.out of all possible parents of ABCDE, we might only
observe ABCE in the training data). Thus, restricting ourselves to the original vocabulary leaves
such labels orphaned in the DAG. Therefore, we consider so-called pseudo parents as a part of the
vocabulary when constructing the DAG. Since the sub-structures in this kernel is data-dependent,
we use a uniform weight between a parent and its children.

Shortest-Path Kernel: Similar to other graph kernels discussed above, shortest-path graph kernel
does not take partial similarities into account. For instance, given two shortest-paths ABCDE and
ABCDF (compressed as AE5 and AF5, respectively), it assigns zero for their similarity since their
sink labels are different. However, one can notice that the sub-structures of shortest-path kernels
exhibit a strong dependency relationship. For instance, given a shortest-path pij = {ABCDE} of
size k, one can derive the following shortest-paths: {ABCD, ABC, AB} of size < k as a result

2We used Nauty [12] to obtain canonically-labeled isomorphic representations of graphlets.

4

of the optimal sub-structure property, that is, one can show that all sub-paths of a shortest-path
are also shortest-paths with the same source node [6]. In order to smooth shortest-path kernel, we
first build the vocabulary by computing all shortest-paths for each graph. Let pij be a shortest-path
of size k and pij′ be a shortest-path of size k − 1 that is obtained by removing the sink node of
pij . Let lij be the compressed form of pij that represents the sorted labels of its endpoints i and j
concatenated to its length (resp. lij′). Then, in order to build the DAG, we draw a directed edge
from lij′ of depth k − 1 to lij of depth k if and only if pij′ is a sub-path of pij . In other words,
all ascendants of lij consist of the compressed labels obtained from sub-paths of pij of size < k.
Similar to Weisfeiler-Lehman kernel, we assign a uniform weight between parents and children.

5 Pitman-Yor Smoothing

Pitman-Yor processes are known to produce power-law distributions [8]. [24] proposed a novel
interpretation of interpolated Kneser-Ney as approximate inference in a hierarchical Bayesian model
consisting of Pitman-Yor processes [15]. By following a similar spirit, we extend our model to adapt
Pitman-Yor process as an alternate smoothing framework for those cases where the feature space is
finite. We will only give a very high level overview of a Pitman-Yor process and refer the reader
to the excellent papers by [24] and [8] for more details. A Pitman-Yor process P on a ground set
Gk+1 of size-(k+1) graphlets is defined via Pk+1 ∼ PY (dk+1, θk+1, Pk) where dk+1 is a discount
parameter, 0 ≤ dk+1 < 1, θ > −dk+1 is a strength parameter, and Pk is a base distribution. The
most intuitive way to understand draws from the Pitman-Yor process is via the Chinese restaurant
process (also see Figure 3).

Figure 3: An illustration of table assignment, adapted from [9]. In this example, labels at the tables
are given by (l1, . . . , l4) = (G44, G30, G32, G44). Black dots indicate the number of occurrences of
each label in 10 draws from the Pitman-Yor process.

Algorithm 1 Insert a Customer
Input: dk+1, θk+1, Pk

t← 0 // Occupied tables
c← () // Counts of customers
l← () // Labels of tables
if t = 0 then
t← 1
append 1 to c
draw graphlet gi ∼ Pk // Insert customer in parent
draw gj ∼ wij

append gj to l
return gj

else
with probability ∝ max(0, cj − d)
cj ← cj + 1
return lj
with probability proportional to θ + dt
t← t+ 1
append 1 to c
draw graphlet gi ∼ Pk // Insert customer in parent
draw gj ∼ wij

