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Abstract

High dimensional regression benefits from sparsity promoting regularizations.
Screening rules leverage the known sparsity of the solution by ignoring some
variables in the optimization, hence speeding up solvers. When the procedure
is proven not to discard features wrongly the rules are said to be safe. In this paper
we derive new safe rules for generalized linear models regularized with `1 and
`1{`2 norms. The rules are based on duality gap computations and spherical safe
regions whose diameters converge to zero. This allows to discard safely more vari-
ables, in particular for low regularization parameters. The GAP Safe rule can cope
with any iterative solver and we illustrate its performance on coordinate descent
for multi-task Lasso, binary and multinomial logistic regression, demonstrating
significant speed ups on all tested datasets with respect to previous safe rules.

1 Introduction

The computational burden of solving high dimensional regularized regression problem has lead to a
vast literature in the last couple of decades to accelerate the algorithmic solvers. With the increasing
popularity of `1-type regularization ranging from the Lasso [18] or group-Lasso [24] to regularized
logistic regression and multi-task learning, many algorithmic methods have emerged to solve the
associated optimization problems. Although for the simple `1 regularized least square a specific
algorithm (e.g., the LARS [8]) can be considered, for more general formulations, penalties, and
possibly larger dimension, coordinate descent has proved to be a surprisingly efficient strategy [12].

Our main objective in this work is to propose a technique that can speed-up any solver for such
learning problems, and that is particularly well suited for coordinate descent method, thanks to
active set strategies.

The safe rules introduced by [9] for generalized `1 regularized problems, is a set of rules that allows
to eliminate features whose associated coefficients are proved to be zero at the optimum. Relaxing
the safe rule, one can obtain some more speed-up at the price of possible mistakes. Such heuristic
strategies, called strong rules [19] reduce the computational cost using an active set strategy, but
require difficult post-precessing to check for features possibly wrongly discarded. Another road to
speed-up screening method has been the introduction of sequential safe rules [21, 23, 22]. The idea
is to improve the screening thanks to the computations done for a previous regularization parameter.
This scenario is particularly relevant in machine learning, where one computes solutions over a
grid of regularization parameters, so as to select the best one (e.g., to perform cross-validation).
Nevertheless, such strategies suffer from the same problem as strong rules, since relevant features
can be wrongly disregarded: sequential rules usually rely on theoretical quantities that are not known
by the solver, but only approximated. Especially, for such rules to work one needs the exact dual
optimal solution from the previous regularization parameter.
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Recently, the introduction of safe dynamic rules [6, 5] has opened a promising venue by letting
the screening to be done not only at the beginning of the algorithm, but all along the iterations.
Following a method introduced for the Lasso [11], we generalize this dynamical safe rule, called
GAP Safe rules (because it relies on duality gap computation) to a large class of learning problems
with the following benefits:

• a unified and flexible framework for a wider family of problems,
• easy to insert in existing solvers,
• proved to be safe,
• more efficient that previous safe rules,
• achieves fast true active set identification.

We introduce our general GAP Safe framework in Section 2. We then specialize it to important
machine learning use cases in Section 3. In Section 4 we apply our GAP Safe rules to a multi-
task Lasso problem, relevant for brain imaging with magnetoencephalography data, as well as to
multinomial logistic regression regularized with `1{`2 norm for joint feature selection.

2 GAP Safe rules

2.1 Model and notations

We denote by rds the set t1, . . . , du for any integer d P N, and by QJ the transpose of a matrix
Q. Our observation matrix is Y P Rnˆq where n represents the number of samples, and q the
number of tasks or classes. The design matrix X “ rxp1q, . . . , xppqs “ rx1, . . . , xns

J P Rnˆp has
p explanatory variables (or features) column-wise, and n observations row-wise. The standard `2
norm is written } ¨ }2, the `1 norm } ¨ }1, the `8 norm } ¨ }8. The `2 unit ball is denoted by B2 (or
simply B) and we write Bpc, rq the `2 ball with center c and radius r. For a matrix B P Rpˆq , we
denote by }B}22 “

řp
j“1

řq
k“1 B2

j,k the Frobenius norm, and by x¨, ¨y the associated inner product.

We consider the general optimization problem of minimizing a separable function with a group-
Lasso regularization. The parameter to recover is a matrix B P Rpˆq , and for any j in Rp,Bj,: is the
j-th row of B, while for any k in Rq , B:,k is the k-th column. We would like to find

pBpλq P arg min
BPRpˆq

n
ÿ

i“1

fipx
J
i Bq ` λΩpBq

loooooooooooomoooooooooooon

PλpBq

, (1)

where fi : R1ˆq ÞÑ R is a convex function with 1{γ-Lipschitz gradient. So F : B Ñ
řn
i“1 fipx

J
i Bq

is also convex with Lipschitz gradient. The function Ω : Rpˆq ÞÑ R` is the `1{`2 norm ΩpBq “
řp
j“1 }Bj,:}2 promoting a few lines of B to be non-zero at a time. The λ parameter is a non-negative

constant controlling the trade-off between data fitting and regularization.

Some elements of convex analysis used in the following are introduced here. For a convex function
f : Rd Ñ r´8,`8s the Fenchel-Legendre transform1 of f , is the function f˚ : Rd Ñ r´8,`8s
defined by f˚puq “ supzPRdxz, uy ´ fpzq. The sub-differential of a function f at a point x is
denoted by Bfpxq. The dual norm of Ω is the `8{`2 norm and reads Ω˚pBq “ maxjPrps }Bj,:}2.
Remark 1. For the ease of reading, all groups are weighted with equal strength, but extension
of our results to non-equal weights as proposed in the original group-Lasso [24] paper would be
straightforward.

2.2 Basic properties

First we recall the associated Fermat’s condition and a dual formulation of the optimization problem:
Theorem 1. Fermat’s condition (see [3, Proposition 26.1] for a more general result)
For any convex function f : Rn Ñ R:

x P arg min
xPRn

fpxq ô 0 P Bfpxq. (2)

1this is also often referred to as the (convex) conjugate of a function
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Theorem 2 ([9]). A dual formulation of (1) is given by

pΘpλq “ arg max
ΘP∆X

´

n
ÿ

i“1

f˚i p´λΘi,:q

looooooooomooooooooon

DλpΘq

. (3)

where ∆X “ tΘ P Rnˆq : @j P rps, }xpjq
J

Θ}2 ď 1u “ tΘ P Rnˆq : Ω˚pX
JΘq ď 1u. The primal

and dual solutions are linked by

@i P rns, pΘ
pλq
i,: “ ´∇fipx

J
i
pBpλqq{λ. (4)

Furthermore, Fermat’s condition reads:

@j P rps, xpjq
J
pΘpλq P

$

&

%

"

B̂λj,;

}B̂λj,;}2

*

, if pBpλqj,: ‰ 0,

B2, if pBpλqj,: “ 0.

(5)

Remark 2. Contrarily to the primal, the dual problem has a unique solution under our assumption
on fi. Indeed, the dual function is strongly concave, hence strictly concave.

Remark 3. For any Θ P Rnˆq let us introduce GpΘq “ r∇f1pΘ1,:q
J, . . . ,∇fnpΘn,:q

Js P Rnˆq .
Then the primal/dual link can be written pΘpλq “ ´GpXpBpλqq{λ .

2.3 Critical parameter: λmax

For λ large enough the solution of the primal problem is simply 0. Thanks to the Fermat’s rule (2),
0 is optimal if and only if ´∇F p0q{λ P BΩp0q. Thanks to the property of the dual norm Ω˚, this is
equivalent to Ω˚p∇F p0q{λq ď 1 where Ω˚ is the dual norm of Ω. Since ∇F p0q “ XJGp0q, 0 is a
primal solution of Pλ if and only if λ ě λmax :“ maxjPrps }x

pjqJGp0q}2 “ Ω˚pX
JGp0qq.

This development shows that for λ ě λmax, Problem (1) is trivial. So from now on, we will only
focus on the case where λ ď λmax.

2.4 Screening rules description

Safe screening rules rely on a simple consequence of the Fermat’s condition:

}xpjq
J
pΘpλq}2 ă 1 ñ pB

pλq
j,: “ 0 . (6)

Stated in such a way, this relation is useless because pΘpλq is unknown (unless λ ą λmax). However,
it is often possible to construct a setR Ă Rnˆq , called a safe region, containing it. Then, note that

max
ΘPR

}xpjq
J

Θ}2 ă 1 ñ pB
pλq
j,: “ 0 . (7)

The so called safe screening rules consist in removing the variable j from the problem whenever the
previous test is satisfied, since pBpλqj,: is then guaranteed to be zero. This property leads to considerable
speed-up in practice especially with active sets strategies, see for instance [11] for the Lasso case. A
natural goal is to find safe regions as narrow as possible: smaller safe regions can only increase the
number of screened out variables. However, complex regions could lead to a computational burden
limiting the benefit of screening. Hence, we focus on constructingR satisfying the trade-off:

• R is as small as possible and contains pΘpλq.
• Computing maxΘPR }x

pjqJΘ}2 is cheap.

2.5 Spheres as safe regions

Various shapes have been considered in practice for the set R such as balls (referred to as spheres)
[9], domes [11] or more refined sets (see [23] for a survey). Here we consider the so-called
“sphere regions” choosing a ball R “ Bpc, rq as a safe region. One can easily obtain a control
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on maxΘPBpc,rq }x
pjqJΘ}2 by extending the computation of the support function of a ball [11, Eq.

(9)] to the matrix case: max
ΘPBpc,rq

}xpjq
J

Θ}2 ď }x
pjqJc}2 ` r}x

pjq}2 .

Note that here the center c is a matrix in Rpˆq . We can now state the safe sphere test:

Sphere test: If }xpjq
J
c}2 ` r}x

pjq}2 ă 1, then pB
pλq
j,: “ 0. (8)

2.6 GAP Safe rule description

In this section we derive a GAP Safe screening rule extending the one introduced in [11]. For this,
we rely on the strong convexity of the dual objective function and on weak duality.

Finding a radius: Remember that @i P rns, fi is differentiable with a 1{γ-Lipschitz gradient.
As a consequence, @i P rns, f˚i is γ-strongly convex [14, Theorem 4.2.2, p. 83] and so Dλ is
γλ2-strongly concave:

@pΘ1,Θ2q P Rnˆq ˆ Rnˆq, DλpΘ2q ď DλpΘ1q ` x∇DλpΘ1q,Θ2 ´Θ1y ´
γλ2

2
}Θ1 ´Θ2}

2.

Specifying the previous inequality for Θ1 “ pΘpλq,Θ2 “ Θ P ∆X , one has

DλpΘq ď DλppΘ
pλqq ` x∇DλppΘ

pλqq,Θ´ pΘpλqy ´
γλ2

2
}pΘpλq ´Θ}2.

By definition, pΘpλq maximizes Dλ on ∆X , so we have: x∇DλppΘ
pλqq,Θ´ pΘpλqy ď 0. This implies

DλpΘq ď DλppΘ
pλqq ´

γλ2

2
}pΘpλq ´Θ}2.