append gj to l
return gj

end if

5

Algorithm 2 Delete a Customer
Input: d, θ, P0, C, L, t

with probability ∝ cl
cl ← cl − 1
gj ← lj
if cl = 0 then
Pk ∝ 1/wij

delete cl from c
delete lj from l
t← t− 1

end if
return g

Consider a restaurant with an infinite number of tables. Customers enter the restaurant one by
one. The first customer sits at the first table, and is seated at the first table. Since this table is
occupied for the first time, a graphlet is assigned to it by drawing a sample from the base distribution.
The label of the first table is the first graphlet drawn from the Pitman-Yor process. Subsequent
customers when they enter the restaurant decide to sit at an already occupied table with probability
proportional to ci − dk+1, where ci represents the number of customers already sitting at table
i. If they sit at an already occupied table, then the label of that table denotes the next graphlet
drawn from the Pitman-Yor process. On the other hand, with probability θk+1 + dk+1t, where t
is the current number of occupied tables, a new customer might decide to occupy a new table. In
this case, the base distribution is invoked to label this table with a graphlet. Intuitively the reason
this process generates power-law behavior is because popular graphlets which are served on tables
with a large number of customers have a higher probability of attracting new customers and hence
being generated again. In a hierarchical Pitman-Yor process (HYPY), the base distribution Pk is
recursively defined via a Pitman-Yor process Pk ∼ PY (dk, θk, Pk−1). In order to label a table, we
need a draw from Pk, which is obtained by inserting a customer into the corresponding restaurant.
However, adopting the traditional HYPY is not straightforward in our case since the size of the
context differs between levels of hierarchy, that is, a child restaurant in the hierarchy can have more
than one parent restaurant to request a label from. In other words, Pk+1 is defined over Gk+1 of
size nk+1 while Pk is defined over Gk of size nk ≤ nk+1. Therefore, one needs a transformation
function to transform base distributions of different sizes. We incorporate edge weights between
parent and child restaurants by using the same weighting scheme in Section 4.2. This changes the
Chinese Restaurant process as follows: When we need to label a table, we will first draw a size-k
graphlet gi ∼ Pk by inserting a customer into the corresponding restaurant. Given gi, we will draw
a size-(k + 1) graphlet gj proportional to wij , where wij is obtained from the DAG. Deletion of a
customer is handled similarly.

6 Related work

A survey of most popular graph kernel methods is already given in previous sections. Several meth-
ods proposed in smoothing structured objects [4], [19]. Our framework is similar to dependency
tree kernels [4] since both methods are using the notion of smoothing for structured objects. How-
ever, our method is interested in the problem of smoothing the count of structured objects while
the smoothing itself is achieved by using a DAG where the DAG is discarded once the counts are
smoothed. Another related work to ours is propagation kernels [13] that defines graph features
as counts of similar node-label distributions on the respective graphs by using Locality Sensitive
Hashing (LSH). Our framework not only considers node label distributions, but also explicitly in-
corporates structural similarity via the DAG. Another similar work to ours is recently proposed
framework by [28] which learns the co-occurrence relationships between sub-structures by using
neural language models. However, their framework do not respect the structural similarity between
sub-structures, which is an important property to consider especially in the presence of noise in
edges or labels.

6

Table 1: Comparison of classification accuracy (± standard deviation) of Shortest-path (SP),
Weisfeiler-Lehman (WL), Graphlet (GK) kernels with their smoothed variants, SMTH SP, SMTH
WL, SMTH GK, respectively, along with PYP Smoothed Graphlet (PYP GK) kernel. Ramon &
Gärtner (RAM & GÄR), p-random walk (p-RANDWALK) and Random Walk (RANDWALK) ker-
nels are included for comparison where > 72H indicates the computation did not finish in 72 hours.

METHOD/DATASET MUTAG PTC ENZYMES PROTEINS NCI1 NCI109
SP 85.22 ±2.43 58.24 ±2.44 40.10 ±1.50 75.07 ±0.54 73.00 ±0.24 73.00 ±0.21

SMTH SP 87.94 ±2.58 60.82 ±1.84 42.27 ±1.07 75.85 ±0.28 73.26 ±0.24 73.00 ±0.31

WL 82.22 ±1.87 60.41 ±1.93 53.88 ±0.95 74.49 ±0.49 84.13 ±0.22 83.83 ±0.31

SMTH WL 87.44 ±1.95 60.47 ±2.39 55.30 ±0.65 75.53 ±0.50 84.66 ±0.18 84.72 ±0.21

GK 81.33 ±1.02 55.56 ±1.46 27.32 ±0.96 69.69 ±0.46 62.46 ±0.19 62.33 ±0.14

SMTH GK 83.17 ±0.64 58.44 ±1.00 30.90 ±1.51 69.83 ±0.46 62.48 ±0.15 62.48 ±0.11

PYP GK 83.11 ±1.23 57.44 ±1.44 29.63 ±1.30 70.00 ±0.80 62.50 ±0.20 62.68 ±0.18

RAM & GÄR 84.88 ±1.86 58.47 ±0.90 16.96 ±1.46 70.73 ±0.35 56.61 ±0.53 54.62 ±0.23

P-RANDWALK 80.05 ±1.64 59.38 ±1.66 30.01 ±1.00 71.16 ±0.35 > 72H > 72H
RANDWALK 83.72 ±1.50 57.85 ±1.30 24.16 ±1.64 74.22 ±0.42 > 72H > 72H

7 Experiments

The aim of our experiments is threefold. First, we want to show that smoothing improves the classi-
fication accuracy of various graph kernels. Second, we want to show that the smoothed kernels are
comparable to or outperform state-of-the-art graph kernels in terms of classification accuracy, while
remaining competitive in terms of computational requirements. Third, we want to show that our
methods significantly outperforms base kernels when edge or label noise is presence. In the main
body of the paper we primarily focus on classification accuracy, and relegate runtime comparisons
to Appendix ??.