By weak duality @B P Rpˆq, DλppΘ
pλqq ď PλpBq, so : @B P Rpˆq,@Θ P ∆X , DλpΘq ď PλpBq ´

γλ2

2 }
pΘpλq ´Θ}2, and we deduce the following theorem:

Theorem 3.

@B P Rpˆq,@Θ P ∆X ,
∥∥∥pΘpλq ´Θ

∥∥∥
2
ď

d

2pPλpBq ´DλpΘqq

γλ2
“: r̂λpB,Θq. (9)

Provided one knows a dual feasible point Θ P ∆X and a B P Rpˆq , it is possible to construct a safe
sphere with radius r̂λpB,Θq centered on Θ. We now only need to build a (relevant) dual point to
center such a ball. Results from Section 2.3, ensure that ´Gp0q{λmax P ∆X , but it leads to a static
rule, a introduced in [9]. We need a dynamic center to improve the screening as the solver proceeds.

Finding a center: Remember that pΘpλq “ ´GpXpBpλqq{λ. Now assume that one has a converging
algorithm for the primal problem, i.e., Bk Ñ pBpλq. Hence, a natural choice for creating a dual
feasible point Θk is to choose it proportional to ´GpXBkq, for instance by setting:

Θk “

#

Rk
λ , if Ω˚pX

JRkq ď λ,
Rk

Ω˚pXJRkq
, otherwise.

where Rk “ ´GpXBkq . (10)

A refined method consists in solving the one dimensional problem: arg maxΘP∆XXSpanpRkq
DλpΘq.

In the Lasso and group-Lasso case [5, 6, 11] such a step is simply a projection on the intersection of
a line and the (polytope) dual set and can be computed efficiently. However for logistic regression
the computation is more involved, so we have opted for the simpler solution in Equation (10). This
still provides converging safe rules (see Proposition 1).

Dynamic GAP Safe rule summarized

We can now state our dynamical GAP Safe rule at the k-th step of an iterative solver:

1. Compute Bk, and then obtain Θk and r̂λpBk,Θkq using (10).
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2. If }xpjq
J

Θk}2 ` r̂λpBk,Θkq}x
pjq}2 ă 1, then set pBpλqj,: “ 0 and remove xpjq from X .

Dynamic safe screening rules are more efficient than existing methods in practice because they can
increase the ability of screening as the algorithm proceeds. Since one has sharper and sharper dual
regions available along the iterations, support identification is improved. Provided one relies on a
primal converging algorithm, one can show that the dual sequence we propose is converging too.

The convergence of the primal is unaltered by our GAP Safe rule: screening out unnecessary coeffi-
cients of Bk can only decrease its distance with its original limits. Moreover, a practical consequence
is that one can observe surprising situations where lowering the tolerance of the solver can reduce
the computation time. This can happen for sequential setups.

Proposition 1. Let Bk be the current estimate of pBpλq and Θk defined in Eq. (10) be the current
estimate of pΘpλq. Then limkÑ`8 Bk “ pBpλq implies limkÑ`8Θk “ pΘpλq.

Note that if the primal sequence is converging to the optimal, our dual sequence is also converging.
But we know that the radius of our safe sphere is p2pPλpBkq ´ DλpΘkqq{pγλ

2qq1{2. By strong
duality, this radius converges to 0, hence we have certified that our GAP Safe regions sequence
BpΘk, r̂λpBk,Θkqq is a converging safe rules (in the sense introduced in [11, Definition 1]).
Remark 4. The active set obtained by our GAP Safe rule (i.e., the indexes of non screened-out
variables) converges to the equicorrelation set [20] Eλ :“ tj P p : }xpjq

J
pΘpλq}2 “ 1u, allowing us

to early identify relevant features (see Proposition 2 in the supplementary material for more details).

3 Special cases of interest

We now specialize our results to relevant supervised learning problems, see also Table 1.

3.1 Lasso

In the Lasso case q “ 1, the parameter is a vector: B “ β P Rp, F pβq “ 1{2}y ´ Xβ}22 “
řn
i“1pyi ´ x

J
i βq

2, meaning that fipzq “ pyi ´ zq2{2 and Ωpβq “ }β}1.

3.2 `1{`2 multi-task regression

In the multi-task Lasso, which is a special case of group-Lasso, we assume that the observation is
Y P Rnˆq , F pBq “ 1

2}Y ´XB}22 “
1
2

řn
i“1 }Yi,:´x

J
i B}22 (i.e., fipzq “ }Yi,:´z}2{2) and ΩpBq “

řp
j“1 }Bj,:}2. In signal processing, this model is also referred to as Multiple Measurement Vector

(MMV) problem. It allows to jointly select the same features for multiple regression tasks [1, 2].
Remark 5. Our framework could encompass easily the case of non-overlapping groups with var-
ious size and weights presented in [6]. Since our aim is mostly for multi-task and multinomial
applications, we have rather presented a matrix formulation.

3.3 `1 regularized logistic regression

Here, we consider the formulation given in [7, Chapter 3] for the two classes logistic regression. In
such a context, one observes for each i P rns a class label ci P t1, 2u. This information can be recast
as yi “ 1tci“1u, and it is then customary to minimize (1) where

F pβq “
n
ÿ

i“1

`

´yix
J
i β ` log

`

1` exp
`

xJi β
˘˘˘

, (11)

with B “ β P Rp (i.e., q “ 1), fipzq “ ´yiz ` logp1 ` exppzqq and the penalty is simply the `1
norm: Ωpβq “ }β}1. Let us introduce Nh, the (binary) negative entropy function defined by 2:

Nhpxq “

"

x logpxq ` p1´ xq logp1´ xq, if x P r0, 1s ,
`8, otherwise .

(12)

Then, one can easily check that f˚i pziq “ Nhpzi ` yiq and γ “ 4.

2with the convention 0 logp0q “ 0
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Lasso Multi-task regr. Logistic regr. Multinomial regr.

fipzq
pyi´zq

2

2
}Yi,:´z}

2

2 logp1` ezq ´ yiz log
`

q
ÿ

k“1

ezk
˘

´

q
ÿ

k“1

Yi,kzk

f˚i puq
pyi´uq

2
´y2i

2
}Yi,:´u}

2
´}Yi,:}

2
2

2 Nhpu` yiq NHpu` Yi,:q

ΩpBq }β}1

p
ÿ

j“1

}Bj,:}2 }β}1

p
ÿ

j“1

}Bj,:}2

λmax }XJy}8 Ω˚pX
JY q }XJp1n{2´ yq}8 Ω˚pX

Jp1nˆq{q ´ Y qq

GpΘq θ ´ y Θ´ Y ez

1`ez ´ y RowNormpeΘq ´ Y

γ 1 1 4 1

Table 1: Useful ingredients for computing GAP Safe rules. We have used lower case to indicate
when the parameters are vectorial (i.e., q “ 1). The function RowNorm consists in normalizing a
(non-negative) matrix row-wise, such that each row sums to one.

3.4 `1{`2 multinomial logistic regression

We adapt the formulation given in [7, Chapter 3] for the multinomial regression. In such a context,
one observes for each i P rns a class label ci P t1, . . . , qu. This information can be recast into a
matrix Y P Rnˆq filled by 0’s and 1’s: Yi,k “ 1tci“ku. In the same spirit as the multi-task Lasso, a
matrix B P Rpˆq is formed by q vectors encoding the hyperplanes for the linear classification. The
multinomial `1{`2 regularized regression reads:

F pBq “
n
ÿ

i“1

˜

q
ÿ

k“1

´Yi,kx
J
i B:,k ` log

˜

q
ÿ

k“1

exp
`

xJi B:,k

˘

¸¸

, (13)

with fipzq “
řq
k“1´Yi,kzk ` log p

řq
k“1 exp pzkqq to recover the formulation as in (1). Let us

introduce NH, the negative entropy function defined by (still with the convention 0 logp0q “ 0)

NHpxq “

"řq
i“1 xi logpxiq, if x P Σq “ tx P Rq` :

řq
i“1 xi “ 1u,

`8, otherwise.
(14)

Again, one can easily check that f˚i pzq “ NHpz ` Yi,:q and γ “ 1.

Remark 6. For multinomial logistic regression, Dλ implicitly encodes the additional constraint
Θ P dom Dλ “ tΘ

1 : @i P rns,´λΘ1i,: ` Yi,: P Σqu where Σq is the q dimensional simplex, see
(14). As 0 and Rk{λ both belong to this set, any convex combination of them, such as Θk defined
in (10), satisfies this additional constraint.
Remark 7. The intercept has been neglected in our models for simplicity. Our GAP Safe framework
can also handle such a feature at the cost of more technical details (by adapting the results from [15]
for instance). However, in practice, the intercept can be handled in the present formulation by adding
a constant column to the design matrixX . The intercept is then regularized. However, if the constant
is set high enough, regularization is small and experiments show that it has little to no impact for
high-dimensional problems. This is the strategy used by the Liblinear package [10].

4 Experiments

In this section we present results obtained with the GAP Safe rule. Results are on high dimensional
data, both dense and sparse. Implementation have been done in Python and Cython for low critical
parts. They are based on the multi-task Lasso implementation of Scikit-Learn [17] and coordinate
descent logistic regression solver in the Lightning software [4]. In all experiments, the coordinate
descent algorithm used follows the pseudo code from [11] with a screening step every 10 iterations.
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Figure 1: Experiments on MEG/EEG brain imaging dataset (dense data with n “ 360, p “ 22494
and q “ 20). On the left: fraction of active variables as a function of λ and the number of iterations
K. The GAP Safe strategy has a much longer range of λ with (red) small active sets. On the right:
Computation time to reach convergence using different screening strategies.

Note that we have not performed comparison with the sequential screening rule commonly acknowl-
edge as the state-of-the-art “safe” screening rule (such as th EDDP+ [21]), since we can show that
this kind of rule is not safe. Indeed, the stopping criterion is based on dual gap accuracy, and com-
parisons would be unfair since such methods sometimes do not converge to the prescribed accuracy.
This is backed-up by a counter example given in the supplementary material. Nevertheless, modifi-
cations of such rules, inspired by our GAP Safe rules, can make them safe. However the obtained
sequential rules are still outperformed by our dynamic strategies (see Figure 2 for an illustration).

4.1 `1{`2 multi-task regression

To demonstrate the benefit of the GAP Safe screening rule for a multi-task Lasso problem we used
neuroimaging data. Electroencephalography (EEG) and magnetoencephalography (MEG) are brain
imaging modalities that allow to identify active brain regions. The problem to solve is a multi-task
regression problem with squared loss where every task corresponds to a time instant. Using a multi-
task Lasso one can constrain the recovered sources to be identical during a short time interval [13].
This corresponds to a temporal stationary assumption. In this experiment we used a joint MEG/EEG
data with 301 MEG and 59 EEG sensors leading to n “ 360. The number of possible sources is
p “ 22, 494 and the number of time instants q “ 20. With a 1 kHz sampling rate it is equivalent to
say that the sources stay the same for 20 ms.