Datasets We experimented with the following standard benchmark datasets used in graph kernels:
MUTAG, PTC, ENZYMES, PROTEINS, NCI1 and NCI109. MUTAG is a dataset of 188 mutagenic
aromatic and heteroaromatic nitro compounds [5] with 7 discrete labels. PTC [25] is a dataset of 344
chemical compounds has 19 discrete labels. NCI1 and NCI109 [27] are two balanced datasets of
chemical compounds having size 4110 and 4127 with 37 and 38 labels, respectively. ENZYMES is
a dataset of 600 protein tertiary structures obtained from [2], and has 3 discrete labels. PROTEINS
is a dataset of 1113 graphs obtained from [2] where nodes are secondary structure elements (SSEs)
and there is an edge between two nodes if they are neighbors in the amino acid sequence or in 3D
space, having 3 discrete labels. See Appendix ?? for more information on the datasets.

Experimental setup We compare our framework against representative instances of major fam-
ilies of graph kernels in the literature. Other than base kernels of our framework; the Weisfeiler-
Lehman kernel [21], the graphlet kernel [21], and the shortest-path kernel [1], we also compare our
smoothed kernels with the random walk kernel [7], the subtree kernel [17], and p-step random walk
kernel [23]. The Random Walk, p-step Random Walk and Ramon-Gärtner kernels are written in
Matlab and were obtained from the authors of [21]. All other kernels were coded in Python3. We
used a parallel implementation for smoothing the counts of Weisfeiler-Lehman kernel for efficiency
purposes. In order to ensure a fair comparison, all experiments are performed on the same hardware.
All kernels are normalized to have a unit length in the feature space. Moreover, we use 10-fold cross
validation with a binary C-Support Vector Machine (SVM) to test classification performance. The
C value for each fold is independently tuned using training data from that fold. In order to exclude
random effects of the fold assignments, this experiment is repeated 10 times and average prediction
accuracy of 10 experiments with their standard deviations are reported. See Appendix ?? for a de-
tailed discussion of parameter selection procedure for each algorithm and the parameters used in our
experiments.

3Implementations of original and smoothed versions of the kernels are publicly available at http://web.
ics.purdue.edu/˜ypinar/nips.

7

http://web.ics.purdue.edu/~ypinar/nips
http://web.ics.purdue.edu/~ypinar/nips

Figure 4: Classification accuracy vs. noise for base graph kernels (dashed lines) and their smoothed
variants (non-dashed lines).

7.1 Results

In our first experiment, we compare the graphlet kernel, the Weisfeiler-Lehman kernel, and the
shortest-path kernel with their smoothed variants. The results are in Table 1 where smoothed variants
that are statistically significant over the base kernels are shown in bold as measured by a t-test with a
p value of ≤ 0.05. As can be seen on every dataset, smoothing improves the classification accuracy
of every base kernel.

In our second experiment, we picked the best smoothed kernel, in terms of classification accuracy,
for each of our datasets from Table 1, and compared their performance with the state-of-the-art
graph kernels (see Table 1). As can be seen, the smoothed kernels outperform other methods on all
datasets, and the results are statistically significant on every dataset except PTC.

In our third experiment, we compared Pitman-Yor smoothed graphlet kernels to base graphlet ker-
nel. As can be seen from Table 1, Pitman-Yor smoothed graphlet kernels are able to improve the
performance of all datasets while achieving statistically significant improvements over a majority of
them. However, it can also be seen that Pitman-Yor smoothed graphlet kernels are outperformed by
Smoothed graph kernels introduced in Section 3.

Finally, as our fourth experiment, we test the performance of graph kernels when edge and label
noise is presence where we randomly removed and added {10%, 20%, 30%} of the edges in each
graph for edge-noise and randomly flipped {25%, 50%, 75%} of the node labels in each graph for
label-noise by respecting the label-distribution. Figure 4 shows the performance of smoothed graph
kernels under noise. As can be seen from the figure, smoothed graph kernels are able to significantly
outperform their base variants.

8 Conclusion and Future Work

We presented a novel framework for smoothing graph kernels inspired by smoothing techniques
from natural language processing and applied our method to state-of-the-art graph kernels. Our
framework is rather general, and lends itself to many extensions. For instance, by defining domain-
specific parent-child relationships, one can construct different DAGs with different weighting
schemes for smoothing. Another interesting extension of our smoothing framework would be to
apply it to graphs with continuous labels. While we restricted ourselves to graph kernels in this
paper, our framework is applicable to any R-convolution kernel that uses a frequency-vector based
representation.

9 Acknowledgments

We thank to anonymous NIPS reviewers for their constructive comments. We also thank to Hyokun
Yun for his help on Pitman-Yor Processes, and Jiasen Yang for mathematical proofs. This work is
supported by the National Science Foundation under grant No. #1219015.

8