Results are presented in Figure 1. The GAP Safe rule is compared with the dynamic safe rule
from [6]. The experimental setup consists in estimating the solutions of the multi-task Lasso problem
for 100 values of λ on a logarithmic grid from λmax to λmax{103. For the experiments on the left
a fixed number of iterations from 2 to 211 is allowed for each λ. The fraction of active variables
is reported. Figure 1 illustrates that the GAP Safe rule screens out much more variables than the
compared method, as well as the converging nature of our safe regions. Indeed, the more iterations
performed the more the rule allows to screen variables. On the right, computation time confirms the
effective speed-up. Our rule significantly improves the computation time for all duality gap tolerance
from 10´2 to 10´8, especially when accurate estimates are required, e.g., for feature selection.

4.2 `1 binary logistic regression

Results on the Leukemia dataset are reported in Figure 2. We compare the dynamic strategy of GAP
Safe to a sequential and non dynamic rule such as Slores [22]. We do not compare to the actual
Slores rule as it requires the previous dual optimal solution, which is not available. Slores is indeed
not a safe method (see Section B in the supplementary materials). Nevertheless one can observe that
dynamic strategies outperform pure sequential one, see Section C in the supplementary material).
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No screening

GAP Safe (sequential)

GAP Safe (dynamic)

No screening

GAP Safe (sequential)
GAP Safe (dynamic)

Figure 2: `1 regularized binary logistic regression on the Leukemia dataset (n = 72 ; m = 7,129 ;
q = 1). Simple sequential and full dynamic screening GAP Safe rules are compared. On the left:
fraction of the variables that are active. Each line corresponds to a fixed number of iterations for
which the algorithm is run. On the right: computation times needed to solve the logistic regression
path to desired accuracy with 100 values of λ.

4.3 `1{`2 multinomial logistic regression

We also applied GAP Safe to an `1{`2 multinomial logistic regression problem on a sparse dataset.
Data are bag of words features extracted from the News20 dataset (TF-IDF removing English stop
words and words occurring only once or more than 95% of the time). One can observe on Figure 3
the dynamic screening and its benefit as more iterations are performed. GAP Safe leads to a sig-
nificant speedup: to get a duality gap smaller than 10´2 on the 100 values of λ, we needed 1,353 s
without screening and only 485 s when GAP Safe was activated.

Figure 3: Fraction of the variables that are ac-
tive for `1{`2 regularized multinomial logistic
regression on 3 classes of the News20 dataset
(sparse data with n = 2,757 ; m = 13,010 ;
q = 3). Computation was run on the best 10%
of the features using χ2 univariate feature se-
lection [16]. Each line corresponds to a fixed
number of iterations for which the algorithm is
run.

5 Conclusion

This contribution detailed new safe rules for accelerating algorithms solving generalized linear mod-
els regularized with `1 and `1{`2 norms. The rules proposed are safe, easy to implement, dynamic
and converging, allowing to discard significantly more variables than alternative safe rules. The
positive impact in terms of computation time was observed on all tested datasets and demonstrated
here on a high dimensional regression task using brain imaging data as well as binary and multiclass
classification problems on dense and sparse data. Extensions to other generalized linear model,
e.g., Poisson regression, are expected to reach the same conclusion. Future work could investigate
optimal screening frequency, determining when the screening has correctly detected the support.
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Supplementary Material

A Proofs

A.1 Proof of variable identification

Proposition 2. There exists k0 P N such that for all k ě k0, an index j P rps is screened out by the
GAP Safe rule if and only if j P Eλ :“ tj P p : }xpjq

J
pΘpλq}2 “ 1u.

Proof. For simplicity we use the notation Rk “ BpΘk, r̂λpBk,Θkqq for the safe region at step
k. Define maxjREλ |x

pjqJ
pΘpλq| “ t ă 1. Fix ε ą 0 such that ε ă p1 ´ tq{pmaxjREλ }x

pjq}q.
As Θk is converging to pΘpλq, and limkÑ8 r̂λpBk,Θkq “ 0, there exists k0 P N such that @k ě
k0,@Θ P Rk, }Θ ´ pΘpλq} ď ε. Hence, for any j R Eλ and any Θ P Rk, |xpjq

J
pΘ ´ pΘpλqq| ď

pmaxjREλ }x
pjq}q}Θ´ pΘpλq} ď pmaxjREλ }x

pjq}qε. Using the triangle inequality, one gets

|xpjq
J

Θ| ďpmax
jREλ

}xpjq}qε`max
jREλ

|xpjq
J
pΘpλq|

ďpmax
jREλ

}xpjq}qε` t ă 1,

provided that ε ă p1´ tq{pmaxjREλ }x
pjq}q. Hence, for all k ě k0, j R Eλ implies that j is screened

out by the GAP Safe rule thanks to the last inequality. For the reverse inclusion take j P Eλ,
i.e., |xpjq

J
pΘpλq| “ 1. Since by construction of our GAP Safe screening rule @k P N, pΘpλq P Rk,

then j P tj1 P rps : maxΘPRk
|xpj

1
q
J

Θ| ě 1u. This means that the variable j can not be eliminated
by our safe rule, and we have shown that in the limit we have exactly identified the equicorrelation
set.

A.2 Proof that the GAP Safe rule is converging (Proposition 1)

Proof. We consider two cases.

First let us assume that θk “ Rk{Ω˚pX
JGpXBkqq

∥∥∥Θk ´ pΘpλq
∥∥∥

2
“

∥∥∥∥ ´GpXBkq

Ω˚pXJGpXBkqq
`

1

λ
GpXpBpλqq

∥∥∥∥
2

ď

∥∥∥∥GpXBkq

λ
´

GpXBkq

Ω˚pXJGpXBkqq

∥∥∥∥
2

`

∥∥∥∥∥GpXpBpλqq ´GpXBkq

λ

∥∥∥∥∥
2

ď

ˇ

ˇ

ˇ

ˇ

1

λ
´

1

Ω˚pXJGpXBkqq

ˇ

ˇ

ˇ

ˇ

‖GpXBkq‖2 `

∥∥∥∥∥GpXpBpλqq ´GpXBkq

λ

∥∥∥∥∥
2

The second term converges to zero whenever Bk Ñ pBpλq since G is continuous (it is γ-Lipschitz).
For the first term, note that Ω˚pX

JGpXBkqq Ñ Ω˚pX
JGpXpBpλqqq “ λΩ˚pX

J
pΘpλqq “ λ

(thanks to the primal/dual link, and that pΘpλq is dual feasible). Then, as G is a Lipschitz func-
tion and all norms are equivalent in a finite dimension space, the right hand side converges to zero
in the previous inequality, and the results stated follows.

In the second case Θk “ Rk{λ, so
∥∥∥Θk ´ pΘpλq

∥∥∥
2
“

∥∥∥´GpXBkq`GpX pBpλqq
λ

∥∥∥
2

and the proof proceeds
as in the first case.

B EDPP is not safe

In the two last sections, we present a study on the EDDP method [21], a screening rule that relies
on the dual optimal point obtained for the previous λ in the path. Note that the same conclusion
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would hold true for generalization of the sequential approach given in [22], as well as for any other
screening rule that needs exact dual solution at one step. To simplify the reading we use the vectorial
(with no capital letters) notation used earlier. In the remainder we consider λ0 “ λmax and a
non-increasing sequence of T ´ 1 tuning parameters pλtqtPrT´1s in p0, λmaxq. In practice, we
choose the common grid [7][2.12.1]): λt “ λ010´δt{pT´1q. Wang et al. [21] proposed a sequential
screening rule based on properties of the projection onto a convex set. Their rule is based on the
exact knowledge of the true optimal solution for the previous parameter. Such a rule can be used to
compute θ̂pλ1q since θ̂pλ0q “ y{λ0 p“ y{λmaxq is known. However for t ą 1, θ̂pλtq is only known
approximately and the rules introduced in [21] are not safe anymore: some active groups may be
wrongly disregarded if one does not use the exact value of θ̂pλtq.

We first first recall the property they proved. Then, we give a counter-example that shows that the
rule is indeed not safe. In Section C, we propose to modify their rule in order to make it safe in all
cases.

Recall that in this case q “ 1, the parameters are vectors: B “ β P Rp and Θ “ θ P Rn.
Proposition 3 ([21, Theorem 19]). Assume that λt´1 ă λmax, then the dual optimal solution of the
group-Lasso with parameter λt, satisfies

θ̂pλtq P B
`

θ̂pλt´1q `
1

2
vKpλt´1, λtq,

1

2

∥∥vKpλt´1, λtq
∥∥

2

˘

(15)

where
vKpλt´1, λtq “

y

λt
´ θ̂pλt´1q ´ αrθ̂pλt´1qsp

y

λt´1
´ θ̂pλt´1qq

and

αrθ̂pλt´1qs :“ arg min
αPR`

∥∥∥∥ yλt ´ θ̂pλt´1q ´ αp
y

λt´1
´ θ̂pλt´1qq

∥∥∥∥
2

“
x

y
λt´1

´ θ̂pλt´1q, yλt ´ θ̂
pλt´1qy

‖ y
λt´1

´ θ̂pλt´1q‖22
. (16)

Note that the rule proposed by [21] (as pointed out in [6]) relies on the exact knowledge of a dual
optimal solution for a previously solved Lasso problem. This is impossible to obtain in practice and
even if it is possible to find accurate solutions, the search for high accuracy may hinder the benefits
of the screening when it was not actually needed. Using inaccurate solutions may lead to discarding
variables that should have been active and so the screened optimization algorithm will not converge
to a solution of the original problem.

We illustrate this issue on Figure 4. Knowing an approximation β to the optimal primal point,
returned by the optimization algorithm at the previous regularization parameter λt´1, we need to
choose an approximation θ to the optimal dual point to run EDPP.

• If we choose to approximate the dual optimal point by θ “ 1
λt´1

py´Xβq (blue curve with
diamonds), then the result is catastrophic. Indeed, at λ1, β “ 0 is a valid ε-solution for
ε “ 10´1.5 and the screening rule tries to perform a division by 0 when computing αrθs.
• If we choose to approximate the dual optimal point by 1

maxpλt´1,‖XJpy´Xβq‖8q
py ´Xβq,

we have a better behavior (purple curve with triangles) but we may still have an algorithm
which does not converge to an ε-solution. Here, for the 13th Lasso problem a variable is
erroneously removed and the problem can only be solved to accuracy 0.03515 ą 10´1.5 «

0.03162. This may look like a small issue but when the stopping criterion is based on the
duality gap, this causes the algorithm to continue until the maximum number of iterations
is reached.

C Making EDDP screening rule safe

C.1 The simpler screening rule

In the present paper, we give computable guarantees on the distance between the current dual feasible
point and the solution of the problem. We show here how we can combine our result with Wang
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Figure 4: EDPP is not safe. We run GAP SAFE and two interpretations of EDPP (described in the
main text) to solve the Lasso path on the dataset defined by X and y above with target accuracy
10´1.5. For each Lasso problem, we plot the final duality gap returned by the optimization solver.

et al. ’s in order to make their screening rule work even with approximate solutions to the previous
Lasso problem.

For simplicity, we first consider the initial version of Wang et al. ’s sphere test:

θ̂pλtq P B
`

θ̂pλt´1q,
∥∥vKpλt´1, λtq

∥∥
2

˘

, (17)

proved in [21, Theorem 7]. As we do not know θ̂pλt´1q, we cannot readily use this ball. However,
we can modify it to make it a safe screening rules as follows:
Proposition 4. Assume that λt´1 ă λmax, θ P ∆X is a dual feasible point and rλt´1

ą 0 is a
radius satisfying θ̂pλt´1q P Bpθ, rλt´1

q, then

θ̂pλtq P B
´

θ, rλt´1
p1` |1´ αrθs|q `

∥∥∥∥ yλt ´ θ ´ αrθsp y

λt´1
´ θq

∥∥∥∥
2

¯

, (18)

where

αrθs :“ arg min
αPR`

∥∥∥∥ yλt ´ θ ´ αp y

λt´1
´ θq

∥∥∥∥
2

“

˜

x
y

λt´1
´ θ, yλt ´ θy

‖ y
λt´1

´ θ‖22

¸

`

, (19)

and for any t P R, ptq` “ maxp0, tq.

Proof. Start first by noting that (17) implies

θ̂pλtq P
ď

θ1PBpθ,rλt´1
q

B
´

θ1, min
αPR`

∥∥∥∥ yλt ´ θ1 ´ αp y

λt´1
´ θ1q

∥∥∥∥
2

¯

.

Let us denote

H “ max
θ1PBpθ,rλt´1

q
min
αPR`

∥∥∥∥ yλt ´ θ1 ´ αp y

λt´1
´ θ1q

∥∥∥∥
2

,

then θ̂pλtq P Bpθ, rλt´1 `Hq. We now need to upper bound H . A simple choice is to take α to be
αrθs defined in Eq. (19) The motivation for such a choice is because it is optimal when rλt´1 “ 0.
This provides the following bound on H:

H ď max
θ1PBpθ,rλt´1

q

∥∥∥∥ yλt ´ θ1 ´ αrθsp y

λt´1
´ θ1q

∥∥∥∥
2

,

“

∥∥∥∥∥∥ yλt ´ θ ´ αrθsp y

λt´1
´ θq ` rλt´1

pαrθs ´ 1q

y
λt
´ θ ´ αrθsp y

λt´1
´ θq∥∥∥ y

λt
´ θ ´ αrθsp y

λt´1
´ θq

∥∥∥
∥∥∥∥∥∥

2

,

ď rλt´1
|αrθs ´ 1| `

∥∥∥∥ yλt ´ θ ´ αrθs.p y

λt´1
´ θq

∥∥∥∥ . (20)
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Hence, after some simplifications:

θ̂pλtq P B
´

θ, rλt´1
p1` |1´ αrθs|q `

∥∥∥∥ yλt ´ θ ´ αrθsp y

λt´1
´ θq

∥∥∥∥
2

¯

.

Remark 8. In the case that ‖y{λt´1‖ ď ‖y{λt´1 ´ θ‖ ď 1 then with the definition of αrθs and the
Cauchy-Schwartz inequality one has that 1` |αrθs ´ 1| ď λt´1

λt
. This means that the multiplicative

ratio in front of rλt´1 is λt´1{λt. In [11, Proposition 3], the bound obtained would only lead to the
smaller ratio:

a

λt´1{λt.
Remark 9. From the proof of Theorem 7 in [21], it holds that for λ ă λmax then∥∥∥θ̂pλq∥∥∥ ď ‖y‖

λ
ô θ̂pλq P B

ˆ

0,
‖y‖
λ

˙

. (21)

C.2 The complete screening rule (EDDP+)

Let us now consider the EDDP+ screening rule [21] relying on the property (15): θ̂pλtq P

B
`

θ̂pλt´1q ` 1
2v
Kpλt´1, λtq,

1
2

∥∥vKpλt´1, λtq
∥∥

2

˘

. Using the same technique as for Proposition 4,
we can strengthen our previous proposition with the following result.
Proposition 5. Assume that λt´1 ă λmax, θ P ∆X is a dual feasible point and rλt´1

ą 0 is a
radius satisfying θ̂pλt´1q P Bpθ, rλt´1q. Define αrθs as in (19),

rλt “
|1´ αrθs|` 1` αrθs

2
rλt´1

`
1

2

∥∥∥∥ yλt ´ θ ´ αrθsp y

λt´1
´ θq

∥∥∥∥
2

`

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2
rλt´1

2‖ y
λt´1

´ θ‖22

´

3

∥∥∥∥ y

λt´1
´ θ

∥∥∥∥
2

` 2rλt´1

¯

and
vKpθ, λt´1, λtq “

y

λt
´ θ ´ αrθsp

y

λt´1
´ θq. (22)

Then θ̂pλtq P B
´

θ ` 1
2v
Kpθ, λt´1, λtq, rλt

¯

.

Proof. As before, we do not know exactly θ̂pλt´1q but we know that denoting

vKpθ1, λt´1, λtq “
y

λt
´ θ1 ´ αrθ1sp

y

λt´1
´ θ1q (23)

with

αrθ1s “

˜

x
y

λt´1
´ θ1, yλt ´ θ

1y

‖ y
λt´1

´ θ1‖22

¸

`

, (24)

we have
θ̂pλtq P

ď

θ1PBpθ,rλt´1
q

B
´

θ1 `
1

2
vKpθ1, λt´1, λtq,

1

2

∥∥vKpθ1, λt´1, λtq
∥∥

2

¯

.

Our goal is to find a ball centered at θ` 1
2v
Kpθ, λt´1, λtq that contains all these balls, thus containing

θ̂pλtq. First, reminding (20)∥∥vKpθ1, λt´1, λtq
∥∥

2
“ min
αPR`

∥∥∥∥ yλt ´ θ1 ´ αp y

λt´1
´ θ1q

∥∥∥∥
2

ď max
θ1PBpθ,rλt´1

q
min
αPR`

∥∥∥∥ yλt ´ θ1 ´ αp y

λt´1
´ θ1q

∥∥∥∥
2

ď rλt´1
|1´ αrθs|`

∥∥∥∥ yλt ´ θ ´ αrθsp y

λt´1
´ θq

∥∥∥∥
2

.
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We continue as

θ1 `
1

2
vKpθ1,λt´1, λtq ´ θ ´

1

2
vKpθ, λt´1, λtq

“ pθ1 ´ θq `
1

2

´ y

λt
´ θ1 ´ αrθ1sp

y

λt´1
´ θ1q ´

y

λt
` θ ` αrθsp

y

λt´1
´ θq

¯

“
1

2

´

θ1 ´ θ ´ pαrθ1s ´ αrθsqp
y

λt´1
´ θ1q ` αrθspθ1 ´ θq

¯

.

Taking the norm on both sides of the previous display,∥∥∥∥θ1 ` 1

2
vKpθ1, λt´1, λtq ´ θ ´

1

2
vKpθ, λt´1, λtq

∥∥∥∥
2

ď
1` αrθs

2

∥∥θ1 ´ θ∥∥
2
`
|αrθ1s ´ αrθs|

2

∥∥∥∥ y

λt´1
´ θ1

∥∥∥∥
2

.

Now, reminding that x ÞÑ pxq` is a 1-Lipschitz function,∣∣αrθ1s ´ αrθs∣∣ ď ∣∣∣∣∣x
y

λt´1
´ θ1, yλt ´ θ

1y

‖ y
λt´1

´ θ1‖22
´
x

y
λt´1

´ θ, yλt ´ θy

‖ y
λt´1

´ θ‖22

∣∣∣∣∣
“

∣∣∣∣∣x
y

λt´1
´ θ1, yλt ´

y
λt´1

y

‖ y
λt´1

´ θ1‖22
` 1´

x
y

λt´1
´ θ, yλt ´

y
λt´1

y

‖ y
λt´1

´ θ‖22
´ 1

∣∣∣∣∣
“

∣∣∣∣∣x‖
y

λt´1
´ θ‖22p

y
λt´1

´ θ1q ´ ‖ y
λt´1

´ θ1‖22p
y

λt´1
´ θq, yλt ´

y
λt´1

y

‖ y
λt´1

´ θ1‖22‖
y

λt´1
´ θ‖22

∣∣∣∣∣
ď

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2

‖ y
λt´1

´ θ1‖22‖
y

λt´1
´ θ‖22

´

‖ y

λt´1
´ θ1‖2

∣∣∣∣‖ y

λt´1
´ θ‖22 ´ ‖

y

λt´1
´ θ1‖22

∣∣∣∣` ∥∥θ ´ θ1∥∥
2
‖ y

λt´1
´ θ1‖22

¯

ď

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2

‖ y
λt´1

´ θ1‖2‖ y
λt´1

´ θ‖22

´

2‖ y

λt´1
´
θ1 ` θ

2
‖2‖θ ´ θ1‖2 `

∥∥θ ´ θ1∥∥
2
‖ y

λt´1
´ θ1‖2

¯

ď

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2
‖θ ´ θ1‖2

‖ y
λt´1

´ θ1‖2‖ y
λt´1

´ θ‖22

´

2‖ y

λt´1
´ θ‖2 `

∥∥θ ´ θ1∥∥
2
` ‖ y

λt´1
´ θ‖2 `

∥∥θ ´ θ1∥∥
2

¯

.

(25)

where the second inequality comes from the triangle inequality and the Cauchy-Schwartz Inequality,
and the third is obtained by factorizing the difference of squares. Plugging this in the former, we
get:∥∥∥θ1 ` 1

2
vKpθ1,λt´1, λtq ´ θ ´

1

2
vKpθ, λt´1, λtq

∥∥∥
2

ď
1` αrθs

2

∥∥θ1 ´ θ∥∥
2
`

1

2

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2
‖θ ´ θ1‖2

‖ y
λt´1

´ θ‖22

´

3

∥∥∥∥ y

λt´1
´ θ

∥∥∥∥
2

` 2
∥∥θ ´ θ1∥∥

2

¯

.

One could check that there exists θ1 P Bpθ, rλt´1
q satisfying θ̂pλtq P B

`

θ1 `
1
2v
Kpθ1, λt´1, λtq,

1
2

∥∥vKpθ1, λt´1, λtq
∥∥

2

˘

and so combining the last inequality with (25)∥∥∥∥θ̂pλtq ´ θ ´ 1

2
vKpθ, λt´1, λtq

∥∥∥∥
2

ď

∥∥∥∥θ̂pλtq ´ θ1 ´ 1

2
vKpθ1, λt´1, λtq

∥∥∥∥
2

`

∥∥∥θ1 ` 1

2
vKpθ1, λt´1, λtq ´ θ ´

1

2
vKpθ, λt´1, λtq

∥∥∥
2

ď
|1´ αrθs|` 1` αrθs

2
rλt´1

`
1

2

∥∥∥∥ yλt ´ θ ´ αrθsp y

λt´1
´ θq

∥∥∥∥
2

`

∥∥∥ y
λt
´

y
λt´1

∥∥∥
2
rλt´1

2‖ y
λt´1

´ θ‖22

´

3

∥∥∥∥ y

λt´1
´ θ

∥∥∥∥
2

` 2rλt´1

¯
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